ON THE INSTABILITY OF HAUSDORFF CONTENT

CLAES FERNSTRÖM

Let E be a subset of Euclidean space \mathbb{R}^n and α a non-negative real number. We study all coverings of E with a countable number of open balls B_j with radii r_j and define the α -dimensional Hausdorff content $H_{\alpha}(E)$ as

$$\inf \sum r_j^{\alpha}$$

for all such coverings. A property, which holds for all points on $E \setminus E_1$ with $H_{\alpha}(E_1) = 0$, is said to hold H_{α} -a.e. on E. Denote by $B(x, \delta)$ the open ball $\{y; |y-x| < \delta\}$.

O'Farrell has conjectured in [7] that an "instability" result might hold for the content H_{α} . This paper is devoted to prove the following "instability" theorem:

THEOREM. Let E be a set in R^n and α and β constants such that $0 < \alpha < \beta$. Then H_{β} -a.e. on R^n one of the following relations holds:

$$\lim_{\delta \to 0} \sup \frac{H_{\alpha}(E \cap B(x, \delta))}{\delta^{\alpha}} \ge \frac{1}{6^{\alpha}}$$

or

$$\lim_{\delta \to 0} \frac{H_{\alpha}(E \cap B(x,\delta))}{\delta^{\beta}} = 0.$$

Similar theorems are true for the Lebesgue measure m (see Stein [8]), the analytic capacity (see Vituškin [9]) and the Riesz capacities (see Fernström [5]).

The main tool to prove the theorem is to use the fractional maximal function to define a capacity, which is equivalent to Hausdorff content. It is then possible to use the technique used in Fernström [5] for Riesz capacities to prove our theorem. The idea of using the fractional maximal function to define an equivalent capacity to Hausdorff content can be found in Adams [1].

Received October 21, 1985.

PROOF OF THEOREM. The proof of the theorem will be split in a series of lemmas.

Since $H_{\alpha}(E)=0$ for all sets E when $\alpha > n$, the theorem is trivial when b>n. We shall therefore in the rest of the paper always assume that $0<\alpha \le n$ and $0<\beta \le n$.

A set function C on \mathbb{R}^n is said to be subadditiv if $C(E) \leq \sum_{i=1}^{\infty} C(E_i)$, where $E = \bigcup_{i=1}^{\infty} E_i$.

The set function C is increasing if

$$E_1 \subset E_2 \Rightarrow C(E_1) \leq C(E_2)$$
.

Let C_{α} denote a subadditiv, increasing set function on \mathbb{R}^n such that

$$C_{\alpha}(B(x,\delta)) = A(C_{\alpha})\delta^{\alpha}$$
,

where $A(C_{\alpha})$ is independent of x and δ . It is easy to see that H_{α} is subadditiv, increasing and $H_{\alpha}(B(x,\delta)) = \delta^{\alpha}$.

We begin with a Vitali covering lemma, which is proved as lemma 1.6 in Stein [8].

LEMMA 1. Let E be a subset of \mathbb{R}^n which is covered by the union of a family of balls $\{B_{\gamma}\}$, of bounded diameter. Let $\varepsilon > 0$. Then from this family of balls we can select a disjount subsequence $\{B_i\}$ so that

$$C_{\alpha}(E) \leq (3+\varepsilon)^{\alpha} \sum_{i} C_{\alpha}(B_{i})$$
.

If $f \in L^1(\mathbb{R}^n)$ we define the fractional maximal function $M_{\alpha}f$ as

$$M_{\alpha}f(x) = \sup_{\delta>0} \delta^{-\alpha} \int_{B(x,\delta)} |f(y)| dy.$$

LEMMA 2. Let $f \in L^1(\mathbb{R}^n)$ and d > 0. Then

$$C_{\alpha}(\{x ; M_{\alpha}f(x) > d\}) \leq \frac{3^{\alpha}}{d} A(C_{\alpha}) \|f\|_{1}, \quad \text{where } \|f\|_{1} = \int_{\mathbb{R}^{n}} |f(y)| \, dy.$$

Proof. Set $E = \{x; M_{\alpha}f(x) > d\}$.

For every $x, x \in E$, there is a $\delta(x), \delta(x) > 0$, so that

$$\delta(x)^{-\alpha}\int_{B(x,\delta(x))}|f(y)|\,dy>d.$$

This gives $\delta(x)^{\alpha} < 1/d \| f \|_1$.

