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ON THE INSTABILITY OF HAUSDORFF CONTENT

CLAES FERNSTROM

Let E be a subset of Euclidean space R” and o a non-negative real
number. We study all coverings of E with a countable number of open
balls B; with radii r; and define the a-dimensional Hausdorff content
H,(E) as

inf )" rs

for all such coverings. A property, which holds for all points on E\ E,
with H,(E)=0, is said to hold H,-a.e. on E. Denote by B(x, ) the open
ball {y; |[y—x|<é}.

O’Farrell has conjectured in [7] that an “instability” result might hold
for the content H,. This paper is devoted to prove the following
“instability” theorem:

THEOREM. Let E be a set in R" and o and f constants such that 0 <o <f.
Then Hg-a.e. on R" one of the following relations holds:

tm sup FAEN B(8) | 1
30 57 6
or
lim w -0.
0—0 5

Similar theorems are true for the Lebesgue measure m (see Stein [8]),
the analytic capacity (see Vituskin [9]) and the Riesz capacities (see
Fernstrom [5]).

The main tool to prove the theorem is to use the fractional maximal
function to define a capacity, which is equivalent to Hausdorff content. It
is then possible to use the technique used in Fernstrém [5] for Riesz
capacities to prove our theorem. The idea of using the fractional maximal

function to define an equivalent capacity to Hausdorff content can be
found in Adams [1].
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ProoF oF THEOREM. The proof of the theorem will be split in a series of
lemmas.

Since H,(E)=0 for all sets E when a>n, the theorem is trivial when
b>n. We shall therefore in the rest of the paper always assume that
0<agnand 0<f<n.

A set function C on R" is said to be subadditiv if C(E)<) 2, C(E),
where E=|J2 E..

The set function C is increasing if

E, c E; = C(E;) = C(Ey).
Let C, denote a subadditiv, increasing set function on R" such that
C/B(x,8)) = A(C,)o",
where A(C,) is independent of x and 6. It is easy to see that H, is
subadditiv, increasing and H,,(B(x,é))=6“.

We begin with a Vitali covering lemma, which is proved as lemma 1.6 in

Stein [8].

LemMA 1. Let E be a subset of R" which is covered by the union of a family
of balls {B,}, of bounded diameter. Let ¢>0. Then from this family of balls
we can select a disjount subsequence {B,;} so that

C.(E) £ (3+ey ) Cu(By) .
If fe L' (R") we define the fractional maximal function M, f as
M.f6) = supa™ [ iSOy
>0 B(x, 8)

LemMA 2. Let fe L' (R") and d>0. Then

(x,

Cd{x ; Mof(x)>d}) < %A(Ca)"fuls where | f||; = “R”If(y)ldy-

Proor. Set E={x; M, f (x)>d}.
For every x, x € E, there is a 6(x), 6(x)>0, so that

5(X)"“J IfOldy > d.
B(x,5(x))
This gives d(x)*<1/d|| f|;.
Thus d(x) are uniformly bounded for x € E. We also have

E < | B(x,6(x)) .

xeE
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Let e>0. From Lemma 1 we see that there is a disjoint sequence of balls
B(x;,6(x;)) so that

C.(E) £ B+ef X CofB(x;,0(x)) = B+ef* Y A(C)S(x;)

< EHPACIT G| IOy S GHPACIZII,

Since ¢, £¢>0, is arbitrary the lemma follows.

We need the following lemma which is stated for Riesz capacities in
Bagby-Ziemer [2].

LemMmA 3. Let fe L'(R"). Then

i) if0<a<n

limé‘“f |f()dy =0 C,ae.onR"
B(x, d)

6—0

-0

ii) lima-"J If()—f(x)|dy =0 C,ae. onR".
B(x, d)

Proor. The case a=n is proved in Stein [8]. We give the proof for
O<a<n. Set

Qf (x) = li_l}(l)supé'“J

. LfD)ldy .
If g is a continuous function :vith compact support, it is easy to see that
Qg(x)=0.
Let £>0. There is a continuous function with compact support so that
f=g+h and |h|, <ce¢.
This gives
Qf (x) £ Qg(x)+Qh(x) = Qh(x) £ Mh(x) .

