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Preface.

In this paper we are going to study the growth of analytic functions in
C” of finite order and of finite type. We use two growth characteristics in
our study, the classical indicator function introduced by Phragmén and
Lindelof and the limit set of log| f| recently introduced by Azarin [3]. If f
is of order ¢>0 and of finite type, then the indicator function i, of
f is defined as the least upper semi-continuous majorant of
Iim,, ,t°log|f(t.)]. It is plurisubharmonic in C" and positively
homogeneous of order g. The limit set of log| f| is defined as the set of all
plurisubharmonic functions in C" that are limits in the sense of
distributions of sequences of the form {t;¢log|f (¢;.)]}, where t; - oo.

The classical indicator theorem gives a characterization of plurisubhar-
monic functions in C”, which are indicator functions of some analytic
function. It states that if p is plurisubharmonic in C" and positively
homogeneous of order ¢ >0, then there exists an analytic function f in C"
such that i =p.

In the theory of entire functions of one variable, analytic functions f of
general order ¢ >0 are commonly constructed with the aid of Hadamard’s
product theorem. The asymptotic behavior of fis then described in terms
of pointwise convergence of t ¢log|f(t.)] as t — oo outside a certain
exceptional set. In the case of several variables these methods must be
abandoned. In this paper we construct the functions f with the aid of
Hormander’s existence theory for the Cauchy—Riemann system and we
describe the asymptotic behavior of f by considering the family
{t72log|f(t.)]; t>0} of plurisubharmonic functions in the distribution
topology.

The paper is divided into three chapters. In Chapter 1 we deal with
functions of general order ¢ >0 and of finite type. We begin by studying
the properties of the limit sets, then we deal with the problem of
constructing an analytic function f with the limit set of log| f| equal to a
prescribed set of plurisubharmonic functions, and finally we give a
refinement of the indicator theorem consisting of an L2-estimate of the
analytic function f.

One of the main motivations for the theory of entire analytic functions
is the fact that Fourier-Laplace transforms of analytic functionals are
analytic functions of exponential type. In Chapter 2 we study indicator
functions of Fourier-Laplace transforms of hyperfunctions with compact
support. If u is a hyperfunction with compact support, then it can be
represented by an analytic functional with support contained in R". If K
denotes the convex hull of the support of u and H is the supporting
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function of K, then for every ¢ >0 there exists a positive constant C, such
that the Fourier—Laplace transform i of u satisfies

i) < C.exp(H(Im{)+ell) for {eC".

This implies i;({)< H(Im{) for { € C". We prove that i;({)=H(Im{) for
all { € CR". The main result of the chapter is a description of the set of all
¢ € C"with i;({)=H (Im{) in terms of the analytic singularities of u at the
supporting planes of K. The proof is based on a Paley—Wiener type
theorem for analytic singularities, which is due to Hérmander.

In Chapter 3 we study Fourier-Laplace transforms of distributions u
with compact support. Then i satisfies a growth estimate of the form

Q) < CA+)¥exp(HAmY) for L e C,

where C and N are positive constants and H is the supporting function of
the convex hull K of the support of u. This implies that every function p in
the limit set of log i satisfies p({) < H(Im{) for { € C". In the case n=1,
the theorem of Ahlfors and Heins [1] gives that t~'log|i(s.)] = H(Im.)
in the sense of distributions as t — co. An analogous result does not hold
if n>1 as Vauthier [22] has shown. However, there is a certain regularity
in the growth of 4 near CR", for we show that all the functions p in the
limit set of log 4| satisfy p({)=H (Im{) for { € CR". The proof is based on
a theorem of Hormander [8] on the asymptotic behavior of i near CR™.
We prove a variant of the indicator theorem for Fourier-Laplace
transforms of distributions with compact support. A natural problem
which arises in this context is to construct distributions with the limit set
of log|ii| equal to a prescribed set of plurisubharmonic functions. We do
not solve this problem in general, but we generalize the construction given
in Vauthier [22] by proving the existence of a distribution u with the limit
set of log|ii| equal to the convex hull of finitely many plurisubharmonic
functions. Finally, we show that there exist distributions u with i;
discontinuous. The existence of discontinuous indicator functions was
first proved by Lelong [14].

AckNOWLEDGEMENT. This subject was pointed out to me by my teacher
Professor Lars Héormander. I would like to thank him for his invaluable

help, encouragement, and patience.
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Chapter 1. General functions of order .

1.0. Introduction.
Let f be an entire analytic function in C" of general order ¢ >0 and of
finite type. Then f satisfies a growth estimate of the form

If@) = exp(t+oalz), zeC",

where 7 and ¢ are positive constants. In this chapter we are going to study
the asymptotic behavior of f by considering the limit points at infinity of
the family {¢t ¢log|f(¢.)|; t=1} in the distribution topology in C", and by
considering the indicator function i, of f defined by

ir(z) = ﬁﬁt'“logV(tW)l, ze C".
w2z t— 0

Since the function log| f| is plurisubharmonic, it is natural to consider
plurisubharmonic functions p of order ¢>0 and of finite type. These
functions satisfy a growth condition of the form

p(z) £ 1+0]z)?,, zeC".

For every >0, we define the operator T,: L{,.(C") —» LL.(C") by T,q(z)
=t"%q(tz) for z € C". If p is plurisubharmonic in C" and of order ¢ >0 and
of finite type, then we let L(p) denote the set of all plurisubharmonic
functions in C" that are limits in Lj,.(C") to sequences of the form {T, p},
where t; = co. The set L(p) is called the limit set of p.

In section 1.1 we define the order, type, limit set, and indicator function
of a plurisubharmonic function p in C". If p is of order ¢ >0 and of finite
type, then the set L(p) turns out to be compact, connected, and invariant
under T, for all ¢t > 0. Its elements all vanish at the origin and are bounded
by o/z|? for some ¢ > 0. The indicator function of p is the least upper semi-
continuous majorant of all the elements in L(p). In the special case when p
is positively homogeneous of order one and satisfies p(z)<aly| for z=x
+iy € C", where ¢ is a positive constant, then p(x+iy)<p(iy) with
equality when x and y are proportional. Furthermore R” 2 y — p(iy)is a
supporting function.

In section 1.2 we deal with the problem of constructing a
plunsubharmomc function with prescnbed limit set. We prove that every
compact, connected set M of plurisubharmonic functions, that are
positively homogeneous of order g, is the limit set of a plurisubharmonic
function of order g¢. In the general case we are not able to replace the
homogeneity condition by invariance of the set M under T,. However, we
can prove, that for every compact invariant set M of plurisubharmonic
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functions in C" that vanish at the origin and are bounded by ¢]z|? for some
o >0, there exists a plurisubharmonic function p with M < L(p) and L(p)
contained in the union of all line segments with endpoints in M. In the
special case when M is convex, M is equal to the limit set.

The result generalizes those of Azarin [3] for the case of subharmonic
functions of non-integral order in the plane. Only a slight modification of
our method gives a generalization of his results for subharmonic functions
in R". The idea in Azarin’s construction is to choose a sequence {q,} in M
forming a dense subset in the weak topology in 2, such that every element
appears infinitely many times in it. Then p is defined so that its Riesz mass
is equal to Y @y, where {¢,} is a partition of unity in R" and g, is the
Riesz mass of x > s; g, (s,x) for certain numbers s,. Instead of dealing
with the Riesz masses we use the sequence {q,} directly in our
construction.

In section 1.3 we prove that for every plurisubharmonic function p in C*
of order ¢ and of finite type there exists an analytic function fin C" such
that T,p—T,log|f| — 0in L} .(C")ast — oo. This is also a generalization
of a theorem of Azarin [2] for n=1. The theorem improves the results of
section 1.2 so that they hold with p=1log| f|, where fis an analytic function
in C". As a consequence we give two refinements of the well-known
indicator theorem, which states that every plurisubharmonic function in
C", which is positively homogeneous of order g, is the indicator function
of some analytic function. It was proved by Polya [19] for n=1 and
¢=1, Bernstein [5], [6] for n=1 and ¢>0, Kiselman [12] for n>1 and
¢=1, and finally Martineau [16], [17] for n=1 and ¢>0.

In section 1.4 we give the third refinement of the indicator theorem. This
refinement consists of an L*-estimate of the analytic function f with a
weight depending on the indicator function. In section 3.1 we use this
estimate to characterize the plurisubharmonic functions in C”, which are
indicator functions of Fourier-Laplace transforms of distributions with
compact support. In the proof we follow the lines of Kiselman [13] and
Martineau [16], [17].

1.1. Basic definitions.
Let p be a plurisubharmonic function in C". Then the order of p is

defined by

lim log* (max p(z))/logr .

r= o |zl

If the order of p is finite and equal to ¢ >0, we define the type of p by
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lim r“’(max p(z)) .

roow [zl =r
If ¢>0, then for every t>0 we define the operator
Tt Lioc(C") = Lic(C")
by
Tq(z) = t7%(tz) forallzeC".

If p is plurisubharmonic in C" of order ¢ and of finite type, we let L(p)
denote the set of all plurisubharmonic functions in C" that are limits in
L1 .(C"), or equivalently in 2'(C"), of sequences of the form {’I;J, p}, where
t;— 0.

PrOPOSITION 1.1.1. Let 9 be a positive real number and let p be a
plurisubharmonic function of order ¢ and of finite type. Then the set
{T.p; t=1} is relatively compact in L}, (C"). Every element in L(p) vanishes
at the origin and is bounded by o|z|? for some 6 >0. The set L(p) is compact,
connected, and invariant under T, for all t>0.

Proor. Since p is of order ¢ and of finite type, there exist positive
constants T and ¢ such that

(1.1.1) p(z) £ 1+o0jz)t,, zeC".

Let {t;} be a sequence of positive real numbers =1. If {t;} has a
subsequence with finite limit, then {7, p} has a convergent subsequence
because the mapping R, 3t T,pe Ll is continuous. Hence we can
suppose that t;—oco. By (1.1.1) the functions in {T;p;t=1} have a
uniform upper bound in every compact subset of C". If >0 and r=1/t,
then

~

(1.12) ¢t f pltz)dl = t=¢ j p(trz)di
lzlse lzl<e

=t""j p(z)dA - 0, ast— .
Izl se

Hence {T; p} does not converge to —co uniformly in all-compact subsets
of C". Theorem 4.1.9 in Hormander [11] gives that {T; p} has a convergent
subsequence and that {T,p; t21} is relatively compact.

By (1.1.1) all the elements in L(p) are bounded by o|z|? and (1.1.2) gives
that they vanish at the origin.
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The set L(p) is compact, because it is the intersection of the closure in
Li. of the sets {T,p; t=N} for all N2> 1.

Suppose now that L(p) is not connected. Then L(p) can be written as the
union of two disjoint non-empty closed sets 4 and B. Let U and V be
disjoint open neighborhoods of A and B respectively in LL . Since 4 and B
are non-empty there exist sequences {s;} and {¢;} such that s;<t;,s; - 0,
T,p € U, and T, p € V. The mapping R, 3 t — T,p € L, is continuous.
Hence its image is connected. This implies that there exists a sequence {u;}
with s;<u;<t; such that T,p¢ U U V. Since {T;p; t=1} is relatively
compact, the sequnce {Tujp} has a convergent subsequence and its limit is
neither in 4 nor in B, a contradiction. Hence L(p) is connected.

If lim;., T,p=gq, then

Tq = jligg T.Tp = jlijg T.p .,

because the mapping T,: L. — Ll. is continuous for all t>0. This
proves the proposition.

For a plurisubharmonic function p in C” of order ¢ >0 and of finite type
we define the indicator function j, of p as the least upper semi-continuous
majorant of lim,., ,, T,p, that is

ip(2) = lim lim t"%(w), zeC".
w2zt 0
Then j, is plurisubharmonic in C" and positively homogeneous of order .

ProrosiTioN 1.1.2. Let ¢ be a positive real number and let p be a
plurisubharmonic function of order ¢ and of finite type. Then the indicator
function j, of p is the least upper semi-continuous majorant of all the
Sunctions in L(p), that is

(1.1.3) jp@) = limsup{gw) ; g€ L(p)}, zeC".

Proor. It is obvious that g<j, for every q € L(p). On the other hand,
for every z we can choose a sequence t; — oo such that

t;i%p(tjz) — lim t~¢p(tz)
t— o0

and T,p - qe L(p) in Li,. Then q(z)2lim,.,t °p(tz). Hence j, is
bounded by the right-hand side of (1.1.3) and the proposition is proved.

The following proposition shows that positively homogeneous
subharmonic functions in the complex plane are continuous. Lelong [14]
has shown, that for every n>1 and every ¢>0, there exists a
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discontinuous plurisubharmonic function in C", which is positively
homogeneous of order ¢. Thus the proposition has no counterpart for
plurisubharmonic functions.

" PROPOSITION 1.1.3. Let @ be a positive real number. Let p be a

subharmonic function in C of order ¢ and of finite type.

i) Let z — z!/ be an analytic g-root in some sector S of C. Then the
Junction

P (ﬁ—rﬁ T,p) (z'70)
t—* o0

is convex in S.
ii) Ifg=:1,then p is the supporting function of some compact subset K in in
C, that is
p(z) = sup Re(zw), zeC.

Parti) follows with an application of the Phragmén-Lindelof principle.
For a proof see Hardy and Rogosinski [7]. For a proof of ii), see
Hormander [11, Theorem 4.3.2].

We define the order of an analytic function fin C" as the order of the
plurisubharmonic function log| f|. If f is of order g >0, we define the type
of f as the type of log|f]. Finally we define the indicator function i, of f

by ir=jiogis1-

If u is an analytic functional, then its Fourier-Laplace transform i,
defined by #()=u(exp (—i{.,(>)) for { € C", is an analytic function of
exponential type. That is, i is of order one and finite type. If u is carried by
a compact subset of R”, then there exists a positive constant ¢ and for
every ¢>0 a positive constant C, such that

[B@) = C.exp(olIm{|+ell]), (eC".
This implies i;({) <o|Im{| for { € C".

PROPOSITION 1.1.4. Let p be a plurisubharmonic function in C". Suppose
that p is positively homogeneous of order one and p({)<o|Im(| for { € C",
where o is a positive constant. Then p(¢+in)<p(in) for all &,n € R" and
equality holds if & and n are proportional. Furthermore, R* 3 n + p(in) is a
supporting function.

ProoF. Let £, € R™. The function z — p(£ +2n) is subharmonic in C,
bounded by ¢|Im zz|, and '

}_i?l; t™1p(& +itn) = lm p(/t+in) = plin).
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The Phragmén-Lindelof principle gives p(&+zn7)<Imzp(in), so the
inequality holds. The subharmonic function z — p(z) —Im zp(in) is non-
positive in the upper half plane and equal to zero for z=i. The maximum
principle gives that it is identically equal to zero. If ¢ =xn for some x € R,
we get p(¢&+in)=p((x+i)n)=p(in).

By Theorem 4.3.2 in Hérmander [11] the second statement follows if
we prove that R" 3 5 +— p(in) is convex. Let 5,7, € R". The first part of
the proof gives

pliny +z(mz—ny)) £ (1—Imz)p(in,)+Imzp(in,)

for all z with Imz=0 or Imz=1. The left hand side is bounded from
above as a function of z in the strip {z € C; 0<Imz<1}. Hence the three
lines theorem gives that the inequality holds for all z in the strip. We take
z=it with t € [0,1] and get

P =ty +1m2)) S A—0)p(ing) +p(ing) -
This completes the proof.

1.2, Plurisubharmonic functions with prescribed limit sets.

If p is a plurisubharmonic function of order ¢ we know from section 1.1
that all functions in the limit set L(p) of p vanish at the origin and are
bounded by o]z|¢ for some ¢ >0. Furthermore the set L(p) is compact,
connected and invariant under T, for all t>0. Azarin and Giner [4] have
constructed a set of subharmonic functions satisfying these properties
which is not a limit set. We are not able to characterize the limit sets, but
we have:

THeoReM 1.2.1. Let ¢ and o be positive real numbers. Let M be a set of
plurisubharmonic functions q in C" with q(0)=0 and q(z) < o|z|% and suppose
that M is compact and invariant under T, for all t>0.