Thus $\delta(x)$ are uniformly bounded for $x \in E$. We also have

$$E \subset \bigcup_{x \in E} B(x, \delta(x)).$$

Let $\varepsilon > 0$. From Lemma 1 we see that there is a disjoint sequence of balls $B(x_j, \delta(x_j))$ so that

$$C_{\alpha}(E) \leq (3+\varepsilon)^{\alpha} \sum_{j} C_{\alpha} \Big(B(x_{j}, \delta(x_{j})) \Big) = (3+\varepsilon)^{\alpha} \sum_{j} A(C_{\alpha}) \delta(x_{j})^{\alpha}$$

$$< (3+\varepsilon)^{\alpha} A(C_{\alpha}) \sum_{j} \frac{1}{d} \int_{B(x_{j}, \delta(x_{j}))} |f(y)| \, dy \leq (3+\varepsilon)^{\alpha} A(C_{\alpha}) \frac{1}{d} \|f\|_{1}.$$

Since ε , $\varepsilon > 0$, is arbitrary the lemma follows.

We need the following lemma which is stated for Riesz capacities in Bagby-Ziemer [2].

LEMMA 3. Let $f \in L^1(\mathbb{R}^n)$. Then

i) if $0 < \alpha < n$

ii)

$$\lim_{\delta \to 0} \delta^{-\alpha} \int_{B(x,\delta)} |f(y)| \, dy = 0 \quad C_{\alpha}\text{-a.e. on } \mathbb{R}^n$$

$$\lim_{\delta \to 0} \delta^{-n} \int_{B(x,\delta)} |f(y) - f(x)| \, dy = 0 \quad C_{n}\text{-a.e. on } \mathbb{R}^n.$$

PROOF. The case $\alpha = n$ is proved in Stein [8]. We give the proof for $0 < \alpha < n$. Set

$$\Omega f(x) = \lim_{\delta \to 0} \sup \delta^{-\alpha} \int_{B(x,\delta)} |f(y)| \, dy .$$

If g is a continuous function with compact support, it is easy to see that

$$\Omega g(x) \equiv 0.$$

Let $\varepsilon > 0$. There is a continuous function with compact support so that

$$f = g + h$$
 and $||h||_1 < \varepsilon$.

This gives

$$\Omega f(x) \leq \Omega g(x) + \Omega h(x) = \Omega h(x) \leq M_{\alpha} h(x)$$
.

Let n be a positive integer. Lemma 2 now gives

$$C_{\alpha}(\lbrace x ; \Omega f(x) > 1/n \rbrace) \leq C_{\alpha}(\lbrace x ; M_{\alpha}h(x) > 1/n \rbrace)$$

$$\leq n3^{\alpha}A(C_{\alpha})||h||_{1} < n3^{\alpha}A(C_{\alpha})\varepsilon.$$

Thus $C_{\alpha}(\lbrace x; \Omega f(x) > 1/n \rbrace) = 0$.

The subadditivity of C_{α} now gives

$$C_{\alpha}(\lbrace x ; \Omega f(x) > 0 \rbrace) \leq C_{\alpha}\left(\bigcup_{n=1}^{\infty} \left(\lbrace x ; \Omega f(x) > 1/n \rbrace\right)\right)$$
$$\leq \sum_{n=1}^{\infty} C_{\alpha}(\lbrace x ; \Omega f(x) > 1/n \rbrace) = 0,$$

which proves the lemma.

The following lemma is the crucial step in the proof of the theorem.

LEMMA 4. Let $f \in L^1(\mathbb{R}^n)$ and $\alpha < n$. Suppose that $M_{\alpha}f(x) > 1$ for all x, $x \in E$. Set

$$E_{\beta} = \left\{ x \; ; \lim_{\delta \to 0} \sup \frac{C_{\alpha} \left(E \cap B(x, \delta) \right)}{\delta^{\beta}} > 0 \right\}.$$

Then $M_{\alpha}f(x) \ge 1$ C_{β} -a.e. on $E \cup E_{\beta}$.

