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A GAP SERIES WITH GROWTH CONDITIONS
AND ITS APPLICATIONS

SHINJI YAMASHITA
Abstract.

We shall give three applications of a sp%ciﬁed Hadamard gap series h(z)
=Y, z™ satisfying some growth conditions on h and K" in D={|z| <1}.
A typical one is the proof of the existence of a quasiconformal
homeomorphism f from {|z|< o0} onto itself, holomorphic in D, which is
“smooth” on D, yet not semiconformal at any point of oD.

1. Introduction.

Let F(r) be a continuous and strictly increasing function of r, 0<r<1,
such that F(0)=1 and F(r) > 4+ as r —» 1. For each g>e we can
construct an Hadamard gap series h(z)=) ;% z™ (m/m— 24, k=2) such
that

(1.1 lh(z)] < F(z]) for |z1<1;
(1.2)  lim inf [min {1 |2l () ; ld=1-n;"}] 2 e ~q";

(1.3) sup A=z @) < 2(1+971).

After the proof of the existence of h in Section 2, three applications will
be proposed. First we construct a univalent (injective) holomorphic
function in D={|z| <1} nowhere semiconformal on 0D ={|z| =1}, which
improves our former example (see [9]). We show that this function also
proposes more information than A. J. Lohwater, G. Piranian, and W.
Rudin’s [5] concerning the Bloch—Nevanlinna conjecture.

The third application is on minimal surfaces in the space R®. We
construct a minimal surface whose ‘“derivatives” satisfy a “good”
growth condition, yet whose Gauss map is “bad”. This improves our
former result (see [10, Theorem 2]).
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2. The construction of / and its properties.

To choose n, inductively, we pick up the increasing sequence {r,} with
F(r,)=k+1 (k=0); obviously, r,=0, r,<r,.,<1 (k=0), and r,—1 as
k—oo. The sequence {n,} should then satisfy for k=1,

2.1) | < 27k

fork=2,

(2.2) ne > qng+...+n_y);

and for k=2,

(2.3) m(l—n;yty* < 271 forallj,1<j<k.

First choose n; =2 such that (2.1) for k=1 holds. Next, since r, <1 and
since
n(l—ny'" >0 asn—oo,

there exists n, such that (2.1)~(2.3) for k=2 are true. Suppose that
ny,...,M_; (k=3)are chosen. Since for j=1,...,k—1,

n(l—n;'y*>0 asn—oo,
there exists n, such that (2.1)~(2.3) for k are valid.

To prove (1.1) we note that, for each r, 0 <r<1, there exists j=1 such
that r;_; <r<r;. Then, in view of (2.1) we have

max |h(z) = h(r) £ Y, 7] Z YT
lz|=r k=1 k=1 k=j
Sj-1+Y 27% = j—14279*1 < j = Fr;-,) < F(r).
k=j

To prove (1.2) we set R;=1—n; ! (j=1). Then, for j>2, we obtain, in
view of (2.2),

j-1 -1
a= ) mRF < (Z "k)RT < ¢ 'nRp,

k=1

and, in view of (2.3), we have
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[

Y mz™

lzh'(z)] = 2 njRY—a—b = ny(RyP—q 'R})—-27i*1

Therefore,

R; min (L~ () = Ry—g™ 'Ry —nj 12771
z =Rj

for j=2. The right-hand side tends to e —q~! as j — o0, so that (1.2)
follows. :

For the proof of (1.3) we set S=max {k; n,<n} for n>n,. Then, for
n=n,, we obtain by (2.2),

Y mo=ng+(my+...+n5_y) < ng(l+q7 ') < n(l+q7);

nmcsn

this is also true for n; £n<n,. Therefore, for 0<r<1,

(zn)

< (1+qg7Y i " < 1497 Y i nr" = (14+q Hr(l-r)~2.
n=1

n=n,

We thus obtain

r—r)"t Y ngt = ) pgm™ Y =
k=1 k=1 k=0

sD18

n

(1-r) } mg™ ' < 14q71,
K=1

which yields (1.3) on setting |z|=r.

LEmMA 1. Neither Re h nor Im h has finite angular limit at any point of
oD.

