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KOSZUL COMPLEXES WITH
ISOMORPHIC HOMOLOGY

EUGENE GOVER and ALFIO RAGUSA*

Conditions under which Koszul complexes are isomorphic have been
studied by Kirby [3]. Since many important attributes of a Koszul
complex are homological, it is also natural to ask what the existence of an
isomorphism on the homology level says about two complexes and about
their generators. In the present article we consider this question for Koszul
complexes over a fixed commutative noetherian ring. An isomorphism on
homology in degree zero in this situation immediately forces the ideals
defined by the two generating sets to be the same. We focus instead on the
case in which there are isomorphisms on homology in all positive degrees.
Assuming that these isomorphisms are induced by a chain map, we show
(in Theorem 3.1) that the two Koszul complexes are either acyclic or else
generated by the same number of elements. Over a local ring, if the
isomorphisms are induced by a differential graded (DG) algebra map, we
show (in Corollary 3.4) that the defining sequences of elements are either
regular or else sets of generators for the same ideal. The hypothesis that
the isomorphisms on homology come from an algebra map, or at least a
chain map, is essential for obtaining these conclusions. An example (3.6)
shows that one can have isomorphic positive homologies not induced by a
chain map without implying either regularity or equality of the ideals.

The first section consists of notation and preliminary facts used in the
rest of the paper. In the second section we collect some needed results
about Koszul complexes and chain maps between them. The main results
are stated and proved in the third section.

1. Notation and basic facts.
Throughout, we consider only commutative noetherian rings with
identity. A Koszul complex over such a ring R defined by a set of elements
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X=Xy,...,X, will be denoted by K(x,,...,x,; R) or, more briefly, K(x).
Despite the fact that a Koszul complex depends on elements and not only
on the ideal they generate, we will write K’ for K(x) when (x)=1I and it is
clear which generators are being considered. In the same context, we will
let Z! denote the cycles and B’ the boundaries of this complex. In the
complex K(x,,...,x,; R)=K', K} =R and K!=R". We will always fix a
basis e,,. . ., e, for K} and suppose that d}: K} — K{ is defined by ¢; — x;
fori=1,...,r. Since K' is the exterior algebra AR" on the generators {e;},
the generators for K! in higher degrees will be all products e N ... Ag
=e; ; With 1<i; <... <i,<r.In the highest non-zero degree, A"R"=R
with the isomorphism given by e; , + 1. Using this identification, we
will consider elements in K! to be elements of the ring.

Given a chain map ¢: K' — K’ between two Koszul complexes with
I=(xy,...,x,) and J=(y,,...,y,), we will denote the basis of K] by
ey, ..,e,. The requirement that ¢,d}=d{¢p, says that

ax; = Y auy, forall j=1,...,r,
i=1

where multiplication by « defines ¢, and (g;;) is the matrix of ¢, with
respect to the chosen bases, i.e.

@y1(e) = ;1 a;ge; .

In particular, alSJ.

Koszul complexes are, moreover, differential graded R-algebras. A
chain map ¢: K' - K’ is a map of DG R-algebras precisely when
o(x A y)=0(x) A ¢(y) and @,=1z. When such an algebra map exists,
the last condition forces ISJ. As an algebra, each Koszul complex is
freely generated by elements of degree one and consequently, every DG R-
algebra map ¢ can be obtained by starting with ¢,: K} — K7 satisfying
di=d{p, and lifting to Ap,=¢: K' - K’. The map ¢ is then an
isomorphism if and only if ¢, is an isomorphism, which in turn is
equivalent to having det [, ] invertible where [¢,] is the matrix of ¢,
with respect to some pair of bases. Isomorphic Koszul complexes must
have the same number of generators.

The homology of a Koszul complex is rigid in the sense that H p(K’ )=0
implies that H;(K")=0 for all i> p (cf. [1, 2.6]). It is also grade-sensitive: if
I=(xy,...,x,) and grade I =¢, then t + g=r, where g is the largest integer
such that H_(K")#0 (cf. [1, 1.7]). When ¢=0, i.e. when H,(K")=0 for all
i>0, the complex is said to be acyclic. Whenever x,,...,x, is a regular
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sequence, H, (K')=0, and by rigidity, this is enough to imply the acyclicity
of K'. If I is contained in the Jacobson radical of R, the converse also
holds: acyclicity of K' implies regularity of x,,...,x, (cf. [1, 2.8]).