PROOF. Let $x_0 \in E \cup E_{\beta}$. We may assume that $x_0 \notin E$. That is

$$\lim_{\delta \to 0} \sup \frac{C_{\alpha}(E \cap B(X_0, \delta))}{\delta^{\beta}} > 0.$$

Using lemma 3 we may also assume that

$$\lim_{\delta \to 0} \delta^{-\beta} \int_{B(x_0, \delta)} |f(y)| \, dy = 0 \qquad \text{for } \beta < n$$

and

$$\lim_{\delta \to 0} \delta^{-n} \int_{B(x_0,\delta)} |f(y) - f(x_0)| dy \quad \text{for } \beta = n.$$

Suppose now that the lemma is not true for x_0 . Then there is a constant k, $k \ge 1$, such that

$$M_{\alpha}f(x_0) \leq \left(\frac{k}{k+1}\right)^{\alpha}.$$

For every $x, x \in E$, we choose a number $\delta(x)$, $\delta(x) > 0$, so that

$$\delta(x)^{-\alpha}\int_{B(x,\delta(x))}|f(y)|\,dy>1.$$

We get

$$M_{\alpha}f(x_{0}) \geq \left(\delta(x) + |x - x_{0}|\right)^{-\alpha} \int_{B(x_{0}, \delta(x) + |x - x_{0}|)} |f(y)| \, dy$$

$$\geq \left(\frac{\delta(x)}{\delta(x) + |x - x_{0}|}\right)^{\alpha} \delta(x)^{-\alpha} \int_{B(x, \delta(x))} |f(y)| \, dy$$

$$> \left(\frac{\delta(x)}{\delta(x) + |x - x_{0}|}\right)^{\alpha}.$$

Since

$$M_{\alpha}f(x_0) \leq \left(\frac{k}{k+1}\right)^{\alpha}$$
,

it is easy to see that $\delta(x) \le k|x-x_0|$. Let χ_{δ} denote the characteristic function for the set $B(x_0, (k+1)\delta)$.

We now split the proof into two parts.

First let $\beta < n$. Set $F_{\delta}(x) = \chi_{\delta} |f(x)|$.

Now let $x \in E \cap B(x_0, \delta)$. If we use that $\delta(x) \le k|x-x_0|$, that is $\delta(x) \le k\delta$, we get

$$1 < \delta(x)^{-\alpha} \int_{B(x,\delta(x))} |f(y)| dy = \delta(x)^{-\alpha} \int_{B(x,\delta(x))} F_{\delta}(y) dy \leq M_{\alpha} F_{\delta}(x) .$$

Lemma 2 gives

$$C_{\alpha}(E \cap B(x_0, \delta)) \leq C_{\alpha}(\{x ; M_{\alpha}F_{\delta}(x) > 1\}) \leq 3^{\alpha}A(C_{\alpha})\|F_{\delta}\|_{1}$$

Finally we get

$$\frac{C_{\alpha}(E \cap B(x_0, \delta))}{\delta^{\beta}} \leq 3^{\alpha} A(C_{\alpha}) \frac{1}{\delta^{\beta}} \int_{B(x_0, (k+1)\delta)} |f(y)| \, dy .$$

But this contradicts the facts that $x_0 \in E_{\beta}$ and

$$\lim_{\delta \to 0} \delta^{-\beta} \int_{B(x_0,\delta)} |f(y)| \, dy = 0 .$$

This proves the lemma for $\beta < n$.

If $\beta = n$ we must modify the proof. Set

$$g(x) = \begin{cases} \lim_{\delta \to 0} m(B(x,\delta))^{-1} \int_{B(x,\delta)} f(y) dy, & \text{if the limit exists.} \\ 0 & \text{elsewhere.} \end{cases}$$

We observe that g(x)=f(x) a.e. (see Stein [8]), Set

$$G_{\delta}(x) = \chi_{\delta}(x)[f(x)-g(x_0)].$$

 $x \in E \cap B(x_0, \delta)$ gives

$$M_{\alpha}G_{\delta}(x) \geq \delta(x)^{-\alpha} \int_{B(x,\delta(x))} \chi_{\delta}(y)|f(y) - g(x_0)|dy$$

$$= \delta(x)^{-\alpha} \int_{B(x,\delta(x))} |f(y) - g(x_0)|dy$$

$$\geq \delta(x)^{-\alpha} \int_{B(x,\delta(x))} |f(y)|dy - |g(x_0)|\delta(x)^{-\alpha}m(B(x,\delta(x)))$$

$$> 1 - |g(x_0)|\delta(x)^{-\alpha}m(B(x,\delta(x))).$$

Thus there is a δ_0 , $\delta_0 > 0$, so that

$$M_{\alpha}2G_{\delta}(x) > 1$$
 for all $x \in E \cap B(x_0, \delta)$ if $\delta < \delta_0$.