A mapping u from D into C* = {|z|< 0} is said to have an angular limit
u() e C*at{ € dDif u(z) - u(¢)asz — { within each triangular domain
at {, namely, the interior of a triangle whose vertices are { and two points
of D. We use the same terminology for u from D into the two-point
compactification {r; — o0 <r=< + o0} of the real axis. “‘Finite ()"’ means
“lu)] #£00” in both cases.

Lemma 1 is an immediate consequence of [8, Theorem 8, p. 124],
together with (1.2).

Particularly, h has no finite angular limit. This fact alone, follows from
the result of K. G. Binmore [3, Corollary 1, p. 215] that h has no finite
asymptotic value.

The other boundary properties of h will be described in Lemma 2 in
Section 4.
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3. Nowhere semiconformal functions.

Let f be a function holomorphic and univalent in D, and suppose that f
has the angular limit f ({) # co at { € dD. Then fis said to be conformal at {
if the function arg{(f (z) —f ({))/(z—{)} of z has a finite angular limit at ,
while f is said to be semiconformal at { if the function {f(z)—f()}/
{(z—0)f'(2)} of z has the angular limit one at {; see [8, Introduction], for
example. If fis conformal at {, then fis semiconformal at {; the converse is
false. In [9] we constructed a quasiconformal homeomorphism f from C*
onto C* such that, co¢ f(D)(D=D UdD), fis holomorphic in D, and fis
not semiconformal at any point of dD. In the present section we shall
improve this; see Corollary 1 below.

THEOREM 1. Let 0<A<1, and let ¢ be a continuous and strictly
decreasing function for 0< 9, <r<1 such that ¢(r) - Oasr — 1. Then we
can construct a function f holomorphic in D satisfying the following:

(3.1 Sup A=12PNf"@/f @) < 4;
(3.2) |1i(m1(p('2|)|f @) =0;

(3.3)  limsup (L—=r)|f" (O (Dl > A/@e)  for each L e 3D .

COROLLARY 1. Given ¢ of Theorem 1 we can construct a quasiconformal
homeomorphism f, from C* onto C*, such that o ¢ fu(D), fo is holomorphic
in D, fy is not semiconformal at any point of 0D, and further f, satisfies the
growth condition (3.2) in D.

COROLLARY 2. There exists a nonrectifiable quasicircle { f (w); w € dD}
in C={|z| <0} [7, p. 286] having no tangent at any point, yet satisfying

(3.4) sup | f(w)—f(wy)l = o(tlogl/t) ast—> +0.

[wy—w,|=

It follows from (3.4) that, given ¢ >0 we may choose 6, 0< <1, such
that

Lf 1) = ()l < elwi—wilogr——

for Wi, W, € JD with 'WI —W21<5.

Proor oF THEOREM 1. There exists g4, 0o <@ <1, such that ¢(g,)<1.
We define
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() = (ple)—Ler'r+1, 0=r <oy
= @(r), 0 <r<1.
We fix g>e so large that
(3.5 cle"'—q7 ') > A/(Be), where ¢ = A271(1+q" 1)
Then the function
Fi(r) =1—Qc) 'log®(r), 0<r<1,

is continuous and increasing with F,(0)=1 and F,(r)—» o0 asr—1.
For F=F, and q we consider h and we set

fz) = Jzexp(ch(w))dw, zeD,

0
so that logf'=ch in D. In particular, we have

(3.6) f2) = il a,z" with a, 2 0 (n21).

Now, (3.1) follows from (1.3). It follows from (1.1) that

log|f'(z)l £ ¢c—2""log®(|z]) ,
whence

(|2 S (2)] = e@(|)"?.

We thus obtain (3.2). Finally, (3.3) is a consequence of (1.2), together with
(3.5).

Proor oF CoroLLARY 1. Let fbe as in Theorem 1. First it follows from
(3.1) that f can be extended to C* so that the resulting function fj is
quasiconformal; see [2, Theorems 3.1, 4.1, Corollary 4.1 and formula
(4.2)]. After a calculation for the normalized f, { f—f (0)}/f'(0), we obtain

Jo@) = f(2), zeD;
= f(/2)+(z-1/2)f'(1/2), zeC*\D,

where we use the same notation f for the extension to D. We note that fj, is
(1+A4)/(1 — A)-quasiconformal.

