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NORMAL RINGS AND LOCAL IDEALS

M. M. PARMENTER and P. N. STEWART

Methods from non-standard analysis are used in [2] to show that
an ideal of C(X) is local if and only if it is an intersection of pseudoprime
ideals, and the case when all ideals of C(X) are local is considered in
[2, Theorem 6.2]. In this paper we give ring theoretic proofs which show
that these results are true in a much more general setting.

Recall that a right ideal I of a ring R is local if x € R,{x,,...,x,} SI and

(x—x;)R(x—x,)R...(x—x,_;)R(x—x,) =0

imply that x € I, while an ideal P of R is pseudoprime if P contains a
prime ideal of R. A ring R is normal if x,y € R and xRy =0 imply that
ann (x)+ann (y)=R. Here

ann(x) = {ze R : zZRx=0},

but since normal rings are clearly semiprime,
ann (x) = {ze R : xRz=0}

also. Unless otherwise stated, the word “ideal” will refer to a two-sided
ideal throughout this work.
We will prove the following.

Let R be an associative ring with identity in which the product of any two
finitely generated ideals is finitely generated.

THEOREM 1. An ideal of R is local if and only if it is an intersection of
pseudoprime ideals.

THEOREM 2. If R is normal, then every right ideal of R is local, and if R is
commutative and every principal ideal of R local, then R is normal.

Notice that all commutative rings as well as all noetherian
noncommutative rings satisfy the above condition on finitely generated
ideals. ,

If I is a local ideal of the ring R, then I contains all nilpotent ideals of R.
Also, the sum NR of the nilpotent ideals of R is local. Thus NR is the
unique smallest local ideal of R.
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Of course, every pseudoprime ideal of a ring R contains f(R) (the
intersection of the prime ideals of R), and so Theorem 1 can not hold for a
ring R in which NR+f(R). An example of such a ring is given in
[7, Chapter 8, Lemma 3.6].

Proor oF THEOREM 1.

One direction is clear. For the other, let I be a local ideal and sup-
pose that x ¢ 1. Let Z be the collection of all ideals of R which do not
contain a product of the form R(x—x;)R(x—x,)R...R(x—x,)R
where x;,...,x,€l. Since I is local and x¢1, {0} e X, and since the
ideals R(x—x;)R(x—x,;)R...R(x—x,)R, being products of finitely
generated ideals, are finitely generated, we may apply Zorn’s lemma
to obtain an ideal Q@ maximal in Z. The ideal Q is prime, P= I+Q
is pseudoprime and x ¢ P.

ProoF oF THEOREM 2. Assume that R is normal. We begin by showing
that for a,,a,,...,a,_1,a, € R,

ann (a,Ra,. . .a,_,Ra,)

= ann (a,)+ann (a;)+ ... +ann(a,_,)+ann (a,).

The result is clear for n=1, so we assume that n>1. Let
w € ann (a,Ra, .. .a,_,Ra,) and let u,,. . .,u, be generators for the ideal
RwRayRa, . . .a,_ R, which is finitely generated because it is a product of
ﬁnitely generated ideals. Since R is normal, ann (¥;)+ann (a,)=R for all
i=1,...,k and so for each i we may choose v; € ann (y;) and b; € ann (a,)
such that v;+b;=1. Since (v;+by)... (+by)=1 thereis a F € ann (a,)
such that 6+5=1 where o=v, ...0v,. Thus

w = dw+bw € ann (a,Ra, ... Ra,_,)+ann (a,) .
Thus, by induction,
w € ann (a,)+ann (a,)+ ... +ann (a,_,)+ann (a,) .

Of course,

ann (a,)+ann (a,)+ ... +ann (a,_,)+ann (a,)

€ ann (a,Ra,. . .a,_Ra,),

and so we conclude that

ann (a;Ra,. . .a,_;Ra,)

= ann (a,)+ann (a,)+ ... +ann (a,_,)+ann (a,) .
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Let I be a right ideal of R and suppose that x,,...,x, € I, x € R and
(x—x1)R(x—x)R...(x—x,_1)R(x—x;) = 0.
From the above paragraph we see that

ann (x—x;)+...+ann(x—x;) = R,
so there are ¢; € ann (x —x;) such that 1=e,+ ... +e¢,. Hence
X =xe+...+xe = x1e;+...+x, €1

which shows that I is local.

Now assume that R is commutative and that every principal ideal of R
is local. Let a,b € R and suppose that aRb=0. Then (a—0)R(a— (a—b))
=0 and since the ideal generated by a—b is local, a= (a—b)x for some
x € R. Hence a—ax= —bx. Because {0} is a local ideal, R is semiprime
and so aRb=0 implies that aR N bR=(0). Thus a(1 —x)=0=>bx from
which we see that

1 = (1-x)+x € ann (a)+ann (b) .
This shows that R is normal and the proof is corﬁplete.

To see that commutativity cannot be omitted from the hypothesis of the
second part of Theorem 2, we consider the following example constructed
by Goodearl [5, page 44].

Let V be a vector space having countable dimension over a field F,
Q=End.(V) and

J={xeQ: dim(xV)<w}.

Then Q and J are von Neumann regular and J is the unique proper two-
sided ideal of Q.
Set

R={(xyeQxQ: x—yel}.

Then R is a subring of Q X Q, J x J is an ideal of R and R/(J xJ)=Q/J.
Hence R is von Neumann regular and therefore satisfies the condition that
every principal ideal (in fact, every one-sided ideal) is local. Moreover,
since R has only three proper two-sided ideals it is clear that a product of
finitely generated ideals of R is again finitely generated. However, R is not
normal because if x € Jx0 and y e 0xJ, then xRy=0 but ann (x)
+ann (y)=J x J.
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Using different techniques, W. H. Cornish [1] has obtained a variation
of the first part of Theorem 2. Also, a version of Theorem 2 for
Archimedian f-algebras is given in [6, Proposition 6.3].

Various conditions on X are known which imply that C(X) is normal;
for example, see [3, 14.26 and 14.27] in conjunction with [4, 6.2]. More
generally, we note that if R is normal, then so is the polynomial ring R[x]
and the ring of nxn matrices with entries from R. Also, if KG is a
semiprime group ring over a field K, then KG is normal. To see this,
suppose that aKGb=0. From [8, Corollary 5.6] there is a central
idempotent e € ann (a) such that b=be. Since e is central, 1 —e € ann (b)
and hence 1 € ann (a)+ann (b).
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