1) There exists a plurisubharmonic function p of order <g and of finite
type, such that M < L(p)<= N, where

N = {9, +(1-9)q, ; $€[0,1], 95,9, € M}

is the union of all line segments with endpoints in M.
ii) If M is connected and all its elements are positively homogeneous of
order o, then p can be chosen so that M =L(p).

In the proof we choose a sequence {g,} in M, such that its elements form
a dense subset of M and every element appears infinitely many times in the
sequence. Then we define a partition of unity {¢,} in C". We choose



244 RAGNAR SIGURDSSON

positive real numbers 7, depending on the partition of unity and set
px=T, qi. Then we let r, be a certain regularization of p, and show that p
can be chosen of the form

P=) en+®,

where @ is a C* plurisubharmonic function in C\{0} with Levi form
dominating the Levi form of the sum and T,® — 0 in Ll ast — oo.

We begin with some preliminary constructions. The first step is to
regularize plurisubharmonic functions in C". Let 0<a € CP(C™) and
§oadA=1, where d1 denotes the Lebesgue measure in C**. We identify C**
with the space of all n X n matrices with complex elements, let I denote the
identity matrix and set

a5(A4) = 6~ *"(A—1)/5) for 6 € (0,1).

If g is plurisubharmonic in C", we define R;q by
(1.2.1) Ry(z) = Jq(Az)a‘,(A)d/l(A) = Jq(z+5Az)oc(A)d/1(A).

Here Az denotes matrix multiplication.

LemMa 1.2.2. Let ¢ be a positive real number. Let M be a set of
plurisubharmonic functions in C", that are of order <g and of finite type.
Suppose that M is compact in Li..(C") and invariant under T, for all t>0.
Let q € M and define Ryq by (1.2.1). Then:

i) Ruq is a plurisubharmonic function in C" of order <g and of finite type.
We have
Rsq—q — 0 in Lio(C")

uniformly for ge M as 6 — 0.
ii) Rsq € C*(C™\{0}). For every multi-index P there exists a positive
constant Cg such that

(1.2.2) IDPRyq(z)| S Cpd 2~ 1Bl)zje= 1Al

. for all ze C\{0}, g € M, and § € (0,1), where D= (0/0z,0/0z).
iii) Ryq(z) = q(z) for all ze C"as 6 — 0.

PRrOOF. i) Since o =0, the function R,q is plurisubharmonic in C". Since
q is of order <¢ and of finite type, there exist constants 7 and ¢ such that
q(z)St+0)z°. Thus

Ry(z) £ T+O’<j ||I+5All"ot(A)d}.(A))lzl" s
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where || B|| denotes the operator norm of the matrix B, and it follows that
R,q is of order <g and of finite type.
If K is a compact subset of C", then

1.2.3) L IRsq—gldi = JL lg(z+0A42)—q(2)| dA(z)x(A)dA(A) .

The mapping S: LL x GL, - LL., S(q,4)=q(Az), is continuous, where
GL, = {AeC"”; detA+0}.

There exists d, such that supp o, is contained in a compact subset N of
GL, for all 6 <d,. The uniform continuity of S in M x N now gives that
for every >0 there exists 6, such that

f lg(z+0Az)—q(z)|dA(z) < ¢
K

for all g e M, A € suppa, and 6 <d,. Now (1.2.3) gives that Rzq — g in
L. uniformly for ge M as 6 — 0.

ii) Let z,e C~\{0}. The linear mapping C" 3 4 +— Az, e C" is
surjective and there exists a linear mapping L: C** — C"~" which is
bijective from {A4; Az,=0}. Then

(1.2.4) C™3 A (Azo,L(A)eC"@® C” ™" = C¥

is a bijection and it remains one if z, is replaced by z in a sufficiently small
neighborhood U of z,. Let ¥,: C™ — C™ denote the inverse for z € U.
We let A’ denote the projection of A4 on the first n variables, change
variables in the first integral in (1.2.1) and get

1.2.5) Rq(2) = Jq(A’)%(Y’z(A))IdCt ¥ [2dA4),

forall z € U. Since q € L}, and « € C{ it follows that Rsq € C*(C™\{0}).

We begin by proving (1.2.2) when |z|=1. We let D? operate under the
integral sign in (1.2.5). Since 0 < J < 1, the supports of a; are contained in a
compact subset of C™. If V is a compact neighborhood of z with V< U,
then there exists a constant C; and a compact subset K of C” such that

IDPRyq(2) < Cpo= 1Al j lgw)ldi(w), zeV.
K .

Since M is compact the integral is bounded. By the Borel-Lebesgue
lemma, (1.2.2) holds for |z]=1, g € M, and ¢ € (0,1).
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For z € C\{0} we choose s=1/|z|. Then
DﬂRa‘I(Z) = D”(s"“(TI/,R,,q(sz))) = S_a+w(Dp(RaT1/s‘1))(sz) .

Now M is invariant under T, for all t>0, so (1.2.2) follows.
iii) Since g is subharmonic, every z with g(z)> — oo is a Lebesgue point
of g. With the same notation as in ii) we have

IR;q(z)—q(2)] = jlq(z+<5A’)--t1(2)|<>t(q’z(A))ldet P12 dA(A4)
s C,f |q(z+0w)—q(2)|dA(w)>0 asd—0,
K

where C, is a positive constant and K is a ball in C" with center at the
origin. If g(z)= — oo, then the semi-continuity gives that for every N>0
there exists e >0 and 8, >0 such that g((I +64)w)< — N for all 4 € suppa,
0<dy, and w € C" with |z—w|<e¢. The mean value theorem gives

Ryq(z) < -f ﬁ ‘ q((I+6A)w)d1(w)oc(A)d1(A)/J; | dA < —N.
z-w|Se w—z|<e

Hence Ryq(z) - —oo as 6 — 0. This completes the proof.

Now we construct a partition of unity in C". Let {f,} be an increasing
sequence of real numbers with ;=1 and o, =,/ _  increasing to oo. Let
x € C*(R) with 05y <1, y(x)=1if x<1/3 and x(x)=0 if x>2/3. Set

®o(z) = x(log|zl/logo,)
ox2) = x(log (I2l/Br)1og oy + 1) —x(log (I2l/Bx- 1)/log O'k)

for k=1. Since y(log (z|/Bi)/1og o4+ 1) is equal to 1 for |z| < Bro/?; and

vanishes for |z| 2 B,023,, and since B,_ 6, =P, we have

i) 0Z¢,€e C§(C" and ) ¢,=1.

i) suppor={ze C"; oy <2< froil’ ), supp o, Nsupp ;=2 if
k+0 and |j—k|>1. '

i) gy=1in {z€ C"; Broy ' Z|z| S Bioi?1}-

iv) For every multi-index 0 there exists a positive constant C, such
that

1.2.6) ID?@(2)] < Cypllogay) ™|z~ P,

where D = (0/0z, 0/0z).
v) If K=C®\{0} is a non-empty compact set, then there exists k, such
that
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o (Bz) = Il, ze K, k2k,.
If t; — o, /3,‘, 4 ﬂ,‘jﬂ, then there exists j, such that

@i, (t2) + @p41(42) =1, z€ K, j>j,.

The final step in this preliminary discussion is the following lemma —
which is only a variant of Lemme 3 in Martineau [16].

LeMMA 1.2.3. Let ¢ be a positive real number. For every continuous
function y>0 on Ry, with y(r) > 0 as r — oo, there exists a
plurisubharmonic function @ in C" of class C® in C™\{0} such that

(1.27) Y 0% ()/oz,0mw My 2 y(lz)lzle™ w2
Jsk

for we C", |z| =1, and T,®(z) decreases to zero as t — oo for all z € C".
The function ® can be chosen so that for every multi-index B,

(1.2.8) IDP@(z)] < Cylzlo™ !, z e C™\{0},
where Cg is a positive constant.
Proor. We are going to show that @ can be chosen of the form
(1.2.9) ®(z) = cexp(x(log|z]*))zl4, zeC,
where k is a real valued C*-function on the real axis and c is a positive

constant. We begin by observing that if ®(z)=¥(|z|*), where ¥ is a
function on the positive real axis, then

jZk *®[0z,07,w;w, = V' (1Z1P)wl* + P (1z1P)<z, Wp|* .

Hence the expression
(1.2.10) min {¥'(|2[2), ¥’ (12|*) + 21> ¥ (12*)}Iw]?

is a lower bound for the Levi form of ®. If we set s=1log|z|? and define the
function ¥ by y/(s)=¥(¢*), then (1.2.10) is equal to

(1.2.11) e~*min {'(s), " (s)} W] .

The function ¢ > log (y(exp (¢/2))) has a.finite limit as t » —oo and
converges to — oo ast — co. Hence there exists an infinitely differentiable
function x on the real axis, which is decreasing, convex, satisfies x(t)
2log (y(exp (t/2))), and converges to — oo ast — oo. Furthermore, x can
be chosen so that x'> —g/4. We set c=max {4/g, 16/0>} and define & by
(1.2.9). Then ’
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¥(t) = cexp(x(logt))t?> and Y (s) = cexp(x(s)+es/2) .
The lower bound for the Levi form of & given by (1.2.11) is
cexp(x(s)+ (¢/2—1)s)min {k’(s) +¢/2, k" (s) +(x'(s) + ¢/2)*}|w|? .
Since x'> —g/4, k is convex and c¢min {g/4,0%/16}=1, we get

JZ’; 0*®/0z;0z,w;w, 2 exp(k(s)+ (/2 —1)s)wf?

2 exp(r(log|z*))|ze™? [wl* Z y(lz])]zI*~* [wl*.

Hence (1.2.7) holds. We have T,®(z)=cexp(x(log|tz|*))|z|° X0 as t -0
for every z € C". If k is chosen so that its derivatives of all orders are
bounded, then the last statement follows. The lemma is proved.

ProoF oF THEOREM 1.2.1. i) Let {¢,} be the partition of unity defined
before Lemma 1.2.3 and set 7,=1/B,. Let {g,} be a sequence in M with
every element appearing infinitely many times in the sequence and
forming a dense subset of M. Set p,=T, g;. Let {J,} be a sequence of
positive real numbers decreasing to zero such that

(loga,) 1071 >0 ask—> o,
and set r,=R; p;, where R; is defined by (1.2.1).
We are going to choose p of the form

(1.2.12) p=Y omn+®,

where & is a plurisubharmonic function in C” of class C* in C\{0} such
that T,® — 0in L} .. In order to show that it is possible to choose @ such
that p becomes plurisubharmonic we have to calculate the Levi form of
the sum, which we denote by s. In a neighborhood of the set {z € C"; ,
<|2|SPr+1} We have s=@ry + @4+ 171+ and the Levi form is equal to

O Y. 01/ O2\0Z W W+ Prs 1 Y, 0Ty 102107, Wi +
+ 2 Re(0@y/0z, wH{O(ry—Ti+1)/0Z, WD)+
+., i/ 02107y W W (T =T+ 1) -
Here we have used that ¢,+¢,,, =1 in a neighborhood of the set

{zeC"; By<|z| < Pi+1}- The first two terms are non-negative. By (1.2.2)
and (1.2.6) the absolute value of the other terms can be estimated by

Cllogoy) ™" 05 2"~ 1zl =2 wi?.
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Since (logg;,) 267 2"~ 1 — 0ask — oo, there exists a positive continuous
function y on the positive real axis with y(x) - 0 as x - o and y(x)
2C(logoy) 20721 if B <x<Py+1. Then there exists a plurisubhar-
monic function @ satisfying the conditions in Lemma 1.2.3, and it follows
that (1.2.12) defines a plurisubharmonic function p. By Lemma 1.2.2 i),
p is of order <¢ and of finite type.

In order to prove that McL(p) it is sufficient to show that every
element q in the sequence {q,} lies in L(p), because L(p) is closed and the
elements in {g,} form a dense subset of M. Since g appears infinitely many
times in {q,}, there exists a subsequence {4} with g, =q. Set tj=P. By
Proposition 1.1.1 the set {T,p; t =1} is relatively compact in L} _(C"), so it
suffices to prove that T, p — g in Lj,.(C™\ {0}). If K< C™\ {0} is compact,
then ¢, (t;z)=1 for all z € K and all sufficiently large j. Hence

T, p()~4(z) = Ry 4(z)—q(@)+T,2(2) .
Hence Lemma 1.2.2 i) and Lemma 1.2.3 give that M < L(p).

In order to prove the second inclusion we need the following lemma
which is a variant of Lemma 3.2.1 in Azarin [3].

LemMma 1.2.4. Set
q =3 V)T dr = Y. i) Tps
k=0 k=0

for all t>0, where {y,} is the partition of unity on the positive real axis
satisfying ¢,(z)=:(z|). Then Tp—q — 0in L ast - oo.

ProoFr. By Proposition 1.1.1 the set {T,p; t =1} is relatively compact in
LL.. For t>0 at most two of the numbers y,(t) are different from zero.
Since T, g, € M and M is compact, the set {¢'; t=1} is relatively compact
in LL.. By the compactness it follows that it is sufficient to prove
convergence in Li (C™\{0}).
Let K be a compact set of the form K={z € C"; <|z| <y}, where 0< ¢
<1<y. We have

(1.2.13) f |T.,p—q'|dA < i j Wi (Elzl) = Yu @O Tered dA+
K k=0 JK

+ i l/fk(t)f |T,(re—pi)l dA+ J | T ®|dA .
k=0 K K

The last term converges to zero by Lemma 1.2.3. For t =21 we choose k(t)
such that B, St<Pie+1- For sufficiently large ¢ all the terms in these
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sums are zero except at most the terms with k=k(t) or k=k(t)+1, for
Bx+1/Bx — . Hence it is sufficient to show that the terms in the sums
converge to zero uniformly for t>0 as k — oo. Taylor’s formula gives

Wltlz) - (0] < yt o Sup W)l

< 5 wpbi(x)| < Crllogay)™ >0, ask - oo

By Lemma 1.2.2 j) the functions T,r, are contained in a compact subset of
L}.. Hence the first sum in (1.2.13) converges to zero as t — co. Lemma
1.2.2 i) gives that the second sum converges to zero. The proof is
completed.

END oF PrOOF OF THEOREM 1.2.1. Let g € L(p) and suppose that T, p
— ¢, where t;—»o00. By Lemma 1.2.4, ¢ — q. There exists a sequence
{k;} such that

(1.2.14) q" = Y, () (T, pi) + Vi1 () (T, Py 4 1)

and ¥, j(tj) +¥y,+1(t;)=1. By replacing {t;} by a subsequence we can
suppose that ¥, (t;) >3 with 0<9<1. This implies that ¥, . () -
1—8. By replacing {t;} by a subsequence again we can suppose that (T, ,Px,)

—s;€M and (T py,+,) = s; € M, because M is compact and invariant
under T, for all ¢>0. This implies that

(1.2.15) g =limg = 95, +(1-9)s, e N,

and shows that L(p)c N.
i1) If all the functions in M are positively homogeneous of order g, then

(1.2.14) becomes
(1.2.14) g7 = Yy, (&) ax, + Vi, 41 (8) G54 1 -

The space Li.(C") is a Fréchet space. The following lemma shows that if
M is connected, it is always possible to choose {g,} so that g,—¢q,., =0
in L. If we choose subsequences of {t;} as above, then s, =s,. Hence

(1.2.15)y q=1limgi =s5,eM.

j» o

Thus the proof is completed by:

LEMMA 1.2.5. Let X be a compact connected metric space with metric d.
Then there exists a sequence {x,} in X such that its elements form a dense
subset of X, every element in the sequence appears infinitely many times, and
d(xy, Xx+ 1) decreases to zero as k — co.
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ProOOF. For x € X and r>0 we set
B(x,r) = {ye X ; d(x,y)<r}.

Since X is compact there exists a sequence X; =X, < ... of finite subsets
of X such that X = U B(x, 1/j) for every j, where the union is taken over all
x € X;. First we show that it is possible to order the elements in X in a
sequence y;,. . ., Y, With possible repetitions, such that d(y,, yx+1)<2/j.
The first element is chosen arbitrarily. Suppose that y;,. . .,y, have been
chosen and {y,,...,y))#X; Then there exists z € X \{y;,...,y} with
B(yx, 1/j) N B(z,1/j) non-empty for some k with 1<k<I, because X is
connected. If k=] we set y,,, =z. Otherwise we set

Viv1 = V-1 Vi+2 = Vi-25- -5 Y-k = Voo Y2u-k+1 = 2.