Particularly, f is continuous and univalent on D. Next, f is
semiconformal at { € D if and only if ({ —z)f"(z)/f'(z), or, equivalently,
(=122l f"()/f'(z)| has the angular limit zero at {; see for example,
[8, Theorem 1, p. 120 et ff.]. Consequently, fis not semiconformal at any
point of dD by (3.3).
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PrOOF OF COROLLARY 2. Let ¢(r)={—log (1—r)} ! for 1/2<r<1, and
apply Theorem 1 to ¢ to obtain f with the aid of h, namely, h=c~'log f".
Then, by the obvious “small oh” modification of [4, Theorem 5.2, p. 76],
together with (3.2), f on 0D satisfies (3.4). If our quasicircle is rectifiable,
then ' € H' [7, Lemma 10.7, p. 319], whence /" has finite angular limit at
almost every point of D, and the limits are nonzero almost everywhere
[7, Theorem 10.14, p. 325]. Then h has finite angular limit at a.e. point
of dD; this contradicts the property of h described in Section 2. Since f'is
nowhere semiconformal on dD, fis nowhere conformal on éD, so that our
quasicircle has no tangent at any point by E. Lindelof’s theorem [7,
Theorem 10.4, p. 302].

4. Further properties of f in Theorem 1.
Lohwater, Piranian, and Rudin [5, Theorem], constructed, for a
suitably increasing sequence {m,} of natural numbers, a function of z,

fole) = f exp{(l/z) ) wmv}dw = $ b2 (,20,020),
0 p= n=1

which is continuous and univalent on D, holomorphic in D, and for a.e.
point { € 0D,

4.1) %0

lim_sup|f5(rD)| = 1/ lim_inf| f5(r0)
= limosup arg fo(rl) = — lilmoinf arg fo(r0);
r-1- r-1-

further, ) b,<oo. We shall show that our f in Theorem 1, where some
properties are described in Corollary 1, satisfies more detailed limit
conditions than f,. ,

For each { € 0D we let A({) be the set of all continuous curves
Arz=z(t)e D,0=<t<1,suchthatz(t) » {ast — 1, and 4 has a chord of
0D ending at {, as a tangent at {. We shall show

THEOREM 2. For our fin Theorem 1, expressed by (3.6) we have Y a, < oo
and the following: For almost every { € 0D and for all A € A((), we have, as
z—>{,zel,

4.2) oo = lim sup|f'(z)] = 1/lim inf | f'(z)|
= lim sup arg f'(z) = —lim inf arg f'(z).

Lohwater, Piranian, and Rudin’s proof of (4.1) is not available for our
function. They do not refer to the growth condition (3.2).
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As to the conditions (4.2) let us consider the corresponding ones for
h=c 'log f".

LemMA 2. Let h be as in Section 1. Then for almost every { € 0D and for
all Le A(), we have,as z > {, ze A,

4.3) o0 = lim sup Reh(z) = —lim inf Reh(z)
= lim sup Imh(z) = —lim inf Imh(z).

For the proof, we first let E be the set of { € dD where lim sup Re h(z)
<o as z - {, ze 4, for a 1 € A({). Then we can find m>0, and ¢,
0<ty<1, such that

4.4) Reh(z(t) < m for to<t<1,
where A: z=z(t), 0<t<1. On the other hand, it follows from (1.3) that

lh(zy)—h(zy)| € 2(1+q Y)tanh~ | 22122%2) 2 2. eD.

—2Z123

Then, for each w in the Apollonius disk

A(t) ={

we have |h(w)—h(z(t))| <1, to<t<1, which, combined with (4.4), yields

w—z(t)

150w < tanh[2“(1+q'1)‘1]} ,

Reh(w) < m+1 forallwe A(t) (t,<t<1).

Now, as t — 1, the disks 4(t) sweep a domain which contains a triangular
domain T(¢) at {. Then, h(T({)) + C*, or, { is not a Plessner point of h
[7, p. 323]. It then follows from the Plessner theorem [7, Theorem 10.13,
p. 324] that h has a finite angular limit at a.e. point of E. Remembering
the property of h, we observe that E must be of measure zero, or, the
assertion for Reh holds.

