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BOUNDARY REGULARITY FOR HOLOMORPHIC MAPS
FROM THE DISC TO THE BALL

JOSIP GLOBEVNIK' and EDGAR LEE STOUT?

In this paper, which is a sequel to [7], we study the boundary behavior
of proper holomorphic maps from the open unit disc 4 in the complex
plane to the open unit ball B, in C". Given such a map, call if f, the fact
that f'is proper implies that the image f'(4) is an analytic subvariety in B,,
whose closure in C” consists of f (4) U y where y is some compact subset of
the sphere bB,. The set y is the global cluster set of f, that is to say, y
consists of all limit points of sequences of the form { f(z;)};-,,,,.. Where
{z;}j=1,2,... runs through all sequences in 4 that tend to b4. In the sequel,
we shall frequently denote this global cluster by €(f). In general, the set
%(f) can be quite complicated, as examples constructed in [8] show.
However, if the set y is regular, it is natural to expect that the map fshould
behave in a regular way at b4. In the case that y is a smooth curve, this fact
follows from work of Cirka [1], [2]. Here we study the case that y is a
rectifiable curve or more generally, that y has finite length, i.e., A(y)< o0,
where A' denotes one-dimensional Hausdorff measure.

Our main result is the following

THeOREM 1. Let f: A — By be a proper holomorphic map with global
cluster set of finite length. If f (4) has finite area, then f extends continuously
to 4. If, in addition, € (f) is a simple closed curve, then the derivative f* lies
in the Hardy class H'(4).

Granted that the map f extends continuously to 4 the conclusion that
f" € H'(4) is a consequence of [7, Theorem 6]. The condition that f(4)
have finite area is equivalent to the condition that £ f '|? be finite, so the
first statement is a consequence of the following one variable result.
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THEOREM 2. If - A — C is a holomorphic map such that €(f) has finite
length and whose Dirichlet integral S Af'1? is finite, then f extends
continuously to A.

If €(f) in Theorem 1 is a rectifiable simple closed curve, then to prove
that fextends continuously to 4, it suffices to assume that, if f= (f;,. .. fy)
with f; nonconstant, then S | /112 is finite. This follows from the proof of
Theorem 3 below.

Given a bounded holomorphic function g on 4 and a point { € b4, we
denote by € (g; ) the cluster set of g at {, i.e., the set of all limit points of
sequences of the form {g(z;)};-, . . as the sequence {z;};—,, . runs
through all sequences in 4 that converge to the point {; it is a connected
compact set. If A= b4 is an arc, we define cluster set ¥(g;4) in a similar
way.

THEOREM 3. Let f: A — By be a proper holomorphic map. If €(f) is a
rectifiable simple closed curve and if for each { € bA, €(f; {)+€(f), then f
extends continuously to A, and ' € H'(4).

The proof of Theorem 2 depends on the following preliminary:

LemMa 1. Let L be a connected compact set of finite length in C, and let
p,q€ L, p*q. Let P,, n=1,2,..., be an open set in C with
1) P, connected,
2) P,oP,>...,
3) bP,<L,
4) p,q€ P,
Then ﬂ,‘f; 1+ P, contains a nonempty open set.

Proor. Choose coordinates so that p=0, g=i(=]/ —1). The set L has
finite length so [5, 2.10.11, p. 176] for almost all y € R, the set

L(y) = {(x,y) : (x,y)e L}

is finite. Let # y denote its cardinality. Note that for y € (0,1), #y=2.

Fix y,€(0,1) with #y<oo. Denote by Q.,Q,,Q,,...,
components of C\L, Q, the unbounded component. We shall
that at most finitely many of these components meet the line I(y,)
={(x,y0):x€R}.

Each of the sets Q;,j=1,2,. .., 00, is open, so I(y,) N 2, if not empty, is
an open subset of I(y,). As such, it is a countable union of open intervals
A(j; k), k=1,.... The endpoints of A(j; k) lie in L, and a given point
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z € I(y,) that is an endpoint of a A(j, k) is the endpoint of at most one other
A(j’; k'), because the Q;’s are disjoint. This implies that the number of Q ;s
meeting l(y,) is not in excess of 2# y,. (This is very crude, but all we need
is the finiteness of the set of Q’s with the property.)