Since X ; is finite this process is completed in finitely many steps. It is clear
that d(yi, yx+1)<2/j for 1<k<m-—1. Now we construct the sequence
{x.}. First we let x,,...x, be an ordering of the elements in X, with
d(xy, X+ 1) <2, then we let X, + - Xy, b€ an ordering of the elements of X,
with d(x;, x;+1)<1. Continuing in this way we get a sequence {x;} with
d(x, X + 1) decreasing to zero as k — co. The other conditions are clearly
satisfied. The proof is completed.

If py,...,ps are plurisubharmonic functions in C" of order ¢ and of
finite type, we let L(p,,...,p) denote the set of all k-tuples of
plurisubharmonic functions (q;,. . .,q,) such that there exists a sequence
t; —» oo with T, p, converging to g, for I=1,.. ., k. The set L(py,...,py) is
called the limit set of (py,...,p,). With an analogous proof as that of
Proposition 1.1.1 it follows that L(py,...,p:) is a compact connected
subset of (Lj,.)*. Furthermore, L(py,. . .,py) is invariant under T, for all
t>0, that is

(Tq1s. .-, Teqi) € L(py,- - »p)  if (G15- > k) € L(P1s. - - P48)
and there exists ¢ >0 such that g,(z) <ozl for z € C"and I=1,. . .,k with
equality at the origin.

PROPOSITION 1.2.6. Let j<k be positive integers and let p,,...,p; be
plurisubharmonic functions of order ¢ and of finite type. Then the projection
@1,-...q) — @y, . -.9)) of L(py,. . ., i) on L(py,. . ., ;) is surjective. We
have

L(p;+p;) = {91+42 ; @1,92) € L(py,p2)} -
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Proor. Let (qy,...,q;) € L(p,,.. ’I’;) Then there exists a sequence
y—oo such that T,p,—gq, in L, as I-co for all m=1,...,j
By Proposition 1.1.1, there exists a subsequence {t,} of {t} and
plurisubharmonic functions g;. ,,..., g, such that

T,pm— qm in L. for m=j+1,...,k.
Hence (qy,...,qx) € L(py,...,ps) It is clear that
{4:+42 ;5 (91,92) € L(p1,p2)} = L(p1+p,) .

The other inclusion follows with an application of Proposition 1.1.1 as
above. The proof is complete.

With obvious modifications of the proof of Theorem 1.2.1 we get the
following improvement of it:

THEOREM 1.2.7. Let ¢ and o be positive real numbers. Let M be a set of k-
tuples of plurisubharmonic functions (q;,...,q;) in C" with q;(0)=0 and
4;(2)<0z|°, and suppose that M is compact in (L,.)* and invariant under T,
Jor all t>0.

i) There exist plurisubharmonic functions p,,. . .,p; of order <9 and of
finite type, such that M L(py,. ..,py)< N, where

= {90, +(1-9)0,; 9¢[0,1], 0,,Q, € M}

is the union of all line segments with endpoints in M.
ii) If M is connected and all its elements are positively homogeneous of
order g, then p,,...,p; can be chosen so that M =L(p,,. . .,px)-

1.3. Asymptotic approximation of plurisubharmonic functions.
The main result of this section is:

THEOREM 1.3.1. Let ¢ be a positive real number. Let p be a
plurisubharmonic function in C" of order ¢ and of finite type. Then there
exists an analytic function f in C" such that

Ttp"'T:IOglfl -0

in LL.(C") as t — oo.

The theorem gives that the plurisubharmonic functions p; in Theorem
1.2.7 can be chosen of the form p;=log| f}|, where f; is an analytic function
in C". As a corollary we get the following refinement of the indicator
theorem.
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CoROLLARY 1.3.2. Let g9 be a positive real number and let r be a
plurisubharmonic function in C" which is positively homogeneous of order g.
Then:

i) there exists an analytic function f in C" such that
T,log|f| —» r

in LL.(C") ast - .

ii) there exists an analytic function g in C", such that the indicator function
of g is equal to r, and the limit set of log|g| contains all plurisubharmonic
Junctions in C" that vanish at the origin and are majorized by r.

Proor. i) We have Tr=r for all t>0, so this follows from Theorem
1.3.1.

ii) Let M denote the set of all plurisubharmonic functions in C" that
vanish at the origin and are majorized by r. Then Theorem 1.2.1 and
Theorem 1.3.1 give that there exists an analytic function g in C” such that
L(log|g])=M. This completes the proof.

In view of Proposition 1.1.2, the function log|g| has the largest limit set
among all plurisubharmonic functions having r as an indicator function.
For the proof of Theorem 1.3.1 we need some preliminary lemmas. The
first one is a reduction to the case that p is a C* function in C\{0}.

LemMMA 1.3.3. Let ¢ and x be positive real numbers. Let p be a
plurisubharmonic function in C" of order ¢ and of finite type. Then there
exists a plurisubharmonic function q in C" of class C* in C\{0} such that
Tp—Tq — 0 in LL.(C") as t — oo. Furthermore, for every multi-index
B %0 there exists a positive constant Cg such that

(L.3.1) D% ()| S Colog (L+Iz))2*Plze~1el
for all z € C* with |z| 21, and the Levi form of q satisfies
(1.3.2) Z azq(Z)/aZJa-z—kijk g IZ'Q—K_2|W‘2 N

for all z € C* with |z|21 and w € C". Here D= (0/0z,0/0z).

ProoF. Let {J;} be a sequence of positive real numbers decreasing to
zero as k — o0. Set r,=R;,p, where R; is defined by (1.2.1). Then Lemma
1.2.2 ii) gives that r, € C*(C~\{0}) and

(1.3.3) |DPry(z) < Cpoy 2~ Wlizle bl z e CN\{0},
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where Cj is a positive constant. We choose a partition of unity {¢,} as
before Lemma 1.2.3 with (logg,)~16; 2" ' - 0 as k — co. Then it
follows from the proof of Theorem 1.2.1 that there exists a
plurisubharmonic function @ satisfying the conditions in Lemma 1.2.3
such that

q=) or+®

is plurisubharmonic. In addition, g is of order ¢ and of finite type, and
g € C*(C\{0}). If we replace y(x) in Lemma 1.2.3 by y(x)+x~*, then
(1.3.2) holds. In the set {z € C"; B, <|z|<B:} we have g=¢; 1,
+ @ +@. By (1.2.6), (1.2.8), and (1.3.3) we have

IDq(z) < Cpak_znz—mlzlrm, Bi-1 = 2l < B
If the sequence {d,} is chosen such that
O 2 (log(L+pB4-y)" ",
then (1.3.1) holds.

By Proposition 1.1.1 it is sufficient to prove that T,p—T,q — 0 in
L{,.(C\{0}). Let K be a compact subset of C™\{0}. Let t; » oo and
choose k; such that B, <t;<B, .. For all sufficiently large j we have

Or,(t2) t0r,+1(2) =1, zeK.
Hence
T,p—T,q = o, t2)T,,(p0—7x)+Pu;+ 12T, (p—T4;+1) =T, P .
Lemma 1.2.2 i) and Lemma 1.2.3 give that Tp—T,q — 0 in L. The
proof is completed.

LEMMA 1.3.4. Let X be an open subset of RN and let Y be an open
relatively compact subset of X. Let u be a subharmonic function in X with
§xluldA<oo. Let Z(u,d) denote the set of all x € Y such that

(1.3.4) f u(x +ey)di(y)/ di < u(x)+e J |udA
=t b'¢

yls1

for all ¢ € (0,58]. Then there exists a positive constant C only depending on
X and Y such that

(1.3.5) AYZ(u,8) < C5

Jor all < the distance from Y to the boundary of X.
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PRrOOF. Let 05y € CP(X) with =1 in a neighborhood of Y. Denote
the left-hand side of (1.3.4) by u,(x). If & is smaller than. the distance from
supp ¥ to the boundary of X, then

Jt//uedl - Ju//eudzl - f./mduj(.p;—./i)udz.

Taylor’s formula gives

Vo) —P(x) = s(Z J

i Jhyist

o <)y, dy f | dy)+0(62) — 0.

rlst
Hence

f (u,—u)dA < Il//(u,—u)dl < C'szj ulda .

Y X
This inequality gives

A({x €Y ; u(x)—u(x) > eJ~ [y d/'L/Z}) < 2C.
X

This estimate and the fact that u, is an increasing function of ¢ now give

MY\Z(u,0)) = A({x €Y ; u(x)—u(x) > ¢ L |u| dA
for some ¢ € (0, 6]})

A({x €Y ; ul)-ux) > ¢ j ul d
X
for some ¢ € (6/2"“,5/2"]})

A
I

k

= i {xe Y ;5 ugp(x)—u(x) > 6 L |u|dj'/2k+}})

A
k=0
S2C ) /2 =4C5.

k=0
This completes the proof.

The last lemma we need relates L2-norms of solutions of the J-equation
and estimates in the maximum norm. It is analogous to Lemma 15.1.8 in
Hormander [11].
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LemMA 1.3.5. Let u be a C-function in C* with

(1.3.6) f W21 +|2%) P~ dA <
and
1.3.7) [Ouz)] £ Ce*?, zeC",

where u and C are positive constants and  is a measurable function. Then
there exists a positive constant C', such that

(1.3.8) uz) £ C(A+|z|)exp (sug Y(z+ w)) )

where B is the closed unit ball in C".

Proor. Let y € C3(B) with y(z)=1if || £1/2, and set y,(w)=x(w—2)
for w,z € C". Let E be the fundamental solution of the Laplace operator in
R2" of the form E(z)=c|z|"?"*2 for n>1 and E(z)=clog|z| for n=1 with
c € R. Then

X = E*A(u) = 4 Y, O,E*3;(x.u)
where 0,=0/0z; and 0;=0/0z;. We have
Oj(xu) = x:0m+udsy, and x,(2)u(z) = u(z).
We have
O;E* (x.0u)(z) = fajE(—w)x(w)B}u(z+w)dl(w) .

Since J,E € LL.(C") and supp x< B, (1.3.7) gives an estimate of this term

loc

of the form (1.3.8). We have
O;E* (ud;x,) = fﬁﬂ(—w)ﬁ}x(w)u(z+w) di(w) .

The function §;E is bounded in the support of ;y. If we multiply the first
two factors in the integral by (1 +|z+w|?)*/?¢*=*™ and the third factor by
(1+|z+w?)""2e~¥@*" and use the Cauchy-Schwarz inequality, then
(1.3.6) gives an estimate of the form (1.3.8) for this term also. This
completes the proof.

Proor oF THEOREM 1.3.1. Let x and © be positive real numbers with
k+2t<min{p,1} and x<t. By Lemma 1.3.3 we can suppose that
p € C*(C"\{0}) and that p satisfies (1.3.1) and (1.3.2). Set
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X = {zeC"; 125|z|24}, Y= {zeC"; 15|z/<2}, and s;=2/.

For every j we choose by induction an increasing sequence {Z} of finite
subsets of Y such that for every k the set Z; is maximal among the subsets
W of Y satisfying:

i) |z—w[>8s;"if z,we W and z=%w.
ii) the distance from W to the boundary of Y is >4s;".
iii) for all ze Wand all ¢ € (0,27¥]

(1.3.9) (ﬁ n,p(z+ew)da(w)/ ﬁ | dA> < Ts,p(z)+ej |T;,pldA .
wis1 wis1 X

By Lemma 1.3.4 the sets {Z,} are non-empty if k is sufficiently large and i)
implies that Z;, does not depend on k for large k. We denote the largest set

@

by Y, and we order the elements of |J 1205;Y; in a sequence {z,}.

For every k we define U,, V;, and W, by
Uy = {ze C"; Jzl' "Slz—zd <zl 77,
Vi={zeC"; lz—zl=lzl' 77},
and
W, = {zeC"; |z—z|<2z/' 7} .

We have U, < V,c W,. By i) and ii) the balls Wj are disjoint, and if s;

k
< |z =55, +1, then

W, < {zeC"s; S|zl £ 5541} -
We set
he(z) = p(z)+2 21: op(2)/0z,(z1— z1) +
+ ,Z":. 02p(21)/ 02102 (21— 210) (Zom — Ziem) -
Then Taylor’s formula gives
p(z)—Re(h(2)) = '}; 02p(24)/0210Zm (21— 21a) (2 — Zim) + Ric(2)

where
|Ry(z)] < Csup|DPp(w)liz— 2z,
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and the supremum is taken over all # with ||=3 and all w on the line
segment between z and z,. By (1.3.1) and the fact that |w|<2|z| for all
z,we W, and k=1, we get

(1.3.10)  [Ri(2)l < Clog A +|2)M|zle %z —zd>, ze€ W4,
where C’ is a positive constant and M =2n?+ 3. By (1.3.2) we get
p(z)—Re(h(2))
2 |22z —zf*(1 - C'(log (1 + ||z~ |z - z) ,

for z € W,. Since |z—z,| < 2|z]' " for z € W, and k <7, the last factor can
be estimated from below by

1-2C"(log(1+z|)M|z[*"* = 1/2, ze W, k=k,,
where k, is some positive integer. Hence
(13.11) Re(h(2) < p@)—lel ™ 2z —2J%/2
for z € Wy, k=kq. In U, we have |z—z|=|2|*~"/4, so
(1.3.12)  Re(h(z)) < p2)—|z1°*"%/32, ze U, k=ko.
Let y € C§(C") with x(z)=0 if |z]21, and x(z)=1 if |z| <£1/2, and set
x(2) = x((z—zk)lzkl'”‘), zeC",
and
Yi(z) = X((Z"Zk)|2klt_ 1/2), zeC".

Then supp Y, =W, supp xx < Vi, supp oxx<=Uy, and Y =1 in supp x.
Since 0 <1< 1, we have a bound on |0y, independent of k. We are going to
choose f of the form

(1.3.13) f = Z xkehk._v .
Then v has to satisfy
(1.3.14) =Y dpu =g,

where the last equality is a definition. The second order partial derivatives
of z > |2]07*~ (Y y,) are O(|z]*"* %) as |z| — oo and the Levi form of p
can be estimated from below by |z|¢7*~2|w|2. If c is a sufficiently small
positive constant, then it follows that the function y defined by

(1.3.15) Y(2) = p@)—clzl™* (YL Yul2), zeC",
is plurisubharmonic in C". By (1.3.12) and (1.3.14) we have
lg(z)l < Ce*™ .
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Hence
f|g|2(1+|z|2)""’1e"zwdl < 0.

Theorem 4.4.2 in Hormander [10] now gives that there exists a solution v
to (1.3.14) with

(1.3.16) J WA +]z1?) " 3¢~ ¥ di < o .

We define f by (1.3.13). In order to prove that T,(p—log|f|) — 0in L it
is sufficient to show that T, (p—log|f]) - 0 as j — oo, where 5;=2. In
fact, if t, — oo then there exist j, —» oo such that t,/s; has a convergent
subsequence. Hence

T,,‘(p-—log!fl) = Ttk/sjk(Tsjk(p—IOg‘fl))

has a subsequence converging to zero.

In order to prove that T, (p—log|f|) — 0 as j — oo it is sufficient to
show that every subsequence of {T;,(p—log|f|)} has a subsequence con-
verging to zero. By Proposition 1.1.1 every subsequence of {s;} has a sub-
sequence {t;} such that T, p — q € L(p) and T, log|f| — r € L(log|f|).
It is sufficient to show that g=r.

By (1.3.11), (1.3.13), and (1.3.16) the function f satisfies

J|f|2(1+lz|2)””e'2Pdl < o,
where v=n+3. Lemma 1.3.5 gives
(1.3.17)  |f(2) £ C(1+|z|) exp (iggp(z+w)), ze C".
Hence
lim T, log|f (z)| < lim sup(T,p(+w/t), zeC".
Since T, p — g, we have for every compact subset K of C”
ES%T,J < st}pq .

(See e.g. Hormander [11, Theorem 4.1.9].) If we combine the last two
‘inequalities, we get

Iim T, log| @)l < limg(w) = q(z) zeC".
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Thus
(1.3.18)  r(z) = ﬁakﬁﬁ T, log|f W) < q(z), zeCm.