The proof now proceeds exactly as for $\beta < n$.

We are going to define a set function \tilde{H}_{α} , which we shall prove is equivalent to H_{α} . Let E be a set in R^n . The function \tilde{H}_{α} is defined by

$$\widetilde{H}_{\alpha}(E) = \inf \{ \|f\|_1 ; f \in L^1(\mathbb{R}^n) \text{ and } M_{\alpha}f(x) > 1 \text{ on } E \}.$$

If $\{\|f\|_1; f \in L^1(\mathbb{R}^n) \text{ and } M_{\alpha}f(x) > 1 \text{ on } E\} = \emptyset$, we set $\tilde{H}_{\alpha}(E) = \infty$. It is immediate that \tilde{H}_{α} is increasing.

LEMMA 5. \tilde{H}_{α} is subadditive.

PROOF. Let $E = \bigcup_{i=1}^{\infty} E_i$. We may assume that $\sum_{i=1}^{\infty} \widetilde{H}_{\alpha}(E_i) < \infty$. Let $\varepsilon > 0$. Choose $f_i \in L^1(\mathbb{R}^n)$ such that $M_{\alpha}f_i(x) > 1$ on E_i and

$$||f_i||_1 \leq \tilde{H}_{\alpha}(E_i) + \varepsilon 2^{-i}, \quad i = 1, 2, 3, \dots$$

Set $f(x) = \sup |f_i(x)|$. We get

$$M_{\alpha}f(x) > 1$$
 on E_i , $i=1,2,3,...$

Thus

$$\begin{split} \widetilde{H}_{\alpha}(E) & \leq \|f\|_{1} \leq \int \sup |f_{i}(x)| \, dx \leq \int \sum_{i=1}^{\infty} |f_{i}(x)| \, dx \\ & = \sum_{i=1}^{\infty} \int |f_{i}(x)| \, dx \leq \sum_{i=1}^{\infty} \left(\widetilde{H}_{\alpha}(E_{i}) + \varepsilon 2^{-i} \right) \leq \sum_{i=1}^{\infty} \widetilde{H}_{\alpha}(E_{i}) + \varepsilon \, , \end{split}$$

which gives the lemma.

We use the following notation:

$$\widetilde{H}_{\alpha}(B(0,1)) = B_{\alpha}.$$

Since we are going to need to estimate B_{α} , the following lemma will be useful.

Lemma 6. $0 < B_{\alpha} \le 1$.

PROOF. Let $\varepsilon > 0$. Denote by φ_{ε} a non-negative continuous function with support in $B(0,\varepsilon)$ so that $\int \varphi_{\varepsilon}(y) dy = 1$.

For $x \in B(0,1)$ we get

$$M_{\alpha}(1+\varepsilon)^{\alpha+1}\varphi_{\varepsilon}(x) \geq \frac{1}{(1+\varepsilon)^{\alpha}} \int_{B(x,1+\varepsilon)} (1+\varepsilon)^{\alpha+1}\varphi_{\varepsilon}(y) dy = 1+\varepsilon > 1.$$

Thus

$$\widetilde{H}_{\alpha}(B(0,1)) \leq \|(1+\varepsilon)^{\alpha+1}\varphi_{\varepsilon}\|_{1} \leq (1+\varepsilon)^{\alpha+1},$$

which gives $B_{\alpha} \leq 1$.

Now let $f \in L^1(\mathbb{R}^n)$ so that $M_{\alpha}f(x) > 1$ on B(0,1). We may assume that $||f||_1 \le 2$.

If $\delta^{\alpha} \ge 2$ we get

$$\delta^{-\alpha} \int_{B(x,\delta)} |f(y)| dy \le \frac{1}{2} ||f||_1 \le 1.$$

Set $\delta_0 = 2^{1/\alpha}$. Let $z \in B(0,1)$. Then

$$M_{\alpha}f(z) = \sup_{0 < \delta < \delta_{\alpha}} \delta^{-\alpha} \int_{B(z,\delta)} |f(y)| dy.$$

Thus

$$M_{\alpha}f(z) \leq \sup_{\delta>0} \delta^{-n} \int_{B(z,\delta)} \delta_0^{n-\alpha} |f(y)| dy = M_n \delta_0^{n-\alpha} f(z).$$

This gives

$$B(0,1) \subset \{x ; M_n \delta_0^{n-\alpha} f(x) > 1\}.$$

Theorem 1.3 in Stein [8] finally gives

$$m(B(0,1)) \le m(\{x ; M_n \delta_0^{n-\alpha} f(x) > 1\}) \le A \delta_0^{n-\alpha} ||f||_1,$$

where A is a constant. Thus

$$B_n \geq m(B(0,1))A^{-1}\delta_0^{\alpha-n} > 0$$

which proves the lemma.