Let n be a positive integer. Lemma 2 now gives

Cl{x; Qf(x)>1/n}) £ Cf{x; M(x)>1/n})

< n3*A(CIhl, < n3°A(Cle .
Thus C,({x; 2f (x)>1/n})=0.
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The subadditivity of C, now gives

C{x; Qf (x)>0}) < C“(;.gn ({x; 2f x)> l/n}))

< Ozo: Cl{x; Qf x)>1/n}) =0,

which proves the lemma.
The following lemma is the crucial step in the proof of the theorem.

Lemma 4. Let fe L}(R") and a<n. Suppose that M, f (x)>1 for all x,
x € E. Set

E, = {x ; }}in(l) sup Ca(E néf(x,é)) > 0}».

Then M, f(x)21 Cg-a.e. on EUE,.
Proor. Let xo € E U E;. We may assume that x, ¢ E. That is

C C/{E N B(X,,9))
il_{l(l) sup 5 >0.

Using lemma 3 we may also assume that

limé~# IfDldy =0 for f<n

920 JB(xo,9)
and

lim " |f()=f (xo)ldy for B=n.

20 JB(x0,9)

Suppose now that the lemma is not true for x,. Then there is a constant k,
k=1, such that

k a
M, f(x0) (m) .

For every x, x € E, we choose a number 4(x), d(x)>0, so that

5(x)" j IfONdy > 1.
B(x,6(x))
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We get

M, f (x0) = (8(x)+1x—xol)~* If )l dy

-[ B(xo,8(x) +1x —xo)
590 Yo
(6‘()c)+—|x—‘x_|> o) f s N

d(x) *
g (é(x)+|x—xo|> '

M) 3 ()

it is easy to see that d(x)<k|x—xq|. Let x; denote the characteristic
function for the set B(x,, (k+1)9).

We now split the proof into two parts.

First let f<n. Set F;(x)=yx4f (x)I.

Now let x € ENB(xy,0). If we use that J(x)<k|jx—x,|, that is
0(x)<kd, we get

1\

Since

1< 5(x)““J

B(x,5(x))

If Wldy = 5(X)’“J Fs(y)dy = M.Fs(x) .

B(x,6(x))
Lemma 2 gives

CAE N B(x0,8)) < C{x ; MFy(x)>1}) < 3ACIFsll; -
Finally we get

CUENBd) ¢ 3eyc L, j 1 G)dy .

B(xo, (k+1)d)

But this contradicts the facts that x, € E; and

6—+0

limé"’f IfG)dy =0.
B(x,,0)

This proves the lemma for g <n.
If B=n we must modify the proof. Set

0 ‘elsewhere.

g(x) = { lim m(B(x 9)” j f(y)dy, if the limit exists.
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We observe that g(x)=f(x) a.e. (see Stein [8]), Set

Gs(x) = xs(x)Lf (x)—g(xo0)] -
x € E N B(x,,0) gives

M,Gs(x) = 6(x)~* 10N S () —g(xo)ldy
o B(x,&(x))

r

=d(x)"" |f () —g(xo)l dy
J B(x,8(x))

)

2 o(x)7" |f ()] dy — g (xo)|d (x)~*m(B(x, 6 (x)))
J B(x,8(x))

1—|g(xo)l6 (x)~*m(B(x,6(x))) .
Thus there is a dy, 6,>0, so that
M,2G4s(x) > 1 for all x € E N B(xy,0) if §<d,.

\

The proof now proceeds exactly as for f<n.

We are going to define a set function H,, which we shall prove is
equivalent to H,. Let E be a set in R". The function H, is defined by

A,E) = inf{Ifll, ; fe L'(R") and M,f(x)>1 on E}.