Assume now that ()2, P, does not contain an open set. We have

P,=L,UW,

where L, is a subset of L and W, is a union of some collection of the Q;’s.
As N P, does not contain an open set, for each j, there is an N (j) so that for
n=N(j), P, does not contain Q;. (Here, j=1,...,0.)

Let Q,,...,2,, a;,...,0,€ {1 ,o0} be the finitely many Q’s that
meet l(yo) If n>max(N (ocl) .N (oc,)), then P, does not meet I(y,) N
(C\L). That is to say, for n large, P, is a connected open set such
that 0, i € P,, but P, N I(y,) is finite. Plainly no such connected open set
exists. The lemma is proved.

Granted Lemma 1, Theorem 2 is proved as follows.
It is enough to prove that €(f; 1) contains only one point. Assume that

p,q € €(f; 1), p£q. As {41 <0, a result of Tsuji [3, p. 47] yields a
sequence {r,}>., decreasing to zero such that if

L,={ed: |{-1=r,},
then the length of f (L,) decreases to zero as n — 0. (In the statement of
the result given in this reference it is assumed that f'is injective, but this
hypothesis is unneeded in the proof.) As f is bounded, we may suppose,
by passing to a subsequence, that there is a point z € €(f) such that
f(L,) = z in the sense that every neighborhood of z contains all but
finitely many of the sets f(L,). We may also suppose that

i Af(L,) < .

Let

L=4%(f)U nl:Jlf(L,.) .

Since each f(L,) is a path with endpoints belonging to €(f) and since
.f(L,)>z, it follows that L is a compact connected set of finite length.
For each n, let Q,={(e4:|{—1|<r,}. Then P,= f(£,) is a decreasing
sequence of open sets satisfying the conditions (1)-(4) of Lemma 1. By
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Lemma 1, [\, P, _must contain a nonempty open set. This contradicts
the fact that ()2, P,=%(f; 1)=€(f) has empty interior.
This completes the proof of Theorem 2.

LemMA 2. Let f: A — By, be a proper holomorphic map such that €(f; 1)
is a rectifiable arc for some arc AcbA. Let A,,i=1,2 be arcs in 4, 4, with one
endpoint, q;, in A and otherwise contained in A. If A N A, N A, = & and if for
some w € bB,,

lim f({) = lim f({) =w
(e, {ed,
{—baA {-bA
then q,=q,.

Proor. Let p;,i=1, 2, be the endpoint of 4, that lies in 4. With no loss of
generality, we can suppose that p, =p,.

Assume that q,%q,. Denote by f* the radial (or equivalently,
nontangential) boundary function of f. By [3, p. 19] our assumptions
imply that f*(q,)=f*(q,)=w. Thus, it is enough to get a contradiction in
the special case when 4, and 4, are radii. Denote by 4, the arc in 4 with g,
and q, as endpoints. Then 1, U4, U4, is a simple closed curve; let its
interior be denoted by Q. Let L be the cluster set of fat 4, with respect to
the domain Q. By hypothesis, L is a rectifable arc. The set J defined by
J=f(4, UA,) U {w} is a closed subset of By U {w}, and its polynomially
convex hull, J, is also contained in By U {w}. We shall show below that the
nontangential limits of f along A, are dense in L. This implies that there
exist wy € L\ {w} and 6 € R such that ¢ € 1,\.{q;,9,}, and such that
the nontangential limit f*(e*) exists and is w,. Thus, if y is a short open
radial segment in 4 terminating at ¢, then w, is a limit point of f(y).
Moreover, if y is short enough, then since f'is proper, f (y) will be disjoint
from the compact subset J of By U {w}.

This is impossible, however: By the maximum principle, f(£2)
c(LUJ), and, as noted in [7, Lemma 7], (LUJ) =LUJ. As f(y)
< f(R2), we have reached a contradiction.