The following lemma shows that \tilde{H}_{α} is of " C_{α} -type".

LEMMA 7. $\tilde{H}(B(x,\delta)) = B_{\alpha}\delta^{\alpha}$.

Since the proof is only a simple change of variables it is omitted.

LEMMA 8. Let $\alpha < n$ and let E be a set in \mathbb{R}^n . Set

$$E_{\beta} = \left\{ x \; ; \lim_{\delta \to 0} \sup \frac{\tilde{H}_{\alpha} \big(E \cap B(x, \delta) \big)}{\delta^{\beta}} > 0 \right\}.$$

Then there is a set $O_{x,\delta}$ such that $C_{\beta}(O_{x,\delta})=0$ and

$$\widetilde{H}_{\alpha}(E \cap B(x,\delta)) = \widetilde{H}_{\alpha}((E \cup (E_{\beta} \setminus O_{x,\delta})) \cap B(x,\delta)).$$

PROOF. Fix x and δ . Choose $f_j \in L^1(\mathbb{R}^n)$, $j = 1, 2, 3, \ldots$, so that $M_{\alpha}f_j(x) > 1$ on $E \cap B(x, \delta)$ and $||f_j||_1 \leq \tilde{H}_{\alpha}(E \cap B(x, \delta)) + 1/j$. It is easy to see that

$$E_{\beta} \cap B(x,\delta) \subset (E \cap B(x,\delta))_{\beta}$$
.

Lemma 4 gives that there is a set O_i , $C_{\beta}(O_i) = 0$ and

$$M_{\alpha}f(x) \geq 1$$
 on $(E \cap B(x,\delta)) \cup ((E_{\beta} \cap B(x,\delta)) \setminus O_j)$.

That is,

$$M_{\alpha}f(x) \geq 1$$
 on $(E \cup (E_{\beta} \setminus O_{i})) \cap B(x, \delta)$.

Set $O_{x,\delta} = \bigcup_{j=1}^{\infty} O_j$. We get $C_{\beta}(O_{x,\delta}) = 0$. Let $\varepsilon > 0$. Then

$$M_{\alpha}(1+\varepsilon)f_i(x) > 1$$
 on $(E \cup (E_{\beta} \setminus O_{x,\delta})) \cap B(x,\delta)$.

Thus

$$\begin{split} \widetilde{H}_{\alpha} \big(& (E \cup (E_{\beta} \setminus O_{x,\delta})) \cap B(x,\delta) \big) \leq (1+\varepsilon) \|f_{j}\|_{1} \\ & \leq (1+\varepsilon) \widetilde{H} \big(E \cap B(x,\delta) \big) + \frac{1+\varepsilon}{j} \; . \end{split}$$

Since ε , $\varepsilon > 0$, and j, $j = 1, 2, 3, \ldots$, can be chosen arbitrarily, we get $\widetilde{H}_{\alpha}(E \cap B(x, \delta)) \leq \widetilde{H}_{\alpha}(E \cup (E_{\beta} \setminus O_{x, \delta}) \cap B(x, \delta)) \leq \widetilde{H}_{\alpha}(E \cap B(x, \delta))$, which proves the lemma.

We are now ready to compare H_{α} and \tilde{H}_{α} .

LEMMA 9. $\tilde{H}_{\alpha}(E) \leq B_{\alpha}H_{\alpha}(E)$.

PROOF. Let $\{B_j\}$ be a sequence of balls with radii r_j so that

$$E \subset \bigcup_{j=1}^{\infty} E_j.$$

We get

$$\widetilde{H}_{\alpha}(E) \leq \sum_{j=1}^{\infty} \widetilde{H}_{\alpha}(B_j) = B_{\alpha} \sum_{j=1}^{\infty} r_j^{\alpha}.$$

Thus $\tilde{H}_{\alpha}(E) \leq B_{\alpha}H_{\alpha}(E)$.