If{| flly; fe L‘LR") and M, f(x)>1 on E}= &, we set H,(E)=00. It is
immediate that H, is increasing.

Lemma 5. H, is subadditive.

Proor. Let E= U;’;l E;. We may assume that ) 2, H,(E)< .
Let £¢>0. Choose f; € L' (R") such that M, f;(x)>1 on E; and

Ifily £ B (E)+e27%, i=1,2,3,....
Set f(x)=sup|f;(x). We get

M,f(x)>1 on E, i=1,23,...
Thus

BB S 11l s [suplieona s [ 5 1gwnas

ifwwﬁéimﬂwﬁﬂéiE@Hm
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which gives the lemma.
We use the following notation:

a,B(0,1)) = B, .

Since we are going to need to estimate B,, the following lemma will be
useful.

LemMma 6. 0<B,<1.

Proor. Let ¢ > 0. Denote by ¢, a non-negative continuous function with
support in B(0,¢) so that [, (y)dy=1.
For x € B(0,1) we get

M,(1+e)f o (x) 2 A+ef e (y)dy = 1+e > 1.

j\
(1 I 6) B(x,1+¢)

A(BO,1)) < [L+ef* ol < (1+ey*",

which gives B, <1.
Now let f € L' (R") so that M, f (x)>1 on B(0,1). We may assume that

Ifli<2.
If =2 we get

6““} FONdy < Hfl < 1.
B(x,0)

Set 6,=2'". Let z € B(0,1). Then
o7 ° dy .
M,f(z) = sup L(z,é) 7o)y

0<6<d,
Thus
M,f(z) < Supé"‘J 0y 1 f Wldy = M, 6% *f(2) .
>0 B(z,9)
This gives

B(0,1) = {x ; M8y *f(x)>1}.
Theorem 1.3 in Stein [8] finally gives
m(B(0,1)) < m({x ; M85 °f(x)>1}) < A857*I fIl1,
where 4 is a constant. Thus

B, = m(B(0,1))A'6%™" > 0,
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which proves the lemma.
The following lemma shows that H, is of “C,-type”.
Lemma 7. H(B(x, 8))= B,5"
Since the proof is only a simple change of variables it is omitted.

LemMMA 8. Let a<n and let E be a set in R". Set

N H,(E N B(x,6))
Ep—{x,gl_{%sup 57 >0%.
Then there is a set O, ; such that C4(0,, 5)=0 and

H(E N B(x,8)) = H,(E U (Eg\0,,)) N B(x,5)).

Proor. Fix x and 8. Choose f; € L'(R"), j=1,2,3,.. ., so that M, f;(x)
>1 on ENB(x,6) and || f; ||, S H(E N B(x,6))+1/;.
It is easy to see that

Ez; N B(x,6) = (ENB(x,6)); -
Lemma 4 gives that there is a set 0;, C4(0;)=0 and
M,f(x) 21 on(E N B(x,8)) U (E; N B(x,6))\0;).

That is,

M,f(x) 21 on(E U (E;\0j) N B(x,9) .
Set 0, ;=\J210;. We get C4(0,,;)=0. Let £>0. Then

M,1+¢)f{(x) > 1 on (E U (E;\O, ;) N B(x,9) .

Thus

H,(E U (Es\0,;) N B(x,8)) £ (L+9)] fill;

< (1+o)H(E n B(x,a))+-1$.

Since ¢, e>0, and j, j=1,2,3,..., can be chosen arbitrarily, we get
H,(E N B(x,5)) < H(E U (E;\0,,5) N B(x,8)) < A(E N B(x,6)),
which proves the lemma.

We are now ready to compare H, and H,.
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Lemma 9. H,(E)< B, H,(E).

Proor. Let {B;} be a sequence of balls with radii r; so that

ECGE.

ji=1

We get

Ms
M8

H,(E) <

i

Ha(Bj) = Ba

1 i

ri.