Next we prove that r=q in Y. By (1.3.18) and the mean value property it
is sufficient to show that q(z) £r(z) for almost all z € Y with respect to the
Lebesgue measure. Let F,, denote the set of limit points of sequences {{;}
with { € Z;,,,, where ty=s;, . Then F,, is closed. Let K be a compact subset
of the open set Y\ F,,. Then there exist positive numbers d and k, such
that for k>k, the set Z,, has distance >d to K. Choose k>k, such
that 8¢, " <d. Since Z,, ,, is maximal among all subsets of Y satisfying i), ii),
and iii), no point in K can satisfy (1.3.9) with k=m and s;=t,. Lemma
1.3.4 gives that A(K)<C2™™, where C is a positive constant. Since K
was arbitrarily chosen, A(Y\ F,)<C27™™. Hence the set Y\ UmFm
= (),, Y\ F,, has measure zero.

This gives that in order to prove that r=g in Y it is sufficient to show
that g(z)<r(z) for all z € Y that are limit points of {{;} with {, € Z,,,, for
some positive integer m. Let ¢ € (0,27 ™]. Then

(1.3.19) q(z) £ f q(z +ew)d,1(w)/J dl
lwl=1 Jwis1

=limj q(Ck+sw)dl(w)/f i,
lwis1 YS!

where the limit is taken over a subsequence of {{;} converging to z. The
equality holds, because the mean value is a continuous function of z. Since
T,p — q in Li,, for every 6>0 there exists k; such that if k>k,

(1.3.20) f q(Ck+sw)dl(w)/ f i
lwls1 w1

< J T,kp(Ck+8w)dl(w)/J di+6 .
Iwls1 lwls1

Since t,=s;, and {; € Z;,,,, We get

(1.3.21) U T,kp(C,,-i-sw)dA(w)/J dl)
lwis1 lwis1

é Ttkp(ck)+8 J:Y llep’ dA- .
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Since {T;p; t 21} is relatively compact, the integral in the right-hand side
can be estimated by a positive constant C. The point t,{, is an element of
the sequence {z,}. We have

(1322)  |p(z)—loglf @] = |logll—v(z)e~?@)]|.

By (1.3.15) and (1.3.16) the function v satisfies the conditions in Lemma
1.3.5. Hence

lv(z)) < CA+|z|)"*?exp (sugt//(z+w)) .

By Taylor’s formula (1.3.1) and (1.3.15) there exist positive constants a, b,
C, M and N such that
[v(z,)]e—P@)
< C(1+|z))exp(a(log|z,[ze ™ —b|z e~ %),

Since k + 21 <min {g, 1}, the right-hand side converges to zero as | -
and (1.3.22) gives

p(z)—log|f(z) =0, |- oo.

Hence

(1.3.23) T, pC)—T,log|f () = 0, k— o0
We have T, log|f| — r in L{,. as k - oo. Hence
(1.3.24) Iim T, log|f €l < 7(2) .

If we combine (1.3.19), (1.3.20), (1.3.21), (1.3.23), and (1.3.24) we get
q(z) £ r(z)+Ce+9 .

Since the numbers ¢ and J were arbitrarily chosen, it follows that g=r
in Y.

It now follows that g=r in s;Y for all integers j, for this is equivalent to
Lr=T,9 in Y and we have T,,p— T4, and T, log|f|->T,r as
k— o0. The set C™\ U 5;Y has Lebesque measure zero, so g=r. This
completes the proof.

1.4. A refined indicator theorem.

In this section we give a proof of the indicator theorem with a growth
condition on the analytic function in the form of an L?-estimate. In
Chapter
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Chapter 3 it will enable us to characterize the indicator functions of
Fourier-Laplace transforms of distributions with compact support.

THEOREM 1.4.1. Let ¢ be a positive real number and let M be a compact
neighborhood of the origin in C". Let p be a plurisubharmonic function in C"
and suppose that p is positively homogeneous of order g. Then there exists an
analytic function fin C" with i,=p and

(14.1) flflz(l+|z|2)'“'3"exp(-—2pM)dl <o,

where py,(z)=sup,,.,p(z+w).

Our proof is similar to that of Kiselman [13] and Martineau [16], [17].
It is in two parts. First we prove that for every z € C" there exists an
analytic function f satisfying (1.4.1) with p(z)=i (z). This is done by
induction on the dimension. Then we give a category argument in the
Banach space of all analytic function satisfying (1.4.1) in order to prove
the existence of a function f with i;=p. The case when n=1 and p is
harmonic in the complex plane outside a half line must be treated
separately. It is the most tedious part of the proof and we start with it.

LemMa 1.4.2. Let p be a subharmonic function in C which is positively
homogeneous of order ¢ >0. Suppose that p is harmonic in C\ ("R ) for
some 3 € R. Then there exists an analytic function f in C such that

1.4.2) | f@@) £ Ce??, zeC,

Sfor some positive constant C, and for every ¢ € (0,1) there exists a positive
constant C, such that

(1.4.3) If @) =2 C7 ' (1+]z])~Ner®

for all z € C with 9+e<argz<9+2n—e. Here C\(e"®R,)d z+» argz is
defined so that 3 <argz<3+2r, and N>0.

Proor. We begin by showing that there exists an analytic function f
which satisfies (1.4.3) and

142y If @) £ CAQ+|z))Ne?® zeC,
for some positive N. By composing p with a rotation we can suppose that
= —7n. We let

C\R_3z+ Logz = log|z|+iargz



... ANALYTIC AND PLURISUBHARMONIC FUNCTIONS ... 263

be the branch of the logarithm which is real on R, , and we define z* by
z*=exp (xLogz) for all « € C. Since p is harmonic in C\R_ and
positively homogeneous of order g, it is of the form p(z)=Re (az®) for
some a € C. By Proposition 1.1.3, p is continuous, so the real parts of
aexp (+ign) are equal. The absolute values of these numbers are equal, so
they are either equal or complex conjugates. In the first case g is an integer
and f'can be chosen as f (z) =exp (az?). Hence we can suppose that g is not
an integer. Then a is real.

Next we are going to derive a Riesz representation formula for p. We let
k be the integer with k<g<k+1 and let E be the Weierstrass primary
factor defined by E(z)=1~z if k=0 and E(z)=(1—z)exp (z+2z%/2+...
+2*/k) if k>0. Then

(1.4.4) p(z) = Jw log|E(—2z/s)du(s), zeC,
0

where du(s)=ygs®~ !ds, with y =a sin (gn)/n. Before we prove the formula
we make some observations. We have

log|E(—z/s)| = log|1+2z/s|+Re (i (——z/s)’/l) ,
1

where the sum is omitted if k=0. Hence the integrand is O((log s)s®~*~1)
ass — 0. By Taylor’s formulaitis O(s* ¥ %)ass — oo,andifz € R_ itis
O(log|z+s|) as s = —z. Hence the integral in (1.4.4) is convergent and it
defines a continuous function of z in C. We observe that
20p/0z = d(az®+az?)/0z = agz®™!
in C\R_ and
ag((x+i0P~* — (x—i0)?~*) = — (2iagsin (gn))x2" 1,
so Theorem 3.1.12 in Hérmander [11] gives
Ap = 40%p/0z0Z = (2agsin (em))x¢" ' @(y) .

Since p is subharmonic it follows that y=asin (¢n)/n>0. Furthermore

Lw @(—s)du(s) = @m)~'<4p, 0>, ¢ € Co(C).
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Now we turn to the derivation of (1.4.4). We have
k

(145)  ZloglE(=z/s) = & Re (Log (L+2/5)+). (—z/s)‘/l)
1

0s
Re((—z/s)*!/(s+2))
= (—s)"¥ Yz +s"2Re(** (s +2)) .

A partial integration gives for z € C\R_

(1.4.6) [:o log|E(—2z/s) du(s) = yRe ((-—1)"2"+l Lw s""""/(s+z)ds) .
If z is a positive real number then a change of variables gives

147 ! J;w P (s+z)ds = 22 J:D 7k 1/ (s+1)ds .

Both sides -of this equality are analytic functions of z in C\R_, so the
equality holds for z e C\R_. By Hérmander [11, p. 86], the last integral
is equal to

n/sin((k+1—g)r) = (—1)*n/sin (gn) .
Hence (1.4.4) follows from (1.4.6) and (1.4.7).
We are going to show that f can be chosen as

(1.4.8) f@) =[] E(-z/t), zeC,
i=1

where {t;} is the sequence of non-negative real numbers satisfying
(1.4.9) v§ =4, jz0,

and his a polynomial to be chosen later. Since ) ¢; *~* < oo, the product is
convergent and it defines an entire analytic function. We have

(1.4.10) f " dpe) = y8-8-) = 1, jzl,

-1

and
(tj—t;i—1) = (@y)~ 't} %(1+0(1/j)) asj— oo.

Since t;/t;_; —» 1 as j — oo, this implies that there exists a positive
constant a such that

(1.4.11) (tj_tj—l) é asl"", S€ [tj—l’tj]’ ].22 .
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In order to define the polynomial h and estimate log| f| — p, we define f; by

Lj

£(2) = log|E(~z/t)|~ j log|E(—2/s)|du(s), zeC.

oy
The equality (1.4.10) gives

t

fi(2) = ﬁ " (log|E(~z/t)|~log|E(~z/s))du(s), zeC.

ji—1

We write f; as a sum f;=g;+h;, where

tj
gi(z) = J (log|1+z/t)|—log|l+z/s|)du(s), zeC,

ti-s

h;=0 if k=0, and

hj(z) = th Re(}k_:1 [(—z/tj)’—(~z/s)']/l> du(s), zeC,

-1

if k=1. For 1<1<k we define g, by

a= =5 |7 (uer-cummae

The sum is convergent for the integrand is O(s*~'"!) as s — 0, and the
mean value theorem and (1.4.11) give

t7t=s7Y < Cis™7, setoy,t], j=22,
which implies
t;
U (=)= (=5 du(s)
tjoy
for j=2. We set h=0 if k=0, and

< Gyt —t7h) £ CyjHe !t

W) = ¥ ad, zeC,
=1
if k=1. We define f by (1.4.8). Then
log|/ @I-p(z) = Re(h@)+ 3. fi2), zeC.

We set .
S, ={zeC; z=re¥,|p|<n—¢}
and
T={zeC; z=re¥,n—15p=<n+1}.



266 RAGNAR SIGURDSSON

By splitting the sum into two parts, we see that (1.4.2) and (1.4.3) hold if
we can prove the following four inequalities

(1.4.12) Y If2) < logC, if 2R,
122

(1.4.13) Re(h(z))+ Y hz)| < logC, if 2|2R,

4, <2z
(1.4.14) Y g = log(C.(A+]2)Y),
t;_1 <2l
for all ¢ € (0,1) and all z € S, with |z]>R,, and
(1.4.15) Y giz) < log(CA+|z)Y),
t;_1<2l2|

for all z e T with |z]=R. Here C, N, R, C,, and R, are positive constants.

The first three inequalities follow with an application of (1.4.11) and the
mean value theorem. We set R =max {2t;,2}. If t;_; 22|z|, then |z +5| = |2|
for all s € [t;_,,t;]. Hence (1.4.5), (1.4.11), and the mean value theorem

give
[log|E(—z/t;)| —1log|E(—z/s)l| £ C'lzI*s™*7¢, se[t;-y,t5].
If we use the fact that

logl(1 +2z/t;)/(L+2z/s)| £ C'lzlll+z/s|" (s~ ' —¢t; 1) for se[t;-1,t;],
then it follows from (1.4.11) and the mean value theorem that the factor
s~ ¥~ in the left hand side can be replaced by s~* ~¢if k=0. Hence the left
hand side of (1.4.12) can be estimated by

C”’lzl"J s7*1ds,if k>0, and C” ( s™%ds, if k=0,

2jz] 2|z

where C’, C”, and C'” are positive constants. This gives (1.4.12). If k=1
then an application of the mean value theorem as above gives that the left-
hand side of (1.4.13) can be estimated by

k t X "
I J‘j (et —=s~Y/Ddu@s) = C Y lz,lj sT1ds
12202 Jt 1=1

=1 -1 2|z|
and (1.4.13) follows. We have

ty Ly
g2:(2) = log|1 +z/t1|+J‘ (logs)du(s)—f log|z+sldu(s), zeC.
0 0
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If |z =R, then |log|z +s||<log (2|z|]) for s € [0,¢,], so we conclude that
(1.4.16) lg1(2) < log(C(1+2)), if |zZ/=R,

if C is chosen sufficiently large. If z € S,, then |z +s| = (sin ¢)|z| for all s> 0.
If R, = (sing)™!, then (1.4.11), (1.4.5), and the mean value theorem give

[log|1+z/t;|—log|l+z/s|| = C's™¢,

for s € [t;_1,t;], |zl = R,, and j=2. Hence the sum of all the terms in the
left-hand side of (1.4.14) except the first one can be estimated by

2)z|
¢ L s~lds = C"log (2)z|/t,)

for all z € S, with |z| = R,. If we combine this estimate and (1.4.16), then
(1.4.14) follows. Let z € T. By (1.4.5) with k=0 it follows that the function
R: 3 s log|l+2z/s| is decreasing when s< —|z|?/Rez and increasing
when s> —|z|>/Rez. We choose ! such that t,_; < —|z/*>/Rez<t, and m
such that ¢t,_, <2|z|<t,,. Then

t
J’ log|1+z/s|du(s) = logl+z/t), if j<I-1,
t

-1

and

tj
J log|1+z/s|du(s) = log|l+z/t;—4|, if j—1=I.
oy
These inequalities give that the left-hand side of (1.4.15) can be estimated
from above by

t

(1.4.17) log|1+z/t,| —J log|1+z/s|du(s) .

Ly

Since 2|z| <t,,, the first term is bounded from above. We have

]
(1.4.18) —j log|1+z/s|du(s)
[1

-1
t

1 ]
= (logs)du(s)—J log|z+s|du(s).
Loy 73}

Since |z| <|Re z|/cos 1forze Tand t,— 1 < —|z|*/Rez<t,;, we can choose R
such that t,_,; =1 if |z]=R. Since t;t;_; — 1 and (1.4.10) holds, we
conclude that the first term in the right-hand side of (1.4.18) can be
estimated by log(C(1+|z|)) for some positive constant C. If ¢ <1, then
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L 1
—f log|z+s|du(s) £ -ygf log|x|dx, if |zZ]=R.
ti- -1

If ‘é>1, then (1.4.11) gives that the length of the interval [¢;,_,,¢t;] is
<ot} 79, so if §=min {1,at} "¢}, then

f 5
f log|z+s|du(s) < —yQtf‘lf log|x|dx if |z|=R.
-5

by

The right-hand side can be estimated by log(C(1 +|z|)") for some positive
constants C and N. Hence we have proved (1.4.15).

We set

N
q(z) = H1 (1+z/t;)

j=
and replace f by f/q. Then (1.4.3) holds, and (1.4.2) follows from (1.4.2)’.
This completes the proof.
Now we are able to treat the case n=1 in general.

LemMMA 1.4.3. Let p be a subharmonic function in C and suppose that p is
positively homogeneous of order ¢ >0. Let z, € C\{0}. Then there exists an
analytic function fin C such that

(1.4.20) If 2) S C(L+]z)r*2%P® zeC,
and
(1.4.21) ig(z0) = z@;t"“loglf (t20)l = p(zo) -

Proor. Let S be a maximal sector in C\ {0} containing z, such that
Ap=0 in the interior of S. Suppose first that C\ ("R, )<intS for
some 3€R. Then there exists an analytic function f satisfying the con-
ditions in Lemma 1.4.2. We have i, =p, for (1.4.3) gives that i (z)=p(z)
for all ze C\(¢?R_) and the continuity gives that equality holds
identically. Hence (1.4.20) and (1.4.21) are satisfied.

Suppose now that C\ S has an interior point e’*. We let

C\(e®R;)3z — Logz = loglz|+iargz

be the branch of the logarithm with §<argz<9+2n and define z? by
z2=exp (9 Logz) for z € C\ (¢”R.). If S has a non empty interior, then
there exists a € C such that p(z)=Re (az?) in S. If the interior of S is empty
then there exists a € C such that p(zo)=Re (az§), p(z)=Re (az?) in a
neighborhood of S with equality only in §, for Proposition 1.1.3 gives that
p is a convex function of z¢ in a neighborhood of S.
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The set S can be written as
S ={zeC\{0}; 9,<argz<9,}.