LEMMA 10. $H_{\alpha}(E) \leq 3^{\alpha} \tilde{H}_{\alpha}(E)$.

PROOF. We may assume that $\tilde{H}_{\alpha}(E) < \infty$. Choose $f \in L^1(\mathbb{R}^n)$ so that

$$M_{\alpha}f(x) > 1$$
 on E.

Lemma 2 gives

$$H_{\alpha}(\{x ; M_{\alpha}f(x)>1\}) \leq 3^{\alpha}||f||_{1}.$$

Thus $H_{\alpha}(E) \leq 3^{\alpha} || f ||_{1}$.

Let E be a subset of Rⁿ and denote by $\delta(s)$ the radius of the ball S. We use the following notation:

$$\Delta_{\alpha}(x,E) = \lim_{\delta(S)\to 0} \sup \frac{H_{\alpha}(E\cap S)}{\delta(S)^{\alpha}},$$

where $x \in S$.

Notice that it is not needed that x is the centre of the ball S.

LEMMA 11.
$$H_{\alpha}(\lbrace x; \Delta_{\alpha}(x, E) < 1 \rbrace) = 0.$$

The lemma is proved by Kametani [6] for Hausdorff's measures. The proof we give is a small modification of Kametani's proof.

Proof of Lemma 11. Set

$$E_m = \{x \in E ; \Delta_{\alpha}(x, E) < 1 - 1/m\}, m = 2, 3, 4, \dots$$

Then

$$\{x; \Delta_{\alpha}(x,E) < 1\} \subset \bigcup_{m=2}^{\infty} E_m.$$

It is enough to show that

$$H_{\alpha}(E_m) = 0 \text{ for } m = 2., 3, 4, \dots$$

Let m be fixed. Set

$$E_{mn} = \left\{ x \in E_m ; \frac{H_{\alpha}(E \cap S)}{\delta(S)^{\alpha}} < 1 - \frac{1}{m} \text{ for all } S, x \in S \text{ and } \delta(S) < \frac{1}{n} \right\},$$

$$n = 1, 2, 3, \dots$$

We get

$$E_m \subset \bigcup_{n=1}^{\infty} E_{mn}.$$

It is enough to show that

$$H_{\alpha}(E_{mn}) = 0$$
 for $n = 1, 2, 3, ...$

Suppose that there is an E_{mn} so that $H_{\alpha}(E_{mn}) > 0$. Choose balls B_i so that

$$E_{mn} \subset \bigcup_{j=1}^{\infty} B_j$$
 and $\delta(B_j) < \frac{1}{2n}$.

Then there exists a number k so that

$$H_{\alpha}(E_{mn}\cap B_k)>0.$$

Choose balls S_i so that $\delta(S_i) < 1/n$, $E_{mn} \cap B_k \subset \bigcup_{i=1}^{\infty} S_i$, $S_i \cap E_{mn} \neq \emptyset$ and

$$\sum_{i=1}^{\infty} \delta(S_i)^{\alpha} < (1+1/m)H_{\alpha}(E_{mn} \cap B_k).$$

We get

$$H_{\alpha}(E_{mn} \cap B_{k}) \leq \sum_{i=1}^{\infty} H_{\alpha}(E_{mn} \cap S_{i}) \leq \sum_{i=1}^{\infty} H_{\alpha}(E \cap S_{i})$$

$$< (1 - 1/m) \sum_{i=1}^{\infty} \delta(S_{i})^{\alpha} < (1 - 1/m^{2}) H_{\alpha}(E_{mn} \cap B_{k}).$$

This is a contradiction. Thus $H_{\alpha}(E_{mn}) = 0$ for all m and n and the lemma is proved.

LEMMA 12.

$$\lim_{\delta \to 0} \sup \frac{H_{\alpha}(E \cap B(x,\delta))}{\delta^{\alpha}} \ge \frac{1}{2^{\alpha}}, \quad H_{\alpha} - \text{a.e. on } E.$$

PROOF. Let $x \in E$. We may assume that $\Delta_{\alpha}(x, E) = 1$.

Let S be a ball so that $x \in S$. We get

$$\frac{H_{\alpha}(E \cap B(x, 2\delta(S)))}{(2\delta(S))^{\alpha}} \geq \frac{1}{2^{\alpha}} \frac{H_{\alpha}(E \cap S)}{\delta(S)^{\alpha}}.$$

Lemma 11 now gives the lemma.