By the similar arguments we observe that the remaining three
conditions in (4.3) hold for a.e. point { € 0D and all 1 € A({).

Proor oF THEOREM 2. The boundary properties of f' immediately
follow from Lemma 2. It remains to be proved that ) a, < 0. Suppose the
contrary that for each K >0 there exists a natural number N such that
S,=a;+...+a,>K for all n>N. We let 0<r<1 to obtain
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aQ

fr)=Q0Q-r) i st = (1—r) Z st > KrN+1 :
n=1

n=N+1
whence f(1)=Ilim,_; f(r)=K; this is a contradiction.

REMARK. The series ) a,{" absolutely converges on dD. By the
celebrated Abel’s continuity theorem on complex power series we have

@)= rlilrr_lof(rl) = 21 a,l" on oD .

5. Minimal surfaces.
A nonconstant map x: D — R? is called a minimal surface if each
component x; of x=(x;,Xx,,x3) is harmonic and

3
Y (@x/ow)* =0 inD,
k=1

where 20/0w = 0/0u—id/dv, w=u+iv € D. Suppose that dx,/0w £idx,/0w.
Then the meromorphic function

G = (Ox3/0w)/(0x1 /0w —idx,/dw)

is called the Gauss map of x. See [6] for basic facts on minimal surfaces.

In [10, Theorem 2] we observed that, for each a, 0 <a <1, there exists a
minimal surface x which is a-Lipschitz continuous on D, yet |G| has no
angular limit at almost every point of 0D, and the range of values R(G, {)
=C\ {0}, at each { € dD. Here, y € R(G,() if and only if G(z,)=y for
each z, of a certain sequence {z,} with z, — (. This is a consequence of
the following on setting @ (r)=(1—r)! 7%, 0<r<1; see [4, Theorem 3.1,
p. 74].

THEOREM 3. Let ¢ be a continuous and strictly decreasing function for
0=<00<r<1 such that ¢(r) > 0 as r — 1. Then there exists a minimal
surface x: D — R3 such that

5.1) lim g(w) %, 165 (w)owl = 0.

Furthermore, at almost every { € 0D the modulus |G| of the Gauss map G of
x has no finite angular limit, and at each { € D, R(G,{)=C\.{0}.

Thus, for ¢(r)={—log (1-r)} !, 1/2<r<1, a similar consideration as
in the proof of Corollary 2 is possible. In this case, x admits a continuous
extension to D, and satisfies on D,
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sup |x(w;)—x(w;)| = o(tlogl/t) ast— +0.

[wi—wal St

The set of { € 0D, where G has the angular limit oo is of measure zero.

Proor oF THEOREM 3. Fix f>1, and choose ¢,, g0 <0, <1, such that
(p(92)<e_2ﬂ. Set

Fy(r) = 1-{(2B) 'logp(e;) +1}ez'r, 0 <71 < g;;
= —(2p) " 'logo(r), 02 <r<1.
For F=F, and q>4 we construct h. Let x,=Re fi(k=1,2,3), where
fi = @12)1-e*),
(5.2) fi = i2)1+e*),
fi=e",

in D. Then, x: D - R® with the Gauss map G=¢e" is the requested.
Actually, (5.1) follows from

(5.3) e < 2 < p(w])™1 for g, < W] < 1.

Apparently, the set of points on D where |G| =exp (Re k) has the angular
limit zero is of measure zero. The set of points on 0D where |G| has the
nonzero and finite angular limit is empty by Lemma 1. Finally, by J. M.
Anderson’s theorem [1, Theorem 2, p. 248], R(h,{)=C at each { € dD,
so that R(G,{)=C\ {0} at each { € D.

REMARK. By the similar argument as in the proof of (4.2) in Theorem 2,
we have, for almost every { € dD,

limsup|G(z)] = o0 = 1/liminf|G(z)| for all 1 € A({) .
ze. Tk
Since f;=e" never vanishes, our minimal surface is regular. If

1
J o) *dr < o,
4

[

then the area of our minimal surface is finite because

3 3
Area = f Y (9x,/0u)? dudv < JI Y AP dudv < o
p k=1 p k=1

by (5.2) and (5.3). For example, we let f>2 for
oy = {-log(1-r)}"!, 12=r<1.
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