By Proposition 1.1.3 we can choose é >0 such that the sector
T={zeC\{0}; 9,—6<Largz<9,+0}

is contained in C\ (¢’R.) and p is a convex function of z° in the sectors
U={zeC\{0}; 9,—d=<argz<9,+4}

and
V= {zeC\{0}; 3,—-0<argz=<(,+6}.

Welet y € C*(C) with suppy<= T, 0=y <1, x(z)=1 for all z with 3; — /2
<argz<9,+6/2 and |z|=1, and x(tz)=x(z) if t=1 and |z|=1. We are
going to show that it is possible to choose f of the form

(1.4.22) f(2) = x(2)2°e¢"* —v(z) ,
where v is the integer with 1+9<v<2+g. Then v has to satisfy
(1.4.23) )0z = 0y/0zz°e" = g ,

where the last equality is a definition. Since p is a convex function of z? in the
sectors U and V, and S is a maximal sector where p(z) =Re(az?), it follows
that there exists ¢ >0 such that

Re (az’) < p(z)—elzl®

for all z with 9, —-6<argz<9,—6/2 or 3,+8/2<argz<9,+46. Since
x(z)=1 for all z with 9, —6/2<argz<9,+9J/2 and |z|=1, and |0x/0Z|
=0(lz|"1) as |z| = o0, we have

(1.4.24) f lgl2e™2Pdi < oo .

Theorem 4.4.2 in Hormander [10] gives that there exists a solution v of
(1.4.23) with

(1.4.25) f W21 +]z?) "2 2PdA < oo .

We define f by (1.4.22).
For t >0 we let B, denote the closed disk in C with center ¢z, and radius
t'~¢. Then v is analytic in B, for all sufficiently large ¢. The mean value

theorem and the Cauchy-Schwarz inequality give
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(1.4.26) Io(izo) < n"t’““f ol dA < 7 Y2 o] g, -

L3

By using the estimate (1.4.25) we conclude as in the proof of Theorem
1.3.5, that

(1.4.27) loll2s) = C:(1 +|tzo|?) exp (sug p(w)) .

we B,

By Proposition 1.1.3 p is a convex function of z?2 in a conic neighborhood
of z,, so it is locally Lipschitz continuous. We have |z,—w/t|<t7¢ for
w e B,, so

(1.4.28) sup p(w) = 2 sup p(w/t) < p(izo)+y
weB,

we B,

for some positive constant y. Now (1.4.26), (1.4.27), and (1.4.28) give
o(tzo)] < C,t'*2exp(p(tzo))
for some positive constant C,. Hence
|zo]"?" — C3t' %@ < | f (t20)le ™70 < |zt + Cpt* *e .

Since v>1+9, (1.4.21) follows. The estimate (1.4.20) follows if we apply
(1.4.26) with v replaced by f. The proof is complete.

REMARK. If g=1 then Lemma 1.4.3 is trivial. In fact, Proposition 1.1.3
ii) gives that p(z)=sup,.x Re (zw) for z € C, where K is some compact
convex subset of C. Hence we can choose f as f(z)=exp (zw,), where
wo € K satisfies p(zy)=Re (zoWy).

The next lemma is only a variant of Theorem 4.4.3 in Hormander [10]
and it is proved in an analogous way.

LemMMA 1.4.4. Let p be a plurisubharmonic function in C". Let X be a
complex subspace of C" of codimension k, and let M be a compact
neighborhood of the origin in C". For every analytic function h in X satisfying

j [h2(1+|2]%) N exp (—2p)ds < 0,
z

where N is a positive constant and do denotes the Lebesgue measure in X,
there exists an analytic function f in C", such that f=hin X and

f FP(L+1212)~ N exp (— 2py)dA < oo,

where py(z)=sup P (z+W).
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PrOOF. Since (p;)y < pp 4 for all compact subsets M and L of C", it is
sufficient to prove the first assertion when X' is a hyperplane and then
iterate this special case k times. By composing h and p with a unitary linear
map we can suppose that X={z e C"; z,=0}. Then h is an analytic
function of z'=(zy,...,2z,_,) and can be considered as an analytic
function in C" independent of z,. We choose a >0 such that the polydisk
{ze C" |zj<a,j=1,...,n} is contained in M. Since p(z',0)<py(z’, z,)
for all z with |z,|<a it follows that

f B> (1+2%) "V exp (—2py)dA
lz Sa
< na® f [h2(1+|2|2) " Nexp(—2p)da.
b

Let Y be a continuous function in C which is equal to 1 in the disk |z| S a/2,
equal to 0 outside the disk |z| <a, and a linear function of |z| between a/2
and a. Then |0y/0z]<a™ .

In the same way as in the proof of Theorem 4.4.3 in Hérmander [10]
we can show that f can be chosen of the form

f(Z) = l/l(Z")h(Z')—ZnU(Z) ’
where v satisfies the equation v =z, *h(z'Xdy (z,)/0Z) dZ, and

jlvlz(l +12|*)"¥ 2 exp (—2pp)dA < 0.

This completes the proof.

LEMMA 1.4.5. Let M be a compact subset of C". Let p be an upper semi-
continuous function in C" and suppose that p is positively homogeneous of
order 9 >0. Define py by

pu(z) = sup p(z+w) for ze C".

we M

If f is analytic in C" satisfying
[1r2aipyvep (- 2puin <o

for some N >0, then f is of order <g and i <p.

Proor. By Lemma 1.3.5, there exists a positive constant C such that

If@2) = C(1+!ZI)”exp< sup p(2+w)>, zeC",
weM+B
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where B denotes the closed unit ball in C". Hence f'is of order <g. Since p
is upper semi-continuous and homogeneous it follows that

limt~¢log|f(tz)) < lim sup p(z+w/t) < p(z) .
t— t>oweM+B

Hence i, <p and the proof is completed.
The last lemma we need can be found in Ronkin [20], Chapter 3:

LEMMA 1.4.6. Let u be an upper semi-continuous function in an open
subset U of RN such that {x € U; u(x)> — oo} is dense in U. Then there
exists a countable subset S of U such that u(x)> — oo if x € S, and any upper
semi-continuous function v in U such that v<u with equality in S is
identically equal to u.

Proor. Let {¢;} be a sequence of positive real numbers converging to
zero. For every j we let {U;,} be an open covering of U such that the sets
U are relatively compact in U and have diameter <¢;. For every U, we
choose a point x; € Uj, such that

sup u(x) < u(xy)+e;, j k=1,
xe Uy

and set S={x,; j,k=1}. Then § is a countable dense subset of U and
u(x) = lim u(y), xeU.
Sdy—-x

If v is upper semi-continuous in U, majorized by uin U and equal touin S,
then

v(x) = l_iﬁv(y) = fim v(y) = iim u(®) = u(x)
yox $y—x Sy-x
for all x € U. This proves the assertion.

Proor oF THEOREM 1.4.1. Let z € C" with p(z)> —oo. We shall first
show that there exists an analytic function f in C" satisfying (1.4.1) and

(1.4.29) p2) £ if2).

The function q(t)=p(zz) is subharmonic in C and positively homogeneous
of order g. By Lemma 1.4.3 there exists an analytic function g in C
satisfying (1.4.20) and (1.4.21). We let X denote the complex line spanned
by z and define the analytic function h in X' by h(tz)=g(z). Then Lemma
1.4.4 gives that h can be continued to an analytic function fin C" satisfying
(1.4.1). The equality (1.4.21) gives
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p(z) = };’u_gr*floguaz)l < if2),

so (1.4.29) holds.

Since p is upper semi-continuous in C", Lemma 1.4.6 gives that there
exists a countable dense subset S of C", such that any upper semi-
continuous function in C" majorized by p and equal to p in S is identically
equal to p. We arrange the elements of S in a sequence {z;} such that every
element in S appears infinitely many times in the sequence. Let {¢;} be a
sequence of positive real numbers converging to zero and define the
positively homogeneous functions p; in C" by

_ {min (@), (PG z)—e)lzl}, zeT;,
14 j(z) - n
p(2), ze C"\TI;,
where I'; denotes the cone generated by the ball {z € C"; |z—z}|<g;}.

For every measurable function q: C" — R we define the space B, of all
analytic functions f in C" satisfying

sza 12?)¥ exp (~ 2qp0)di < 0,

where N =g +3n and g,,(z) =sup,,.pq(z +w). If g is bounded from above
in every compact subset of C”, it follows that B, is a Banach space with the
norm

1/2
fo ( f L +|z|2>-"exp(—2qm)d1> .

Since p is upper semi-continuous, B, and B, are Banach spaces. Since p;
<p for all j, the injection B,, — B, is continuous. By Lemma 1.4.5, we
have i;<gq; for all fe B,, where q; denotes the least upper semi-
continuous majorant of p;. Since ¢;(z;)=p;(z;) <p(z;), the first part of the
proof gives that B, + B,. By Banach’s theorem, the spaces B, are of the
first category in B, and by Baire’s theorem, B\ U B,, is non-empty. For
every f € B,\ U B,, we have i, =p. In fact, if i, 4 p, there exists w € S such
that i(w) < p(w). Hence there exists ¢ >0 and a compact neighborhood V
of w such that

if(z) < pw)—e, zeV.
By Hartog’s theorem, there exists ¢, >0 such that
t~elog|f (tz)] < p(w)—¢/2, zeV,t>t,.
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Since w appears infinitely mamy times in the sequence {z;} and ¢; — 0,
there exists k such that w=z, and

t7¢log| f (tz)] < (p(zi/|zil) —&x)l2l°
for all z with |z —z;| <g, and all t>¢,. This gives
If @) < Cexp (pi(2)), zel.

Since fe B, and p,=p in C"\TI it follows that fe B, . This is a
contradiction. Hence i, =p and the theorem is proved.

Chapter 2. Fourier-Laplace transforms of hyperfunctions with
compact support.

2.0 Introduction.

Let u be a hyperfunction in R” with compact support. Then u can be
represented by a unique analytic functional, which we also denote by u,
with support contained in R". We let K be the convex hull of the support
of u and let H be the supporting function of K. In this chapter we are
going to study the indicator function i, of the Fourier-Laplace transform
of u.

In section 2.1 we begin by showing that i,({)< H(Im{) for { € C" with
equality in CR", the set of all complex vectors with proportional real and
imaginary parts. This is a generalization of a theorem of Plancherel and
Polya [18]. We give two applications of the results of sections 1.2 and 1.3
to Fourier-Laplace transforms of hyperfunctions. The first result is a
construction of a hyperfunction u with prescribed bounds on the limit set
of log [i]. The second results shows that the Titchmarsh-Lions theorem of
supports does not hold for hyperfunctions. It states that if K, K, and K,
are compact convex subsets of R" with K; < K, + K, and there exists a
compact metric space 4 and surjective continuous functions ¢,: A - K,
and ¢,: A - K, such that

K3 = ch{p,(@)+¢,(a); ac A},

then there exist hyperfunctions u; and u, with K,=chsuppu,, K,
=ch supp u,, and K; =ch suppu, *u,. This result is a generalization of a
construction, given by Polya [19, § 35], of an entire analytic function F in
C of exponential type with indicator diagram equal to a prescribed
compact convex set and the indicator diagram of F(z)F(—z) equal to {0}.

The main result of the chapter is a description of the subset of all { in C"
where i,({)=H(Im{) in terms of the analytic singularities of u at the
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supporting planes of K. As a preparation for that we prove in section 2.2 a
Paley-Wiener type theorem for analytic singularities. It is due to
Hormander. It allows us to determine the convex hull of the analytic
singular support of certain distributions in R", that are analytic and
exponentially decreasing in a conic neighborhood of infinity, by means of
growth estimates of their Fourier-Laplace transforms.

Finally in section 2.3 we prove that if { € C" with Re{ %0 and Im{ =0,
then i ({)=H (Im{)if and only if (x,Re{) € WF 4(u) for some x € dK with
{x,Im{>=H(ImY).

2.1. The Paley—Wiener theorem and the indicator function.

Let u be an analytic functional carried by a compact subset of R". Then
the support of u is well defined and it is the smallest compact subset of R"
which carries u. Let K be the convex hull of suppu and let H denote its
supporting function. The Fourier—Laplace transform # of u is defined by
4(¢)=u(exp (—i{.,(D>)) for { € C" It is an analytic function and for every
£>0, there exists a positive constant C, such that

2.11) la)l < C.exp(H(Im)+ell]), (eC".

We have an analogue of the Paley-Wiener theorem for analytic .
functionals. In fact, every analytic function in C" which satisfies a growth
estimate of the form (2.1.1) is the Fourier-Laplace transform of a unique
analytic functional with support contained in K. (For a proof see
Hormander [11, Theorem 15.1.5].)

In the rest of this paper we are going to deal with analytic and
plurisubharmonic functions of order one and of finite type, so we assume
that g =1 in the definition of T,, that is T,q({)=t"q(t{) for { € C". Since
H is positively homogeneous of order one, every function p in the limit set
of log|i| satisfies

(2.1.2) p(() £ HIm{), (eC.

THEOREM 2.1.1. Let u be an analytic functional carried by some compact
subset of R". Then R" 3 n + i(in) is the supporting function of supp u.

Proor. Set K =chsuppu and let H be the supporting function of K.
Then i;({)< H(Im{) for {eC". We define H' by H'(n)=i,(in) for ne R"
By Proposition 1.1.4, H' is the supporting function of a compact convex
subset K’ of R" and

i,0) £ H'm{) < H(Im{) forall{ e C".
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Hence K’ < K. Hartogs’ theorem and the Paley—Wiener theorem now give
K =chsuppucK’'. Hence H'=H and the proof is complete.

We define Py as the set of all plurisubharmonic functions p in C”
satisfying (2.1.2) and

(2.1.3) p() = HIm{), (eCR".

The set CR"={{ e C";{=zn, ze C, n € R"} consists of all complex
vectors with proportional real and imaginary parts.

Let X be an open bounded subset of R". Then the space of
hyperfunctions B(X) is defined as B(X)=A'(X)/A'(6X), where A'(Y)
denotes the space of all analytic functionals with support in a compact
subset Y of R". The support of the class u" € B(X) of u € A'(X) is well
defined as

suppu’ = X N suppu .

If supp u is compact, then there exists a unique analytic functional v with
support contained in X such that u'=v". Hence the subspace of B(X)
consisting of all hyperfunctions with compact support can be identified
with the space of all analytic functionals with support contained in X.

Proposition 1.1.4 and Theorem 2.1.1 now give:

THEOREM 2.1.2. Let K be a compact convex subset of R" and let H be its
supporting function. Let u be a hyperfunction with chsuppu=K. Then
i€ Py.

In Chapter 3 we shall see that if u is a distribution with chsuppu=XK,
then the limit set of loglii| is contained in Py. The following theorem,
which is a direct consequence of Theorem 1.2.1, Theorem 1.3.1, and the
Paley—Wiener theorem, shows that hyperfunctions do not have this
property in general:

THEOREM 2.1.3. Let o be a positive real number. Let M be a set of
plurisubharmonic functions q in C" with q(0)=0 and q({)<o|Ilm¢{|, and
suppose that M is compact and invariant under T, for all t>0.

i) There exists a hyperfunction u with compact support such that
M c L(loglii|)= N, where

N = {'9q1+(1_‘9)q2 ; '9 € [0’1]’ 91,92 € M}
is the union of all line segments with endpoints in M.

ii) If M is connected and all its elements are positively homogeneous of
order one, then u can be chosen so that M = L(log|i)).



... ANALYTIC AND PLURISUBHARMONIC FUNCTIONS ... 277

The Titchmarsh-Lions theorem of supports states that if u; and u, are
distributions with compact support, then chsuppu;*u,=chsuppu,
+ch supp u,. The next proposition shows that hyperfunctions do not have
this property in general:

Prorosition 2.1.4. Let K,, K,, and K5 be compact convex subsets
of R" with Ky K, +K,. Suppose that A is a compact metric space and
@ A—>K, and ¢@,: A—>K, are surjective continuous functions such
that

K; = ch{p,(@)+¢@,(a); aec A}.