REMARK 1. Let n=2 and $\alpha=1$ in Lemma 13. Then Besicovitch has shown in [3] that there is a set E, $E \subset \mathbb{R}^2$, such that there is equality in Lemma 12.

REMARK 2. Let $\alpha < n$. Then there exists a compact set $F, F \subset \mathbb{R}^n$, such that

$$\lim_{\delta \to 0} \inf \frac{H_{\alpha}(E \cap B(x,\delta))}{\delta^{\alpha}} = 0 \text{ for all } x \text{ and } H_{\alpha}(F) > 0.$$

This can be deduced from Carleson [4].

LEMMA 13. Let $\alpha \leq \beta$. Then

$$H_{\beta}(E)^{1/\beta} \leq H_{\alpha}(E)^{1/\alpha}$$
.

Proof. See O'Farrell [7].

Proof of the theorem. We may assume that $\alpha < \beta \le n$. Set

$$E_{\beta} \, = \, \bigg\{ x \; ; \, \lim_{\delta \to 0} \, \sup \frac{H_{a} \big(E \cap B(x, \delta) \big)}{\delta^{\beta}} > 0 \bigg\}.$$

Lemma 8 gives that there is a set $O_{x,\delta}$ such that $H_{\beta}(O_{x,\delta})=0$ and

$$\widetilde{H}_{\alpha}(E \cap B(x,\delta)) = \widetilde{H}_{\alpha}((E \cup (E_{\beta} \setminus O_{x,\delta})) \cap B(x,\delta)).$$

If we use Lemma 9 and 10, we get

$$3^{-\alpha}H_{\alpha}((E \cup (E_{\beta} \setminus O_{x,\delta})) \cap B(x,\delta)) \leq B_{\alpha}H_{\alpha}(E \cap B(x,\delta)).$$

From lemma 13 we get

$$[H_{\alpha}(E \cap B(x,\delta))]^{1/\alpha} \geq 3^{-1}B_{\alpha}^{-(1/\alpha)}H_{\beta}((E \cup (E_{\beta} \setminus O_{x,\delta})) \cap B(x,\delta))^{1/\beta}.$$

If we use that $H_{\beta}(O_{x,\delta})=0$, we find that

$$\left[\frac{H_{\alpha}(E\cap B(x,\delta))}{\delta^{\alpha}}\right]^{1/\alpha} \geq 3^{-1} B_{\alpha}^{-(1/\alpha)} \left[\frac{H_{\beta}((E\cup E_{\beta})\cap B(x,\delta))}{\delta^{\beta}}\right]^{1/\beta}.$$

Finally Lemma 12 gives

$$\lim_{\delta \to 0} \sup \frac{H_{\alpha}(E \cap B(x,\delta))}{\delta^{\alpha}} \ge \frac{1}{\delta^{\alpha}B_{\alpha}} \quad H_{\beta} - \text{a.e. on } E \cup E_{\beta} ,$$

and this together with Lemma 6 gives the theorem.

REFERENCES

- 1. D. R. Adams, Lectures on L^p-potential theory, Report No 2, University of Umeå, 1981.
- 2. T. Bagby and W. P. Ziemer, Pointwise differentiability and absolute continuity, Trans. Amer. Math. Soc. 191 (1974), 129-148.
- 3. A. Besicovitch, On the fundamental geometrical properties of linearly measurable plane sets of points, Math. Ann. 98 (1928), 422-464.
- L. Carleson, Selected Problems on Exceptional Sets, (Van Nostrand Math. Stud. 13),
 D. Van Nostrand Co., Inc., Princeton, London, 1967.
- 5. C. Fernström, On the instability of capacity, Ark. Mat. 15 (1977), 241-252.
- S. Kametani, On some properties of Hausdorff's measure and the concept of capacity in generalized potentials, Proc. Imp. Acad. Tokyo 18 (1942), 617-675.
- A. G. O'Farrell, Estimates for capacities and approximation in Lipschitz norms, J. Reine Angew. Math. 311/312 (1979), 101-115.
- 8. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970.
- A. G. Vituskin, The analytic capacity of sets in problems of approximation theory, Uspehi Mat. Nauk 22 (1967), 141-199. (Russian Math. Surveys 22 (1967), 139-200.)

DEPARTMENT OF MATHEMATICS UNIVERSITY OF STOCKHOLM BOX 6701 S-113 85 STOCKHOLM SWEDEN