It remains to see that, as claimed, the nontangential limits of f along 4,
are densein L. If not, let w, be a point of L at positive distance from the set
f*(4o)- Then w, is also at positive distance from the set f(1; U4,).
Consequently, there is some 6 >0 such that if @ is a conformal map from 4
to , the nontangential boundary function g* of g=f-@ satisfies
Re {g*|lw,><1-4, and the Poisson integral representation shows that
this implies Re (g|w,> <1—4 on 4, that is Re { f|w;>=<1—6 on £ which
contradicts the fact that w, € L. The lemma is proved.
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ReMArk. Knowing now that g, =q,, call it g, we know that 4, U, is a
simple closed curve, which is the boundary of a bounded domain, Q. The
function f is bounded, and is continuous on (2UA, Ui,)\{q}.
Moreover, f|((4; U 4,)\ {q}) extends continuously to 4, U 4,. It follows
that f extends continuously to all of 2: A bounded holomorphic function
on a domain bounded by a simple closed curve that has continuous
boundary values is continuous on the closed domain.

We shall need the following simple geometric fact:

LemMa 3. If I' = CN is an arc with endpoints w, z, if v € '\ {w, z}, and if
£>0, there is 6>0 small enough that if LcT +JBy is a connected set
containing z and w, then L meets v+¢B),.

The point is that for given ¢, if ¢ is sufficiently small, the set
(I'+6By)\ (v+eBy)

has at least two components, and z and w lie in distinct components.

LemMA 4. Let r>0, let A={e": |6|<r}, and let f: A — By, be a proper
holomorphic map such that the cluster set €(f; A) is a rectifiable arc. Let
—r<0,<0,<0;<r. If the radial limits f*(®), f*(e) and f*("%)
exists they are distinct, and f*(e%?) lies in the subarc, L, of €(f;A) with
endpoints f*(e!) and f* ().

That the given radial limits are distinct is the content of Lemma 2; the

main point of the present lemma is the given order-preserving property
of f*

Proor. Suppose that f*((e'?2) ¢ L. To fix notation, suppose that f *(e*!)
belongs to the arc in €(f; A) connecting f*(e®®2) and f*(e*). Let w be a
point in €(f; 1) between f*(e®®1) and f*("*2).

For e € (0,1), put

D,(w) = {ze€ By : 1—e<Re(z,w)} .

Fix ro € (0,1) and ¢,>0 so that f({) ¢ D, (w) when {=re”*, {=re? or
{=re' with r e (ry,1). Having fixed ry, we can choose &}, 0<eg <&,
so that f (r,e®) & D a(w) for all 6 e [6,,605]

Given 6>0, there is 0, 0<p<1, large enough that f(re?) € €(f; A)
+6By when r € (o,1), 0 € [6,,6,].

It follows that given &, 0<e<g,, there is ¢, 0<@<1, such that if
re (g,1) and
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A={ré": 6,<0<0,}] and u = {re®: 0,<0<86,},

then both f(1) and f(u) meet D,(w).
Let {r,}>., be an increasing sequence in (ry,1) with limit 1. There is
then a decreasing sequence {¢,}:> ;, &; <&, With limit zero so that if

Ay = {re®: 0,<0<0,} and pu, = {re?: 6,<0<6,},

then both f(4,) and f (u,) miss Ds_(w).
Also there is an increasing sequence {r,}=,, r,<r,<1 such that if

Ay = {r,e™:0,<0<6,} and p,= {r,e®:0,<0<80,},

then f(4,) and f (u,) both meet Ds'(w).
For n=1,2,. .., defined sets 4,, B,, P,, and Q, by

P, = {re’: r,<r<1,0,<0<8,}
Q, = {re® : r,<r<1, 0,<0<86,}
and
A4, ={{eP,: f)eD, (w)}
B,={{€Q,: fC)eD, (w)}.