2. Chain maps between Koszul complexes.

In this section we record some further properties of Koszul complexes
and chain maps between them.

Start by considering two sets of generators x=x,,...,x, and
y=Ji,...,), for the same ideal I. We can then write (not necessarily
uniquely)

S
Xj = ,21 a;y;
=

for j=1,...,r. The map ¢,: R" — R® defined by the matrix (a;;) then
makes the diagram

______) R

______, R

commute. As observed in section 1, (pl lifts to a DG R-algebra map
¢ = Ag,: K(x) - K(y) .

It is clear that ¢ is an isomorphism when y is a permutation o (x) of x and
@, is defined by the matrix expressing this permutation, that is [¢,]
=(8,4(»)- It is also well-known (cf. [3]) that ¢ is an isomorphism when R
is local and both x and y are minimal sets of generators for a proper ideal
I. The proposition following the next lemma extends this last result to non-
minimal sets of generators of the same length for any ideal in a local ring.

R'

RS

Lemma 2.1. Let x,...,X, be elements of a ring R such that

Xewj = Qpep X1t oo Fa X

for some t<r and for every j=1,...,r—t. Then the map y,: R" - R’
defined by the matrix
— It Qi+
M= (0 I
induces a DG R-algebra isomorphism

V: K(xq,...,%;0,.. .,O;R)—;—+ K(x,,...,x,; R)

r—t
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where I, and 1,_, are identity matrices of size t and r —t respectively and
i=1,...,tj=1,...,r—t.

Proor. A direct check shows that

0) = R' (X3, -5 %; 0,...,0) R

Lo ]

Kl(xla- . -,x,.) = R’ (X15. -4 X,)

K,(x4,...,%;0,...,

commutes. Moreover, det M =1 so the extension Yy =4y, is a DG R-
algebra isomorphism.

ProrposiTiON 2.2. Let x=X,,...,X, and y=y,,...,y, be sequences that
generate the same ideal I in a local ring A. Then the Koszul
complexes K(x; A) and K(y; A) are isomorphic DG A-algebras.

Proor. Let t =v(I) be the minimal number of generators of I. Using the
observations made just before the lemma, we may assume that x,,...,x,
and y,,...,y, minimally generate I.

If I is proper, it follows from [3] that there exists a DG A-algebra
isomorphism

¢o:K(xq,...,x;A)> K@y, ..,y,;4).
Otherwise =4, t=1, x; and y, are invertible, and there is an obvious
isomorphism
¢:K(xy; 4) > K(yy; 4) .

Thus for any ideal there is an isomorphism ¢ between Koszul complexes
defined by minimal sets of generators. Let

¢: K(xy,...,%;0,...,0) > K(y,..-,¥,0,...,0)

r—t r—t

be the ismorphism induced by the matrix

([‘l(’)x] I,O. ,) '

Using lemma 2.1 we can then construct the DG A-algebra isomorphism

K(x) — K(xla . ’xv 0)“‘"’K(}’1’ . ’yu 3 O) K(Y)

W=t
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ReMARk 2.3. If we drop the hypothesis that A4 be local, we can say
slightly less: for every localization A4,, at a maximal ideal m, there exists a
DG A,,-algebra isomorphism y,,: K(x; 4,,) = K(y; 4,,).

When a chain map ¢: K! — K’ exists for (possibly) different ideals
I=(xy,...,x,) and J=(y,,...,),), we have already noted that alSJ
where multiplication by a defines ¢,. If r=s, we also have

PROPOSITION 2.4. Let ¢: K' — K’ be a chain map with I=(x,,...,Xx,)
and J=(y,,...,¥,). Then AJ<I where multiplication by A defines ¢,.

Proor. Dualizing the commutativity of ¢ with the differentials of K'
and K’ in the highest degrees yields (df)*@*_, =¢*(d))*. The conclusion
then follows, since for Koszul complexes, Im (df)*=1I and Im (d&/)*=J.