]
]

1
Thus A,(E)<B,H,(E).

Lemma 10. H, (E)<3*H,(E).

Proor. We may assume that A, (E)<co. Choose fe L!(R") so that

M,f(x) >1 onE.
Lemma 2 gives
Hl{x; M.f(x)>1}) £ ISl .

Thus H,(E)<3*|| f |-

Let E be a subset of R" and denote by d(s) the radius of the ball S. We

use the following notation:

. H,(ENS
4,(x,E) = a(lsl)nlosup ———~———5((S), ) ,

where x € S.
Notice that it is not needed that x is the centre of the ball S.

Lemma 11. H({x; 4,(x,E)<1})=0.
The lemma is proved by Kametani [6] for Hausdorff ’s measures. The
proof we give is a small modification of Kametani’s proof.
Proor or LEmma 11. Set
E, = {x€eE; 4,(x,E) <1-1/m}, m=23,4,. ...
Then

{x; 4,(x,E)<1} < Dz E, .

It is enough to show that
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H,(E,) = 0 for m=2.3,4,... .

Let m be fixed. Set
_ CH(ENS)
Emn = {X € Em N T(S)fr—

n=1,2,3,....
We get

< 1-——1— for all S, x e S and 6(S)< 1} ,
m n

It is enough to show that
H,(E,,) =0 for n=1,273,....
Suppose that there is an E,,, so that H,(E,,,)>0. Choose balls B; so that
E,, < jgl B; and 4(B)) < 2—1n
Then there exists a number k so that
H,(E,.,NB) > 0.

Choose balls S; so that 5(S;)<1/n, E,., N B, |21 S, S; N E,,+ & and

M8

0(S:) < (1+1/mH,(E,., N By) .

i=1

We get

HolEms N B) S . H,(Ew 15) S 3 HAENS)

< (@=1m) § 3K < (1=1/m)H(Epy 0 By

This is a contradiction. Thus H,(E,,,)=0 for all m and n and the lemma is
proved.

LemMMA 12.
. n
lnnsupw = —1;, H,—ae. onE.
5-0 o 2

Proor. Let x € E. We may assume that 4,(x, E)=1.
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Let S be a ball so that x € S. We get

H,(E N B(x,25(S5)))
(26(5)y

Lemma 11 now gives the lemma.

1 H(ENS)
2 5(SF

v

ReMARK 1. Let n=2 and a=1 in Lemma 13. Then Besicovitch has
shown in [3] that there is a set E, Ec R?, such that there is equality in

Lemma 12.

REeMARK 2. Let a<n. Then there exists a compact set F, F < R", such

that

lim inf (B 0 B(x,9))

=0 forall x and H,(F) > 0.
50 o

This can be deduced from Carleson [4].
LemMA 13. Let a <. Then
Hy(E)'? < H,(E)'".
Proor. See O’Farrell [7].

PRrOOF OF THE THEOREM. We may assume that a<f=<n. Set

E; = {x;‘lsi_rg supw >0}.
Lemma 8 gives that there is a set O, ; such that Hy(O, ;)=0 and
A/E N B(x,8)) = H,(E U (E;\0,,5) N B(x,9)).
If we use Lemma 9 and 10, we get
37°H,((E U (E;\Oy,5)) N B(x,6)) < BH,(E N B(x,9)) .

From lemma 13 we get

[HAE N B(x,8))]t" 2 3~ 1B; W H,((E U (E;\Ox,5) N B(x,8))" .
If we use that H,(0,,;)=0, we find that

[Ha(E n B(x,a))]”“ s 31 B_(I/a)[H,,((E AL B(xﬁ))}lm.

5 oF

Finally Lemma 12 gives
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: H(ENB(x,8) _ 1

> -
ll_{l(l)sup 5 2 @B, Hg—ae on E U E,,
and this together with Lemma 6 gives the theorem.
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