Then there exist hyperfunctions u, and u, such that chsuppu,=K,,
chsuppu,=K,, and chsuppu, *u, =K.

Proor. Let H; denote the supporting function of K for j=1,2,3. For
every x € R" we define the functional g, on C" by ¢,({)=<{x,Im{> for
{ € C" and set

M = {dy,@p9p,@); 2 € 4} = (Lic(C"?).

Then M satisfies the conditions in Theorem 1.2.7 ii), so there exist
plurisubharmonic functions p, and p, with L(p;,p,)=M. By Theorem
1.3.1 the functions p; and p, can be chosen of the form p, =log]| f;| and
p>=log|f2|, where f; and f, are analytic functions in C". Since ¢; is
surjective, Proposition 1.2.6 gives

L(loglj}l) = {qx , X€ K}} ’

and Proposition 1.1.2 gives
ir,(0) = sup g,({) = sup {x,Im{}> = H;(Im{) for j=1,2.
xeK; xeK;

Hartogs’ theorem, the Paley—Wiener theorem, and Theorem 2.1.1 give
that f; is the Fourier-Laplace transform of a hyperfunction u; with
chsuppu=K; for j=1,2.

Set u3 =u,*u,. Then #i;=ii,i,, so Proposition 1.2.6 gives

L(log i3]) = L(log|id,|+10gld,]) = {dy, @)+ dp,) ; @€ 4} -
Since K3y =ch {¢,(a)+¢,(a) ; a € A}, Proposition 1.1.2 gives
i, () = SUAP<<P1(¢1)+<P2(0),IIHC> = H3(Im{) .
ae

Now Hartogs’ theorem, the Paley-~Wiener theorem, and Theorem 2.1.1
give chsuppu;=K,. The proof is complete.
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ExamrLE. Let K be a compact convex subset of R*and set K; =K, K, =
—~K, and K;={0}. If we choose A=K, ¢, (x)=x, and ¢,(x)= —x, then
the proposition gives that there exist hyperfunctions u, and u, with
chsuppu; =K, chsuppu,=—K, and chsuppu, *u,={0}.

ExampLE. Let g:[a,b]— [c,d] be a surjective continuous function. Set

K, = {(t,0); te[ab]} and K, = {(0,t); 1€ [c,d]}.

We set A=[a,b], and ¢4(t)=(t,0), ¢,(t)=(0,g(¢)) for t € A. Then the
proposition gives that there exist hyperfunctions u; and u, with ch supp u,
=K, chsuppu, =K,, and ch supp u, *u, equal to the convex hull of the
graph of g.

2.2. A Paley—Wiener type theorem for analytic singularities.

A well known theorem essentially due to Ehrenpreis (see Hormander
[11, Theorem 7.3.8]) allows one to determine the convex hull of the
singular support of a distribution u with compact support by means of
estimates of the Fourier-Laplace transform. We shall here prove an
analogous result due to Hormander for analytic singularities. Obviously
we cannot assume u to have compact support then. Instead we shall
assume analyticity and exponential decrease in an angular neighborhood
of R".

THEOREM 2.2.1. Let Q be an open convex subset of R" with 0 on the
boundary, let T be the convex cone generated by Q, and let I'° be the dual
cone of I' defined by

Ir={neR"; {x,n)=20,xerl}.
Suppose that for some compact convex subset K of R"
1)  u is analytic in R"+iQ.
il) u is analytic in R\K.
i) wu is analytic in

Z, = {ze C"; |Rez| > a,|Imz|, |Rez|>a0} ,
for some positive constants a, and o,, and
(2.2.1) u@@) £ Cexp(—6|Rez|]), zeZ,,
for some 6>0.

Then the Fourier transform ii of u is well defined by the formula
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(22.2) () = fe‘i<x+iw’5>u(x+iw)dx, teR, weQ,

thus independent of w. We have
iv) 4 can be continued to an analytic function in
Wy = {{eC"; [Im{] < By|Rel|+pfo}

for some positive constants B, and B;.

v) If X is a compact convex neighborhood of K and Hy denotes its
supporting function, then there exists a positive constant yy < B, such
that for every >0

(2.2.3) i)l = C.exp(Hx(Im{)+eRel]) ,

for all { € C* with Im{|<yx|Re(].
vi) 1 is exponentially decreasing in a conic neighborhood of R"\I"° in C".

Conversely, let K be a compact convex subset of R, let I' be an open convex
cone with 0 ¢ I', and suppose that U is a function satisfying iv), v), and vi).
Then there exists an open convex set Q in R" generating I' and a unique
function u satisfying 1), ii), and iii) for some positive constants o, oy, and o
such that 1="U.

ProoF. By iii) the integral (2.2.2) is convergent, and it is independent of
w. In fact, if @ € Q then tw+ (1 —1)d €  when 0<7<1, and it follows
from Cauchy’s integral formula that the integral with w replaced by
tw+ (1 —1)d is independent of .

In order to extend # analytically we must make further deformations of
the integration contour in (2.2.2). We first observe that if z=x+iy e Z,
and { € C*, then

(2.24) e =Du(z)| = Cexp({x,Im{ +<y,Rel) —4|x]).

Let d be a non-negative C! function in R" such that for every x € R", the
function u is analytic at x +iy when |y| <d(x). By iii) and ii) we can choose
d so that

d(x) = |x|/a, when |x|>xo+1; d(x)>0in (K.

We choose an open set Y with K< Y< X and a bounded function ¢ with
0<¢ e C®(R"), =0 in Y, and ¢>0 in R*\Y. If ¢(x)+|w|<d(x) for
x e [7, then Stokes’ formula gives
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(2.2.5) 4@ = J exp(—i{z,Ed(z)dzy A ... Adz,, E€R",
Z(w,9,9)

ifw e Q,3 € R"is a unit vector with (3,¢> <0, and X(w, 3, ¢) is the chain
defined by

R"3x > z = x+ilw+¢(x)3)eC".
Taking a sequence of such functions ¢, we find that ¢ may be taken equal

to |x|/a; —|w| when |x}|>a,+1. When z € Z(w,3,0) and x=Rez, then
(2.2.4) gives that [e ~“%%u(z)| can be estimated by

(2.2.6)  Cexp(<x,Im{>+9(x)(9,Re{) +<w,Re (> —-Ix|) ,
and it follows that (2.2.5) defines an analytic extension of & to
V,={(eC"; [Im{| < —(3,Re()/a;+6} .

If we take ff; < 1/a, and B, <9, then iv) holds. In fact, § is an arbitrary unit
vector and the various analytic continuations agree in their common
domain of definition since they agree in R” and the domains are concentric
balls for fixed Re(.

If 9 is proportional to —Re{, then {3,Re{)> = —|Re{|. Since ¢ >0 in
R™\Y and ¢ (x)=|x|/a; —|w| for |x| >y + 1, there exists a positive constant
Ky such that ¢(x)=xy(]x| +1) for all x & X. If yx <xy is chosen such that
(—Hx(n))yx <kyx for all unit vectors 7, then

2.2.7) x,Im{>—Hy(Im{)—¢(x)Rel] < 0
for x ¢ X and [Im (| <yx|Re(|. When x € X we have {x,Im{> — Hx(Im{)

<0. If w is chosen such that |w|<¢, then the estimate v) follows from
(2.2.6).

When 3 € Q and |9/ <1 we can choose w=0 and ¢ so that 1<¢(x)
<dx)+1, e(x)=1 if |x|<ay, and @(x)=d(x) if |x|=ao+1. When
ze X(0,3,¢p) with Rez=x we obtain

le=¥=0u(z)l < Cexp(<x,Im>+(x)9, Rely—dlx) .
Hence 4 is exponentially decreasing in
{{eC"; (x,Im{>+¢(x)(3,Re{> < 0 when |x|<a+1} .

The union when 3 varies is a conic neighborhood of R™\I"° which proves
vi).

Suppose now that U is a function satisfying iv), v), and vi). Let 2, be the
set of all y € R” such that
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JIU(é)le’@’@dé < 0.

This is a convex set, for the exponential function is convex, and if y e I',
then ey € Q; if ¢>0 is sufficiently small. In fact, we can find a conic
neighborhood V of I'° such that {y, &> > c|y||¢| for some ¢ >0 when £ € V.
Then U(¢) is_exponentially decreasing outside V, so |U(&)le™ < is
integrable in (v if ¢ is small enough. It follows from v) that we have
integrability in V for every £>0, which proves the claim. Hence the
interior Q of Q; NI is an open convex set generating I', 0 lies on the
boundary of Q, and

(2.2.8) uz) = 2n)~" J KOV (8)dE

is analytic in R"+iQ. This proves i).

To prove ii) and iii) we have to make deformations of the integration
contour in (2.2.8) as in the first part of the proof. Let x € R"\K and let X
be a compact convex neighborhood of K with supporting function Hy
and x ¢ X. By v) there exists a positive constant y, such that for every
£>0, |e<=O U (()| can be estimated by

(2.2.9) C.exp(—<Imz,&y —(Rez,n) + Hx(n)+ell]) ,

for all z e C" and all {=¢+in € C" with |5 <yx|¢|. We choose a unit
vector 3 € R" and a positive constant x such that —<{y, 3> +Hx($)< —k
for all y in a neighborhood Y of x.

Set d(£)=pB,|¢|+Bo. Then U is analytic at { =¢ +in when |y| <d(¢). We
choose 0< @ € C*(R") with ¢(¢)<d (&) for all & € R™ and @(&) =7 x]¢| if |¢|
=1. Wemay assume yy < f;.If { € 2(0,9, ¢) with Re{ ={ and z € C" with
Rez € Y, then (2.2.9) gives that for every ¢>0

(22.10)  [2PUQ) £ Coexp(—<Imz, &> — ke (&) +ell) .
As in the first part of the proof Stokes’ theorem gives

u(x) = Qn)" f ESOUQAL A ... AdL, xeY,
200,9,0)

and (2.2.10) gives that u can be extended analytically to a neighborhood of

x. This proves ii).

Now we choose w € R" with |o| < B,, $€ R" with [3| =1, and ¢ such that
0=<¢()<p,l¢ for £eR", and @({)=yxI¢| if |¢|21. If {eZ(w,3,p),
¢=Rel, and ze C", then for every £>0 there exists a positive constant C,
such that |€#%>u({)| can be estimated by
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(22.11) C.exp(—<(Imz, &) —<Rez,w) —(E)[(Rez,9> —Hx ()]
and it follows that u can be continued analytically to
{z € C"; [Imz|/yx < <{Rez,9) —Hy(9)}.

The union over $ of these sets contains {z € C"; [Imz|/yy <|Rez|—c},
where c is the maximum of Hy on the unit sphere. If oy >1/yx and a, is
large enough, then the set Z, defined in iii) is contained in this set. If we
choose @ and 9 in the direction of Rez with |w|=8, and |3|=1, then
(2.2.1) follows from (2.2.11) with 6 <B,. This completes the proof.

ReMARK. In the proof of iv) we have seen that the best choice of the
constants f, and B, is fo=0 and B; =1/a,. If the set X in v) contains the
ball {x € R"; |x|= o+ 1}, then Hy is non-negative, so we can replace the
estimate (2.2.7) by

<x,Im > —p(x)Rel] = (x,Im{> —|Rel||Rel]

for x ¢ X. This implies that y5 can be chosen as yy=f;.

If we add to v) the condition that y, = f8, if X is a sufficiently large ball
with center at the origin, then the proof of the converse gives that a; can
be chosen with a; >1/8; and é=,.

2.3. The indicator function and the analytic wave front set.

Let K be a compact convex subset of R” with supporting function H and
let u be a hyperfunction with chsuppu=K. In section 2.1 we have seen
that i; € Py, that is, i;({) < H(Im{) for all { € C" with equality in CR", the
set of all complex vectors with proportional real and imaginary parts. The
following theorem describes completely the subset of { € C" where i;({)
=H(Im{) in terms of the analytic singularities of u at the supporting
planes of K.

THEOREM 2.3.1. Let K be a compact convex subset of R™ with supporting
Sunction H and let u be a hyperfunction with chsuppu=K. Let £, +iny € C"
with £, +0 and no+0. Then

ig(So+ino) = H(no)
if and only if (x,&,) € WF ((u) for some x € 0K with {x,n¢> =H (1)

We observe that if &,+in, € CR" with £,%0, n,+0, and {(x,n»
=H(n,) for some x € K N suppu, then (x,n,) lies in the normal set
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N (supp u) of the support of u. We have N (suppu)<= WF 4 (u). Since £, and
1o are proportional, this implies that (x,&,) € WF 4 (u), so the theorem
gives again that i; (£, +ino) = H (o). (See Hormander [11, Definition 8.5.7,
Theorem 8.5.6, and the last part of section 9.3].)

Now we state some facts that we need in the proof. We are going to use
the method developed in sections 8.4 and 9.3 of Hormander [11] for
determining the analytic singularities of hyperfunctions. Let u be a
hyperfunction with chsuppu=K and let U be the analytic function in

Z ={zeC"; |Imz?<1+|Rez—1? t € suppu}
defined by U(z)=x *u(z)=u(k(z — .)), where  is the analytic function in
W= {zeC"; |Imz]*<1+|Rez*}
satisfying

k(z) = 2n)™" je«z’b/l(é)dé, ze W,
and

1(0) =j e @ Odp, teC".
lo|=1

For every closed cone I' — W there exist positive constants C and ¢ such that

(2.3.1) |k(z)] £ Ce=94, zeT.

The function I can be written as I({)=1,(<¢,{>¥?), where I, is an even
entire function of one variable. For every a>0

(2.3.2) IQ) = (275)("'1)/29«’0“2((,(}—("_1)/4(1+0(|C|“1))

as |{| = oo and |arg ({¢,{>!?)|£n/2—a. Here the square root is taken

positive on the positive real axis. '
For w € S"~ ! we set U, (z)=U (z +iw). Then U, is analytic in R"+iQ,,,
where

Q, = {yeR"; ly+o|<1}.

The set Q,, is open, convex, and has 0 on its boundary. The function U is
analytic at x +iw if and only if (x, —w) ¢ WF,(u), so U, is analytic in
R*\ K, where

K, =ch{xeK; (x,—w)e WF, )} .
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Hence U, satisfies the conditions i) and ii) in Theorem 2.2.1, with Q
replaced by 22, and K by K. The condition iii) is also satisfied. In fact, u is
an analytic functional carried by K, so

Up(2)] £ Cysuplk(z+io—t), ze ({—iw}+2Z),
teX

where X is a compact neighborhood of K. If a, and «, are sufficiently
large, then Z,< ({ —iw} +Z) N Wand (2.2.1) follows from (2.3.1).

The zeroes of the function I, have absolute value > 1 and are located on
the imaginary axis. Hence the function { +— 1/I({) is analytic at every {
with <{,{> ¢ (—oo, —1]. We have

(2.33) 0,0) = aQ)e=</1()

for { € C"with {({,{)> ¢ (— o0, —1]. (A proof of these facts can be found in
sections 8.4 and 9.3 of Hérmander [11].)
The main work in the proof of Theorem 2.3.1 is done in:

Lemma 2.3.2. Let K be a compact convex subset of R" with supporting
Sfunction H and let u be a hyperfunction with chsuppu=K. Let &, and n, be
two non-zero vectors in R" and set = —&o/|Eol. If i;(Eo +ing) < H (1), then
there exists a compact convex subset K’ of the half space
{xeR™; {x,no» <H(no)} with supporting function H', and a positive
constant y such that for every ¢ >0

(2.34) 0@ < C.exp(H'(Im{)+eRel])
for all { € C* with Im{|<y|Re(].