RemMaARrk 2.5. In the special case that ¢ = A¢, is an algebra map, one has
a=¢@,=1and so IS J. In addition, 4 =¢,=det [¢, ]. It then follows from
2.4 that det [@, JJ € 1. (This inclusion ¢an also be obtained from Cramer’s
rule.)

3. Isomorphic Koszul homologies.

What can be learned about Koszul complexes and their generators
when their homologies are related? We now consider this problem for the
case of two Koszul complexes over a ring R and a chain map between
them that induces an isomorphism on homology in specified degrees.
Observe first that if I and J are ideals of R and K’ and K’ are Koszul
complexes defined by any two sets of generators for these ideals, then
H,(K")=~H,(K’) implies that I =J. This follows from the fact that R/I and
R/J are the respective homologies in degree zero. It is therefore natural to
ask what happens when there are isomorphisms between H(K') and H (K”)
in other degrees.

If there are isomorphisms on homology in all positive degrees, grade-
sensitivity guarantees that gradeJ—gradel=s—r where I=(x,,...,x,)
and J=(y,,...,y,)- More, in fact, can be said.

THEOREM 3.1. Let I =(x,,...,x,) and J=(y,,. . .,);) be two ideals in a
ring R whose generators define Koszul complexes K' and K’ respectively.
.Suppose that there exists a chain map ¢: K' — K’ such that H(p) is an
isomorphism in all positive degrees. Then either r =s or else both complexes
are acyclic.

Proor. Consider the complexes K' ® K' and K' ® K’ and ““first”
filtrations of these tensor products defined by
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F,K'®K"), = ) K!'QK!
and

F(K'®K), = ¥ K QK.

i+j=p
Observe that Fo(K' ® K')=~K' and F,(K'® K’) =~ K’ . The natural
inclusions
K' o F,(K'"®K') and K’ o F,K'®K’)

induce the following short exact sequences of complexes

0K - F,(K'"®K") - C: -0
M) 0 ol W

0-K - F,K'®K’) > C| -0
where @, is the restriction of 15 ® ¢ to F, (K’ ® K') and ¥, is the induced
chain map on the cokernels. The homology diagram induced by (1) is, in
part,

.= H,,,(C]) > H,(K") > H/(F,(K"®K")) » H,(C}) » H,_,(K") - ...

2) H(,) H(p) H@®,) H(Y,) H(p)

- Hp+l(c‘{) - Hp(KJ) i Hp(Fl(KI®KJ)) - Hp(C{) - Hp—l(KJ) = ..

It is easy to see that
(C€),~K:®K,_, and (C)), =K/ ®K_,

from which it follows that H,({,)=1x ® H,_,(9), so H,(y,) is an
isomorphism for all p=2. Applying the five-lemma, H,(®,) is an
isomorphism for all p=2. We now repeat this argument in general using
induction on the filtration degree. The generalization of (1) is

0- F,_I(K’®K’) - F,(K'®K’) - C,I -0
3) o, ®, ¥,
0> F,_,(K'®K’) > FAK'®K’) —» C! -0

where @,_; and &, are the appropriate restrictions of 1x: ® ¢ and ¥, is the
induced chain map on the cokernels. Since

(), = KI®K., and (C)), = KI®K)_,,
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H,(,)=1x ® H,_,(p) and so H,({,) is an isomorphism for all p=¢+1.
By induction, we may assume that H,(®,_,) is an isomorphism for all
p=t. Again applying the five-lemma to the homology diagram coming
from (3), H,(®,) is an isomorphism for all p=t+1, so by induction this
fact is true for all t. When t=r,

FK'®K)=~K'®K' and F,K'®K’) =K' K’

Hence
P =1xQe¢
and so
4) H,(1x®¢): H,(K'®K') > H,(K' ® K’)

is an isomorphism for all p=r+1.
Now start over from the beginning with a new pair of complexes
K' ® K’ and K’ ® K’. This time, using “second” filtrations defined by

FL(K’@K’)‘, = Z K{®KJ’-
i+j=p
isk
and
FK'®K’), = Y K ®K]
R
and a similar argument, we can conclude that
®) H,(¢ ® 1x): H,(K'® K’) - H,(K’ ® K')

is an isomorphism for all p>s+1. Combining (4) and (5), we have the
following chain of isomorphisms for g=max {r+1,s+1}:

Y., A'R"@H;K") =~ H,(KO,...0)®K') ~ H (K" ® K)

i+j=q

IR

H, (K'® K') = H,(K’ ® K’)
(©) > H,(KO,... .0)®K) = ¥ AR ®HK).

i+j=q
Here, the first and last isomorphisms follow from the Kiinneth tensor
formula, the second and fifth come from Lemma 2.1, and the middle two
isomorphisms are H (1x: ® ¢) and H (¢ ® 1xs) respectively.
If either K” or K’ is acyclic, the hypothesis that H(¢) is an isomorphism
in positive dimensions guarantees that the other complex is also acyclic.
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On the other hand if neither complex is asyclic, then by rigidity
H,(K")~H,(K’)+0. There then exists some maximal ideal m such that
after localizing at m, H, (K"),, ~ H,(K’),, + 0. We may therefore assume
that the isomorphism (6) holds in a local ring with residue field k and with
H,(K")~H, (K’)+0. After tensoring with k and counting dimensions,
using the fact that A?2R"=A9R*=0, (6) leads to the equality

(7) b <:>.vj= h (f)u,
’;Bq itj=q

j>o

with v;=dim, H,(K’) ® k=dim, Hj(K’) ® k=0 for j>0, and at least
v, >0. It follows immediately from this that r=s.

The theorem that we have just proved shows what happens when two
Koszul complexes with induced isomorphic positive homologies have
different numbers of generators. The next theorem will be used to show
what happens when they have the same number of generators.

THeEOREM 3.2. Let I=(x,,...,X,) and J=(y,,. . .,Y,) be two ideals in a
ring R whose generators define Koszul complexes K' and K’. Suppose that
there exists a chain map ¢: K' — K’ with the following two properties:

1) ¢@,=multiplication by 4 € rad R.
ii) H,(p) is an isomorphism for all t > q, for some fixed q.

Then gradel and gradeJ are both greater thanr —q.

Proor. By the grade-sensitivity of Koszul complexes, we have to show
that for all t>q, H,(K")~H,(K’)=0. For t=r, this means showing that
0:I1=0:J=0. Take any a € 0:1. Since H,(p) is multiplication by A4,
Aa € 0:J. Thus for every y € J, day=0, and since H,(¢p) is injective, ay
=0. Hence « € 0:J. This shows 0: I1<0:J. But H,(¢) is also surjective, so
A4(0:1)=0:J, from which we get 0: IS 4(0:I). By Nakayama’s lemma we
conclude that 0:1=0 and consequently 0:J=0 as well.

Now consider g<t<r. By decreasing induction we may assume

H,K") ~ H,(K’) =0 for p>t;

we must then prove H,(K")~ H,(K?)=0. Take z’ € Z/. Since H,(¢) is onto,
there exists a cycle z € Z! such that

0,(z2)—2 = b9 = dw*V e B/
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for some w'*V e K/, . Since J-H,(K’)=0 and H,(p) is injective, it
follows that J - H,(K')=0. In particular, y,z € Bf fori=1,...,r. There are
then elements y; € K!, , such that d'y;=y;z fori=1,...,r. Set yj=¢e; A 2’
+yw e K, .

We claim that ¢,,,(4;)—p: € B],,. This is shown by the following
computation:

Ao ) —u] = od' (W) —d W) = ¢,(y2)—yiz' —yb® = 0

SO @, 41 (1; ) ui € Z!,,=B], by the induction hypothesis. It follows for
every i=1,...,r that there are elements w{'*? e K/, , such that

f o Bt glfe+2
@er 1 () —p; = bITD = dIwfr? .
Moreover, for every 1<i; <i, <r,
1 _ gl
Visliy = Yirbiy € Zyvq = Byyy .
1
There are therefore elements y; ;, € K;, , such that
1 =
d Wi, = Yisli,— Vi, -
As before, set
r— o ’ t+2 t+2 J
Hiyi, = €3, N 2 +yi1w(iz )—yizw(ix Ve Kt+2

We next claim that ¢, ,(u;,;,) — #,;, € B}, ,. Again, this is established
by computation:

AP 2 Wigi)) — Biyi,] = 014 1dl(ﬂili2)"d1(ﬂ£,iz)
= Qa1 Wiy = Yirbhi,) — U385, A 2 —piel, A 2/ +y BT —y biTD)
— yh(e:‘z A z:+yizw(:+ 1)+bi‘;+1))"yh(e;1 A ZI+.Vi;W“+l)+b(itl+ 1))_
— i€, A2 —y,e, A 24y, bV —y,bitY) = 0
SO

’ J — RJ
(pt""z(l’tl']l'z)—-ul'liz € Zt+2 - Bt+2 .