The set A, is open, and at each point of b4, (boundary taken with
respect to C), which is in 4, Re { f ({), w) =1 —¢,. Thus, bA4, does not meet
the set

T, = 4, U {re"® : r,<r<1} U {re®> : r,<r<1},

as follows by the choice of ro and A, and u,,. However, by the choice of 4,
and u,, the set A, meets 4, say at {,. If A, denotes the component of A4,
containing {,, then A meets 4, ,. If not, then as 4, (closure in C) does not
meet T,, the set A, is a compact subset of 4. This would imply that the
function Re { f, w) is equal to 1 —¢, on bA4, but greater than 1 —¢, on 4,.
Thus, A, meets 4,,,, say at {,,,.

Consequently, there is a curve, y,, in A4, connecting {,€ 4, to
{w+1 € Agsq. Iterating this construction yields a continuous map y: [0,1)
— P, such that lim,,, - dist(y(t),b4)=0 and such that

Jlim Re<f(y@),w> = 1,

that is lim,_, - f(y(t))=w.

We shall show that lim,. - y(t) exists. Otherwise, there are points
{,{'ebA,{+{ and there are points t,,t,€(0,1), t,t,—1 with y(t,)—>{,
y(t,)—> (. For large n, y([t,,t,]) and y([t,,t,+,]) both meet the radial
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segment |0,¢|, where we choose £ € b4 so that f*(&) exists, £ in the arc
{e": 0, <0<8,} between { and {'. It follows then that f*(£)=w. This is
true for every choice of &, so f is a constant. Contradiction. Thus,
lim, ,, - y(t) exists.

If we invoke [9, p. 208], we find that there is an arc L,
<y([0,1]) Ulim,_,, - y(t) that is contained in P, U {lim,_,, - y(t)} and that
has lim,_,, - y(t) as an endpoint such that

lim f({) =w.

{eL,

{—>bd
A parallel construction yields an arc L, contained, except for an endpoint
in b4, in Q such that

lim f(() = w.

(eL,

{—bd

Lemma 2 shows that L, NbA=L, N b4 whence this common point
must be e®2. However, this is impossible, for w was chosen not to be
1),

This completes the proof of Lemma 4.
The following is a well-known fact in the theory of real functions:

LeMMA 5. If A is a dense subset of (0,1)and if f A — R is an increasing
function, then there is F: (0,1) — R, an increasing function, that agrees on
A with f.

A suitable choice for the function F is given by

fx) = %{Supf (t)+inf f (t)} -
ted te A
tsa tza
Proor or THeEorEM 3. The hypothesis that €(f)+%(f; 1) implies that
for some §>0, if

A= {e?: |61<6},

then L=%(f; 1) is a rectifiable arc. Let 4 be the set of points 6 in (—6,6)
such that f*(e) exists. It is of full measure in (—d,d) and so, certainly,
dense. We know, moreover, that 8 +— f*(e) is order-preserving from A
into L. Lemma 5 yields a function F:(—6,0) - L that extends
0+ f*(e"%) and that is order-preserving. As L is rectifiable, F is of
bounded variation.

As the remarks of the preceding paragraph apply mutatis mutandis when
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€(f;1) is replaced by €(f;() for every { € bA, we conclude that there
exists a function F on b4 that is of bounded variation and that agrees
almost everywhere with f*. This implies that f extends continuously to 4
and, moreover, that ' e H'(4) (cf. [4, p. 42].)

It will be observed that although we have stated Theorems 1 and 3 for
maps from the disc to the ball, the arguments work equally well for maps
from the disc to any strictly convex domain and hence, by way of the
embedding theorem of Fornaess and Henkin [6; 10, p. 668 of the English
translation], the results are valid for maps from the disc to a strongly
pseudoconvex domain.

It is possible that our main result is a special case of a more general one.
Perhaps the hypothesis that f (4) have finite area is redundant: If E is a
compact connected set of finite length, then presumably the polynomially
convex hull of E has finite area. We do not have a proof of this fact. Also,
it seems likely to us that if fis a bounded holomorphic function on the unit
disc whose global cluster set has finite length, then f extends continuously
to A. Some care is required here though: Simple examples show that the
condition is not strong enough to yield f’ € H.
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