ProoF. Since i is upper semi-continuous, there exist neighborhoods V;
and V, of &, and n, respectively, and positive constants f and é such that

ig€+wn)—ImwH(n) < —p

for & € V,,n € V,, and all win the upper half plane satisfying |w —i|/|w + 1|
< 4. Since the function w — (w—i)/(w+i) maps the upper half plane onto
the unit disk and i;(¢ +wy)—ImwH (n)<0, Hadamard’s three circles
theorem gives

i, +wn)—ImwH() < — (Bflogd)log (w—illw+il) ,

for( e Vy,ne V,,and all win the upper half plane with |w—i|/|jw+i| 2 4.
From the estimate

log (w—il?/iw+il*) < (w—i?—|w+i*)lw+i]* ,
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which follows from 1+ x <e* where x is the right hand side, we conclude
that there exists a positive constant ¢ such that

(2.3.5) iz(+wn) < ImwH (1) —oImw/(1 +|w|?)

for £ € V,n € V,, and w in the upper half plane. We choose closed conic
neighborhoods I'; and I', of £, and 7, and positive constants 7, and 1,
such that {/,|¢| € V] for &€ e I'y\ {0} and n/z,ln| € V for n € I',\ {0}. We
apply (2.3.5) with ¢ replaced by &/7,|€| and #n replaced by n/z,|n|. If we
choose w=i(t,]n]/7{|{]), then the homogeneity gives that there exists
¢>0 such that

(2.3.6) i3(0) = HIm{)—c(Im{|[Rel*/{1%)

for all { € C"\{0} with Re{ e I'; and Im{ € I',. Now (2.3.3), (2.3.2),
(2.3.6), and Hartogs’ theorem give

2.3.7)10,Q) £ C.exp(H(Im{)—{w,Rel>—Re (KL, 0>V?) +ell])
for all { € C" with |arg ({{,{>?) < n/4, and

(2.3.8) 10, £ C.exp(H(Im{)—c(Im{|[Rel?/L1*)~
—{w,Re{>~Re (({,>M?) +ell]) ,

if ¢ also satisfies Re{ € I'; and Im{ € I',. If x +iy =, {>/2, then x? — y?
=& —nl? so if |y] <|&], then —x < — (1> = [n|*)!/* = —[&| +0(In|*/1€)). We
have that —<{w, &> <|€| for all &€ € R", so (2.3.7) gives that there exist
positive constants o« and y such that

(2.3.9) 10,0 £ C.exp(H(Im{)+allm{|+¢|Rel])

for all { e C* with |[Im{|<y/Re(|. Since w=—C&u/|o| and I’y is a
neighborhood of ¢,, there exists a positive constant a<1 such that
—{w, &y <alé| for £ € R"\T'y, so (2.3.7) and (2.3.8) give that >0 and y
can be chosen such that

(2.3.10) 10, £ C.exp(H(Im{)—1]Im{|+&Re())

for all { € C" with Im{ € I', and [Im{|<y|Re{|. By composing u with a
translation followed by a linear map, we can suppose that n,=(1,0,...,0)
and H(n,)=0. Furthermore we can suppose that I', ={(1,,7'); In'| Scn,}
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for some ¢>0. If 0<a<b and H’ is the supporting function of the set
K'=[—b, —a]x{x’' € R""!; |x'| b}, then

’ —an, +b|",|’ ”lgo )
H =
) {—bm +bln'l, n,<0.

If a is sufficiently small and b is sufficiently large, it follows that H'(n)
2H(n)—1ln| for alln € I', and H'(n) = H () +ajy| for all n € R"\T',. The
inequality (2.3.4) now follows from (2.3.9) amd (2.3.10). The proof is
complete.

Proor oF THEOREM 2.3.1. Set L={x € K; {x,n,)=H(n,)} and o=
—&o/1€ol. Then the theorem is equivalent to the following statement:

ig(Eo+ine) < H(no) < L x {&) N WF, () = &.

Suppose first that i (&, +ino) < H(no). Then U, satisfies the conditions in
Lemma 2.3.2. Since U, also satisfies the conditions in Theorem 2.2.1, it
follows that U,, is analytic in R"\K'. Since L N K'= &, U is analytic at
every point x +iw with x € L. Hence Lx {{,} N WF(u)=&.

Suppose conversely that L x {4} N WF, (u)= &. Then U is analytic at
x+iw for all x € L, so the set K,=ch{x € K; (x, —w) € WF 4 (u)} is
contained in the half space V={xe R"; (x,n,><H(no)}. If X is a
compact convex neighborhood of K, contained in V, then U, satisfies
(2.2.3). By (2.3.3)

4¢) = O,
so (2.3.2) gives that for every ¢>0
(2.3.11) 4(Q) £ C,exp(Hx(Im{)+Re((,{>Y*)+<w,Re (> +&Rel))

for all { € C" with |Im{| <yx|Re (. It is sufficient to show that i (o +idn,)
< H(dn,) for some 6 >0, for then the maximum principle applied to the
non-positive subharmonic function w — i;(€,+wno) —Im wH (3,) in the
upper half plane gives that i (¢, +ino) < H(no). If 4 is chosen so that djn,|
Zyxléol, then (2.3.11) gives

ig(Eo+idno) < Hy(no)+Re ((&o+1idno, Eo+i0m0» /%) —|Eol -

If x+iy=({&,+idng, &y +idny/?), then
(2 +y2)? = (1&ol* — 0%Inol*)* + 402 &o,m00 2,

so x=|E|+0(6%) as 6—0. Since Hyl(no)<H(n,) it follows that
i5(Eo+idny) < H(dn,) if J is sufficiently small. The proof is complete.
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Chapter 3. Fourier-Laplace transforms of distributions
with compact support.

3.0 Introduction.

Let K be a compact convex subset of R” with supporting function H.
Let u be a distribution with chsuppu=K. In this chapter we study the
limit set of loglid| and the indicator function i, of the Fourier—Laplace
transform  of u. If n=1, then the theorem of Ahlfors and Heins [1] gives

T.logldf - H(Im.) in LL .(C)ast — oo .

We have no analogue of this result if n>1, for Vauthier [22] has
constructed a distribution u with support equal to the closed unit ball such
that T,log|d| is not convergent in L} (C"). (See Corollary 3.3.2 below.)
However, there is a certain regularity in the growth of # near CR" for
Hormander [8] has proved that if n € R” and L is a compact subset of C,
then

L |(T,logldl)(zn +{/t)— H(Im zn)| dA(z) — O

as t —» oo for almost all { e C" with respect to the Lebesgue measure.
Furthermore, Vauthier [21] has proved that the function
(z,n) — (T,log|dl)(zn) converges to (z,n) — H(Imzy) in LL (Cx S"!;
di ® do)ast — oo, where dA denotes the Lebesgue measure in C and do is
the Euclidean area element of S"~!.

In section 3.1 we begin by showing that the set Py consisting of all
plurisubharmonic functions p satisfying p({)<H(Im¢() for { € C" with
equality in CR" is a compact convex subset of L. (C"), and that it is
invariant under T, for t >0. Hérmander’s theorem mentioned above gives
that the limit set of log|i| is contained in Py. We give a variant of the
indicator theorem, which states that every positively homogeneous
plurisubharmonic function p satisfying a growth estimate of the form p({)
<o|Im{| for { € C" is the indicator function of the Fourier-Laplace
transform of some distribution u with chsuppu=K. This result was
proved by Wiegerinck [24] in the special case when p is Holder continuous
on the unit sphere in C". Next we use the maximum principle to describe a
subset of C" where all the functions in Py are equal. It enables us to
conclude that T,logld] - H(Im.) in L}, as t - co, when K is a
polyhedron. This has also been proved by Wiegerinck [23]. From
Theorem 2.3.1 we conclude that i,({)<H(Im{) for { ¢ CR", if u is the
characteristic function of K and K has a non-empty interior and an
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analytic boundary, and we prove that if the characteristic function of K
has this property and 0K is a C! manifold, then 9K is analytic. We end the
section by proving that if K has a non-empty interior and a C?> boundary
then there exists a function u with chsuppu=K and i,({)<H ([Im¢{) for
{ ¢ CR™

As we mentioned above, the limit set of log|i| is contained in Py if
chsuppu=K. A natural question to ask is if any subset M of Py, which is
compact, connected, and invariant under T, for >0, is the limit set of
logli| for some distribution u with chsuppu=K. We deal with this
problem in sections 3.2 and 3.3. We begin section 3.2 by defining an
operator which regularizes plurisubharmonic functions in C"\CR",
preserves inequalities of the form

(3.0.1) p({) < log(CA+[INY)+clIm¢], (ecC,

and maps Py to another set of the same type. Then we show that if K has a
non-empty interior and a C* boundary with strictly positive curvature,
then Py contains a function which is positively homogeneous, infinitely
differentiable in C"\ R", and strictly plurisubharmonic in C"\ R". We end
the section by constructing a plurisubharmonic function in P, with limit
set consisting of homogeneous functions that are equal outside a closed
cone '« (C\ CR") U {0}.

In section 3.3 we prove a theorem on the asymptotic approximation
of plurisubharmonic functions p by Fourier-Laplace transforms of
distributions u with compact support. We assume that the limit set of p is
contained in Py, that p satisfies (3.0.1) and certain regularity conditions
in C\CR", and we conclude that there exists a distribution u with
chsuppu=K and T,p — Tlog|4| -0 in Lj,.(C") as t - oo0.

In section 3.4 we prove that if K has a non-empty interior and a C*®
boundary with strictly positive curvature, then there exists a distribution u
with chsuppu=K and i; discontinuous. The existence of discontinuous
indicator functions of several variables was first proved by Lelong [14].

3.1. The indicator function and the analytic wave front set.

Let u be a distribution in R” with compact support. Let K be the convex
hull of the support of u and let H denote the supporting function of K.
Then the Fourier transform # of u can be continued to an analytic
function in C" The continuation is called the Fourier-Laplace transform
of u and it is given by 4({)=<u,exp(—i{.,{>)) for {e C". We have

(.11 3@ < CA+IK)exp(H(AmY)), (eCm,
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for some positive constants C and N. Conversely, the Paley—Wiener—
Schwartz theorem states that every analytic function in C" satisfying a
growth estimate of the form (3.1.1) is the Fourier-Laplace transform of a
distribution with support contained in K. (For a proof see Hérmander
[11, Theorem 7.3.1].) The constant N can be chosen as the order of u. In
the special case when u is an integrable function we can choose N =0 and
C=ull.

It is clear from (3.1.1) that every function p in the limit set of log|d|
satisfies

(3.1.2) p(¢) £ HIm{) CeC".

As in the previous chapter we let Py denote the set of all plurisubharmonic
functions p in C" satisfying (3.1.2) and

(3.1.3) p() = HIm{) (eCR".

ProrosiTION 3.1.1. Let H be a supporting function in R". Then Py is a
compact convex subset of L .(C") which is invariant under T, for all t>0.

PRrOOF. It is clear that Py is convex and invariant. Let {p;} be a sequence
in Py. Since p;({) < H(Im{) for { € C" with equality in CR", Theorem 4.1.9
in Hérmander [11] gives that there exists a subsequence {p,} of {p;}
converging to a plurisubharmonic function p. Since p is the least upper
semi-continuous majorant of lim,_, , pj.» it follows that p({) < H(Im{) for
{eC" and p({)= H(Im{) for { € CR". This completes the proof.

In section 2.1 we have seen that i e Py if u is a hyperfunction with
chsupp u=K. In view of Proposition 1.1.2 the following proposition is an
improvement of this result when u is a distribution:

PROPOSITION 3.1.2. Let K be a compact convex subset of R" and let H be
its supporting function. If u is a distribution in R" with chsuppu=K, then
the limit set of logli] is contained in Py.

PRrOOF. Let p € L(logld]) and suppose that T, log|d| — p in Lj,. where
t; » . Letn € R" and z € C and suppose that p(zn) < H (Im zn). Since p
is upper semi-continuous and H is continuous, there exists a compact
neighborhood L of zi in C" and ¢ >0 such that p({) —H(Im{)< —¢ for all
{ € L. By Hormander [11, Theorem 4.1.9] we have

(3.1.4) (T, logla)(¢()—H@m{) < —¢/2 (eL,
for all sufficiently large j.
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If u is a measure then Theorem 16.2.4 and Lemma 16.3.1 in Hérmander
[11], give that for every compact subset M of C

(3.1.5) L |(T, logil)(zn +/t)— H(Im zn)| dA(z) — 0

ast — oo for almost all { € C". If we regularize u by convolving it with a
C¥-function and use the theorem of supports, we get that (3.1.5) holds for
all distributions u with ch supp u = K. This contradicts (3.1.4). Hence p(zn)
=H(Imzn) and the proposition is proved.

CoROLLARY 3.1.3. Let K be a compact convex subset of R" and let H
denote its supporting function. Let I" be an open cone in C" and suppose
that p({)=H(Im{) for all pe Py and { € I'. Then Tlogli| - H(Im .) in
Ll (') ast— oo for every distribution u with chsuppu=XK.

Now we prove a variant of the indicator theorem for Fourier—Laplace
transforms of distributions with compact support:

THEOREM 3.1.4. Let p be a plurisubharmonic function in C". Suppose that
p is positively homogeneous of order one and p({) < o|{Im (| for { € C", where
a is a positive constant. Then there exists a distrubtion u in R" with compact
support such that i;=p.

Proor. By Theorem 1.4.1, there exists an analytic function fin C" such
that i,=p and (1.4.1) is satisfied. By Lemma 1.3.5 there exists a compact
subset L of C" such that

IfQI £ CA+[L)** exp (surzp(Hw)), teC".

We have sup, ;. p({ +w)<o|Im{| +a, where a=sup,,.; 6]Im{|. The proof
is now completed by the Paley—-Wiener—Schwartz theorem.

REMARK. Proposition 1.1.4 gives that p € Py, where H is given by H(n)
=p(in) forn € R". Theorem 2.1.1 gives that H is the supporting function of

suppu.

With the aid of the maximum principle we are now able to describe a
subset of C" containing CR", where all the functions in Py take the same
value. For every x € 0K welet N, ={n € R"; {x,n)> =H (n)} denote the set
of all outer normals to K at x and V, denote the subspace of R" spanned
by N..

PropOSITION 3.1.5. Let K be a compact convex subset of R" and let H be
its supporting function. Let p € Py. Then
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(3.1.6) p() = HIm{), (e V. +iN,, xe oK.

If{o=Co+ino € C"and p({o)=H (o), then p(£o+wno) = H (Im wn,) for all
w in the upper half plane. If n, lies in the interior of N, in the relative
topology in V, for some x € 0K, then p({)=H(Im{) for all { € {{,}+V,
+iN,.

Proor. The set N, is a convex cone which spans the subspace V, of R,
so it has a non-empty interior U, in the relative topology in V,. The
function { +— p({)—H(Im{)=p()—{x,Im{) is plurisubharmonic in the
open set V,+iU, of the complex subspace V,+iV, of C". We have p({)
—H(Im{)=<0 for all { € C", and equality holds for { =n+in withn € U,.
By the maximum principle the equality holds in V,+iU, for all x € K.
Since p is upper semi-continous and H is continuous, the set

{{eC" p)=H(Im{)} = {{ e C*; p(Q)2 H(Im{)}

is closed. The closure of V,+iU, is V,+iN,, so (3.1.6) holds. The other
statements are proved in a similar way.

CoOROLLARY 3.1.6. Let K be a polyhedron in R" and let H be its supporting
function. For every distribution u in R" with chsuppu=K we have T log|i|
- H(Im .)in L. (C") ast— 0.

Proor. We have V,=R" for every extreme point x of K and R"=U N,
where the union is taken over all extreme points of K. By (3.1.6) we have
Py={H(Im.)}, so the corollary follows from Corollary 3.1.3.

ExampLE. The characteristic function of the euclidean unit ball K in R*
is an example of a distribution u with ch suppu=K and i;({) < H(Im{) for -
{ € C*"\.CR", so CR"is the largest subset of C" where all the elements of Py
are equal. We have

Q) = f e x0dx, [eCr.
K
Since u is invariant under orthogonal transformations we get that
4(0) =1y (<¢,L>?), where u, is the function given by

_ e (1 —x2ym b2 xe[-1,1],
o(x) = 0 xe R\[-1,1],

with ¢, equal to the volume of the unit ball in R"~!. (The choice of the

'square root is irrelevant for i, is an even function.) Since i is equal to the
supporting function of the unit interval, that is i; (t)=[Im1| for z € C, we
have
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(3.1.7) i30) = Im KLY, (ecCr.