Thus for every 1<i, <i,<r we have

t+2) _ AT, t+3
(pf+2(ul'1iz)—p’;|iz bsxlz ) d w(nlz )
for some w{}? € K, ,.
We now proceed in the same way for t'=r —t steps until, for every 1 <i,

<...<iy <r, we obtain elements y; ; € K] with the property
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@1, i)~ M, €Z] = B/ =0,

where
3 Q)
' — ’ +1 n .
Hij. i, = €. i N2 +k;1 (-1 YiVi' i
and the elements w{? ; . € K] are constructed inductively in the same

manner used for the earlier w’s.

To go on, we need a sign convention and some combinatorial results.
Given t’ positive integers i, ,. . .,i,, with1<i; < ... <i.<r,leto; ; stand
for the sign of the permutation

4 (il""’it"(il""’it’)A)

where (iy,. . .,i,,)A=1,. . .,fl,. . .,f,,,. ..,r. In this permutation each i,,
m=1,...,t', must move (i,, — 1)+ (t' —m) steps to reach its final position in
1,2,...,r. Thus we need i, + ... +i, + (;)—t transpositions in order to
convert this permutation into the identity. Therefore,

o = (—1)i1+"'+i"+(";1).
Now take any integer j € {(iy,. . .,i,,)A} and set
[jliss- - .,iy] = number of i’s less than j .
It is clear that
() ilis- < wsipd Dl Gase e vndoe o obe) 1 =j—1.

With this notation, if 1<i,<...<i,,,<r are t'+1 integers, we claim
that

(9) G . . (_1)[ik|(i1-~~iv+1)A]

does not depend on i, but only on i,,. . .,i,,, and k; so when k runs from
1 to t'+1, (9) is an alternating sign. This is shown, using (8), by the
following computation:

G 1 . (_1)[i1|(i1--‘ir+1)ﬂ]

— (_1)i,+...+f,,+...+i,.+,+("’5‘)+(i,—1)—(k-1)
= (...]_)i1+...+l}'+1+(";l)+k.

Returning to the proof, using the identification of K! with R stated in
section 1, we may think of the element y; ; as an element of R. We then
claim that
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Z oi. il i€, i) € z] .

1si;<...<i.sr
To establish this, it is enough to show that for every 1<i, < ... <i,,,<r,

t'+1 o ) R
2 Gy By oy, (DG Ty, <

oo lp gy

which by the previous result can be expressed as

t'+1
k;1 (-1)"“}’.',!‘:',...f,...i,.ﬂ =0.
But this follows, as in the other dimensions, because
t'+1
> (-1)“1!1:',...?,,...:’,,”}’;',GZ£ =B =0.
k=1
From

B, =@y ) = Ap

we now obtain
Z Gi, i M€,y = 4 _ Z Gi, i Mi,..i, €. i€ Az},
iy ooy [ S

which by substitution implies

v
7+ ) Z oi, i (=D lyw? ey €4Z] .

k=1 ...,
The second term in this sum is the boundary of the element

(r) / ~
L i iy Wiy iy Cliyenipy)
=1

iy iy

We therefore have shown that z'e AZ] + B/ and hence Z]SA4Z]+B/.
By Nakayama’s lemma it follows that Z/=B], and from this
H,(K’)~ H,(K")=0.

We now exhibit some of the consequences of Theorem 3.2.

THEOREM 3.3. Let I = (x4,...,X,)E (¥4,- - -, ¥s)=J be two ideals of aring
R such that (I:J)Srad (R). If there is a chain map ¢: K' — K’ making
H, (o) an isomorphism for t >0, then x,,. . ., x, is a regular sequence and K’
is acyclic.
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Proor. If r+s, the conclusion follows from Theorem 3.1 and the fact
that I S rad (R). Otherwise, by 2.4, we have 4J &€ I where multiplication by
A defines ¢,. The condition on I:J then forces 4 € rad (R), which means
that the hypotheses of Theorem 3.2 are satisfied with ¢t =1. The conclusion
now follows from 3.2 and having I <rad (R).

COROLLARY 3.4. Let I=(x,,...,x,) and J=(y,,...,Y,) be ideals in a
local ring (A,m). If there is an algebra map ¢:K' — K’ inducing
isomorphisms H,(p) for t>0, then either r=s and I=J, or else x,,. . .,x,
and y,,...,y, are both regular sequences.

ProoF. By Remark 2.5, IS J under this hypothesis. If the sequences are
not both regular, then by 3.1 r=s, and applying 3.3 in the local case it
follows that I=J.

REMARk 3.5. 1) Combining Theorem 3.1 and Corollary 3.4, one can say:
if I and J are two different ideals that cannot be generated by regular
sequences, then there is no algebra map between K’ and K’ (for any two
sets of generators) that induces isomorphisms for all positive homologies.
When IS J, the same is also true for chain maps.

ii) In 3.2 and 3.3 the hypothesis that the isomorphism H , (K"~ H , (K’)
is induced by a chain map is essential, as can be seen by the following
example.

ExampLE 3.6. Consider A=k[[X, Y, Z]]/(XY)=k[[x,y,z]], where k is
any field and x, y, z are the images of X, Y, Z under the natural map. Set
I=(xz) and J=(x). We then have that H,(K")=0:xz=(y) and H,(K’)
=0:x=(y) so trivially, H,(K")=H,(K’). But this isomorphism (the
identity) is certainly not induced by a chain map from K to K’. Moreover,
an easy computation shows that no chain map can induce an isomorphism
on H,.

If I=(x)=(x,...,%)8J=O)=1,--..,ys) are two ideals in a local
ring (4,m), then Theorem 3.3 shows, in particular, that if H, (K') and
H, (K’) are isomorphic by means of an isomorphism coming from a
chain map, then x is a minimal set of generators for I. This conclusion
of minimality can be obtained more generally when H,(K")~H,(K’)
by means of any isomorphism.

ProposITION 3.7. With the preceding notation, if H,(K")=~H,(K’), then
vi)2r+1-t.

Proor. Suppose v=v(I)<r+1-—t, thatis t <r—v. We may assume that
X,=X,...,X, minimally generate I. By Lemma 2.1 we have
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HI(KI) = HI(K(xv)®K(O’ . '90»

r-v

~ H(K(x,) ®[H,_(K(x,)) @4 "] ®...
...O[H|(K(x,)®A4'4""].

Since H(K (x,))=A/I and t <r—v, we have that H,(K") contains A/I as a
direct summand. On the other hand, J-H,(K’)=0. Hence, because
H,(K")~H,(K’), J-H,(K")=0. Therefore, in particular, J- A/I =0, which
means J &I contradicting I& J.

In particular, for t=1 we get

CoroLLARY 3.8. If H, (K")= H, (K”), then x is a minimal set of generators
for 1.

When r=s, 3.8 says that both sets of generators are minimal.

REemMARrK 3.9. Given a ring homomorphism f;,: R — R/, taking an ideal
I=R to an ideal I'c R’, that can be lifted to a chain map f:K'(R)
— K" (R’) considered over R via f,, one can ask what the consequences are
when H(f) is an isomorphism. Examples of such an isomorphism can be
given, for instance when (R’,I') is the I-adic completion of (R,I) and
fo: R = R'’is the natural map. It might be interesting to find conditions on
the pairs (R,I) and (R’,I') that will imply the isomorphism H(f) on the
homology level. Note that in the case of local rings (A4,m,k) and
(4’,m',k’) and Koszul complexes K4 =K™(4) and K4 =K™(4’) defined
by minimal sets of generators for the two maximal ideals, a DG A-algebra
map : K4 - K# induces the k-algebra map H(y). When H(y) is an
isomorphism, y preserves matric Massey-product structure (cf. [4,
Theorem 1.5]). If, in addition, the rings A and A’ have the same
embedding dimension, it follows from a result of Avramov [2] that they
also have the same Poincaré series and Betti numbers.
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