If {=¢+ine C*\CR", then ¢ and #n are linearly independent. The
Pragmén-Lindelof principle gives that i,(¢ +wn)<Imwijy| for all we C
with Im w> 0, because i;(¢ +wn)=0 for all real w, lim,, , i,(£ +itn)/t =
and i;(¢ +wn) is not identically equal to Im win|. Hence i,({) <H (ImJ{).

That i;({)<H([Im{) when { ¢ CR" is no surprise, for it follows from
Theorem 2.3.1 and the fact that WF ,(u) is the conormal bundle of the unit
sphere. More generally, let K be a compact convex subset of R” with non-
empty interior and an analytic boundary and let u denote the
characteristic function of K. Then WF ,(u) is equal to the conormal
bundle of 6K, so Theorem 2.3.1 gives that i;({) < H(Im ) for { € C"\CR".
We have a converse of this result:

Prorosition 3.1.7. Let K be a compact convex subset of R" with a non-
empty interior and a C* boundary. Let u denote the characteristic function of
K and suppose that WF ,(u) is equal to the conormal bundle of 0K. Then the
boundary of K is analytic.

Proor. Let x, € 0K. By translating K and then rotating it we can
suppose that x,=0 and that (1,0,. . .,0) s the outer unit normal to K at 0.
There exists an open neighborhood U of 0 in R" of the form U= (—a,a)
x U’ such that x=(x,,x')e U N K is equivalent to x, < f(x'), for some
feC*(U’). In U we have u=0(f(x')—x,), where 0 is the Heaviside
function.

We choose f with 0 < <a and an open subset V' of R"~! with 0 € V",
V'eU',and|f|<Bin V', and set V=(—B,B)x V'. We choose ¢ € CZ(U)
with ¢ =1 in V and define the distribution v in R" by v= — ¢x,8,u. Finally
we define the distribution w in R*™! by w={vdx,. If y € CF(V"), then

by = o1 @Yy = f 0(F ()= %1)3, (%10 () (¥)dx
f(x")
- f( f al(xm(x))dxl)w(x')dx' - jfv/dx'.

- @

Hence w=fin V'. By Theorem 8.5.4 in Hormander [11]
WF  (w) « {(x',&); (x4,x,0,&) e WF4(v) for some x,} .

In V the wave front set WF 4(v) is equal to the conormal bundle of éK and
(1, —f"(x")) lies in the conormal direction for x= (x,,x’) € 0K N V. Hence
WF 4(w)|, is empty, that is, w= fis analytic in V’. The proof is completed.
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We have seen that if K has a non-empty interior and an analytic
boundary then CR" is the largest subset of C” where all the functions in Py
are equal. This even holds if K has a C? boundary:

ProrosiTION 3..8. Let K be a compact convex subset of R" with a non-
empty interior and a C? boundary and let H denote its supporting function.
Then there exists a distribution u in R" with chsuppu=K and i;({)
<H(m{) for all { € C"\CR".

PROOF. Since int K # & and K is a C* manifold there exists r >0 such
that for every x € 0K there exists a closed ball B, contained in K with
radius r and 0K N B, ={x}. Set

Ki={xeK; dx,0K)=r} and K, = {xeR"; |x|<r}.

Then K, and K, are compact convex sets and K=K, + K,. If H; and H,
denote the supporting functions of K, and K, respectively, then H=H,
+H,. We let u; and u, denote the characteristic functions of K, and K,
respectively, and set u=u, * u,. Then suppu=K and i;<i; +i; . By the
example above i; ({)<H,(Im{) for { € C"\ CR" Hence i;(()<H(Im{)
for { € C"\ CR" and the proposition is proved.

3.2. Plurisubharmonic functions with prescribed limit sets
contained in Py

Let K be a compact convex subset of R" with supporting function H. In
this section and the next one we deal with the problem of constructing a
distribution u with chsuppu=K and the limit set of log|i| equal to a
prescribed subset M of Py. We use similar methods as in sections 1.2 and
1.3. First we construct a plurisubharmonic function p with L(p)=M, and
then we construct an analytic function fin C" with T,p — T;log| f| — 0 and

f IfRA+]C) e dA < o

for some v>0. In order to be able to apply the Paley—Wiener—Schwartz
theorem we have to assume that

(3.2.1) p(Q) £ log(CQA+IDY)+cMmyl, (eC",

for some positive constants C, N, and c. We are not able to modify the
methods of section 1.2 so that p satisfies (3.2.1) if M is a general subset of
Py satisfying the conditions in Theorem 1.2.1, but we only give a weak
analogue of Theorem 1.2.1 ii). One of the main reasons is that the
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regularization operator R; defined in section 1.2 violates inequalities of
the form (3.2.1). We shall replace it by another one S; which only gives us
regular functions in C"\ CR" but preserves (3.2.1) and maps Py to another
set of the same type.

Let 0<a e CP(R™) with Sasl =1, where di denotes the Lebesgue
measure in R”. We identify R™ with the space of all real n % n matrices, let
I denote the identity matrix and set oz (4) =5 ~"""a ((A—1)/8)for6>0.1f g is
plurisubharmonic in C" we define S;q by

(3.2.2) Ssq(8) = J q(40)as(A)dA(A), (eC".

If H is a supporting function in R", then we define the supporting function
H, by

(3.23) Hj(n) = fH(Aﬂ)%(A)di(A), neR".

LEMMA 3.2.1. Let H be a supporting function in R" and let q be a
plurisubharmonic function in C". Define S;q by (3.2.2) and Hy by (3.2.3).
Then:

i) S,q is plurisubharmonic in C". If q satisfies (3.2.1), then
(324) SO < log(Col+[)Y)+cilmyl, ecCr,

) Jor some positive constants C; and c,. If q € Py, then Syq € Py,.
iil) we have

Séq -q - 0 in Llloc (Cn)

as 6 — 0. The convergence is uniform for q € Py.

iii) S;g € C*(C"\CR") and Hs € C*(R"\{0}). For every multi-index p
and every closed cone I' with I'< (C"\CR") U {0}, there exists a
positive constant Cr g such that

IDPSsq(C) < Cppo™m 1P|~ 1A

for eI, and § € (0,1), where D= (8/8(,8/dC). The inequality holds
uniformly for q € Py.

iv) Hj; — H uniformly in every compact subset of R" and S;q({) — q({) for
all{e C"\CR"as 6 — 0.

ProOF. i) Since 220, Ssq is plurisubharmonic in C". If (3.2.1) is
satisfied, then
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Ssq() = J (log(CA+]¢ +6ALYY) +clIm (¢ +0AL) Ju(A)dA(A)
for all { € C", so (3.2.4) holds. If g € Py, then
Sul) < JH(A ImQ)ay(A)di(4) = Hy@my), {eCr,

with equality in CR", so S;q € Py

ii) In the proof of Lemma 1.2.1 1) we only assumed that M is compact.
The first statement follows as there if we take M = {q} and the second one
follows if we take M =Py.

iii) If #o € R*\{0}, then the linear mapping R™ 3 4 +» An, € R" is
surjective. The fact that H; e C*(R"\{0}) follows from the proof of
Lemma 1.2.2 ii) with C replaced by R and z, by #,. If {; € C"\CR", then
Re(, and Im(, are linearly independent and the linear mapping
R™3 A AL e C" is surjective: Hence there exists a linear mapping
L: R™ — R"~2" which is bijective from {4; A{,=0}. Then

R™ 3 A4 > (4o, L(4)) e C"@®R™™2" ~ R"

is a bijection. With obvious modifications we can now continue as in the
proof of Lemma 1.2.2 ii).

iv) The first statement is obvious. The convergence in C"\ CR" follows
in the same way as in the proof of Lemma 1.2.2 iii). The proof is
completed.

Let K denote the unit ball in R” and let H be its supporting function.
Then H(n)=|n|. Let g be the function in C" defined by

(325  q@) = (Am KLY +Im(P)2)2, (ecCm.

From the example after Corollary 3.1.6 we know that { ~— |Im (¢{,{>1/?)|
is the indicator function of the Fourier-Laplace transform of the
characteristic function of K, so q({)< H(Im{) for { € C" with equality in
CR" and strict inequality in C*"\CR". We observe that

[Im¢)* = (I{*—Re(KL,0))/2, (e
and

(Im@®%))* = (v|—Rev)/2, veC,
so

(326) g = (LP+KLDI-2Re D)) ?/2, (eCm.
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We have K,(31—Re({{,{>) =z 0 and
K> = Re{? +[Im{}* > [Re{|*~Im{]* = Re({(,())

for all { € C"\R" Hence q is infinitely differentiable in C"\ (R" U M),
where

M= {{eC"; {{>=0}.

Wiegerinck [24] has proved that g is strictly plurisubharmonic in
C"\(CR" U M). By regularizing the function q with a similar method as
in Lemma 3.2.1 we get strict plurisubharmonicity in C*\ CR":

Lemma 3.2.2. Let n>1 and let H denote the supporting function of the
closed unit ball in R". Then there exists a positively homogeneous function p
in Py which is infinitely differentiable in C"\ R" and strictly plurisubharmonic
in C™\. CR". Furthermore p({)< H(Im{) for { € C\ CR".

Proor. Let a be defined as before Lemma 3.2.1 and suppose that
suppacN = {A=(ay)e R"; detd=1}

and a(40)=ua(A) for all orthogonal matrices O and all 4 € R™. It is
obvious that there exists a function « satisfying these conditions for we can
always choose 0< f € CZ(R™) with 840 and supp f< N and then define a
by a(d)=c _[ B(40)dr(0), where we integrate over the orthogonal group
O(n) with respect to the Haar measure dr, and choose the constant ¢ such
that {adi=1. The set N is invariant under the mapping 4 — AO for all
orthogonal matrices, so a has the stated properties. Set

H'(n) = IH(Aﬂ)a(A)dl(A), neR".

The absolute value of the determinant of the mapping 4 — A0 is equal to
one for all orthogonal matrices, so the invariance of a gives that H’ is
orthogonally invariant. Hence H=cH’, for some positive constant c. We
set

Q) = f dADa(A)dA(4), LeCr,

where q is defined by (3.2.5). Then p € Py. From the proof of Lemma 3.2.1
ii) it follows that p is infinitely differentiable in C"\CR". If {, € CR"\R",
then we can write {, as {,=¢€"¢ for some ¢ € R*™\ {0} and 3 € (0,=).
We have Im A{,=sin 34¢. Since all the matrices in suppa are invert-
ible, it follows that |A¢|=alé| for A € suppa, where a>0. Hence
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A{e C\ (R"UM) for all 4esuppa and all { in a neighborhood of {,.
Since g € C*(C"\ (R" U M)) we get p e C*(C*\R").

Let { € C"\CR". Since R" 3 4 - A{, € C" is surjective there exists a
matrix B in the interior of the support of « such that

Blo¢ M = {{eC"; =0}

We write « as a sum of two non-negative functions «;,, a, € C$(R") with
a;=a in a neighborhood of B, and A{, ¢ M for A € supp«,. Then
Y. 0*p(£0)/0L ;07w can be written as a sum of two non-negative terms
and one of them is

IZ (02q/0L;0T,) (Aw),(Aw)s (4) dA(A) .

By Wiegerinck [24], g is strictly plurisubharmonic in C"\(CR" U M).
Hence p is strictly plurisubharmonic at (. The last statement follows from
the fact that q(4{)<H(AIm{) for all { € C*\CR" and 4 € suppa. The
proof is complete.

ProrosiTioN 3.2.3. Let n>1. Let K be a compact convex subset of R"
with supporting function H. Suppose that K has a non-empty interior and
that 0K is a C* manifold with strictly positive curvature. Then there exists a
positively homogeneous function p in Py which is infinitely differentiable in
C~R" and strictly plurisubharmonic in C"™\CR". Furthermore
p()<H(Im{) for {e C™\ CR".

Proor. By the proof of Proposition 3.1.8 we can write K as a sum K
=K, +K,, where K, is the closed unit ball in R” with center at the origin
and radius r for some r >0, and K consists of all points in K with distance
2rto (K. We set pQ)=H,(Im{)+rp()for { € C", where ¢ is a function
satisfying the conditions in Lemma 3.2.2 and H,; is the supporting
function of K,. The proposition follows if we can show that
H,; e C*(R"\{0}) if r is sufficiently small.

If r is small enough, then K, has a non-empty interior and the mapping
0K — 0K, x — x—rv(x) is infinitely differentiable and bijective, where
v(x) is the outer normal to dK at x. Hence 0K, is a C* manifold. If r is
sufficiently small, then it follows that K, has a strictly positive curvature.

If n € R"\ {0}, then

Hi@m) = sup {x,n> = <x@),n>,

xedK,

where x(n) is uniquely determined by the condition v, (x)=7/| and v, (x)
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is the outer unit normal of 0K; at x. The Gauss mapping
0K, 3 x — vy(x) e S""! is a diffeomorphism. Hence H, € C*(R"\{0}).
This completes the proof.

The main result of this section is the following variant of Theorem
1.2.1 ii):

THEOREM 3.2.4. Let H be a supporting function in R". Let M be a
connected subset of Py consisting of homogeneous functions and suppose that
there exists a closed cone I contained in (C*\CR") U {0} such that all the
Junctions in M are equal in C"\T.

1) If all functions in M are infinitely differentiable and strictly
plurisubharmonic in a neighborhood of I'\{0}, then there exists a
function p € Py with L(p)=M.

il) Let y be a positive continuous function on R, withy(r) - Oasr — oo.
Suppose that all the functions q in M are infinitely differentiable in
C"\CR" and strictly plurisubharmonic there, and that there exists
a uniform lower bound for their Levi forms of the form c|(|~|w|? for
{ € '\{0} and w € C". Then the function p can be chosen of class C*®
and strictly plurisubharmonic in C"\ CR", and for every closed cone
A< (C™\ CR") U {0} there exists a positive constant R , such that

(3.2.7) 2 O pQ)/0Li 0L Wiy = y (DI W

for all { € A with |{|=R, and w € C". Suppose that there exists a
positive constant C such that |DPq)|SCI|*~"! for all qe M,
{ € '\{0}, and all multi-indices B with 1 <|B| < 3. Then there exists a
positive constant C , such that

(3.2.8) ID’pQ) < C 0111,
Sor all { € AN{0} and B with 1<|B|<3.

Proor. We only have to make a slight modification of the construction
in section 1.2. By Lemma 1.2.5 and Proposition 3.1.1 we can choose a
sequence {q,} in M such that its elements form a dense subset of M, every
element appears infinitely many times in the sequence, and g, —¢q;+, — 0
in L} (C") as k — o0. Let {¢,} be the partition of unity constructed before
Lemma 1.2.3. We are going to show that if the sequence {f,}, used for
defining {¢,}, tends sufficiently fast to infinity as k — oo, then the function p
defined by

P =) Pulx
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is plurisubharmonic in C". The fact that L(p)=M follows as in the proof
of Theorem 1.2.1.

Since all the functions are equal in C"\.I', p is plurisubharmonic there.
If ii) is satisfied, then p is positively homogeneous and strictly
plurisubharmonic in C"\ (I U CR"). Hence it is sufficient to prove that
p is plurisubharmonic in I' and that (3.2.7) and (3.2.8) hold with A=T",
In a neighborhood of the set I' N {z € C"; B,_<|z2|<Pi} we have
P=®x—1qx-1+ g, and the Levi form of p is equal to

Pr—1 Zazqk- /00,00, Wy, +(pk262Qk/a€laC—mwlwm +
2Re(<0¢,/0, wy<d(qx—qx-1)/0T,W) +
+ Zaz(pk/aclamelwm(qk —qk-1)-

Since g, is positively homogeneous of order one there exist positive
constants ¢, and C, such that

Y. a0l 00wk, 2 cill]™Hw?
for { e '\{0} and w € C", and

10(ak — G- 1)/08 +181 ™ Mgk — g1l = C

for { € '\{0}. By (1.2.6) there exists a lower bound for the Levi form of p
in ' N {{ e C"; By Z|{|< B} of the form

(cx—Cillog o)™ )L~ Hiwl?
where C; is a positive constant. We choose f; such that
(ck—Cilloga)™) 2 ¢/2 -

for all k=1. Then p is plurisubharmonic and i) holds.

If the conditions in ii) are satisfied, then we can take c;=c. We choose
Ry solarge that y(r) < ¢/2 for r 2 Rp. Then (3.2.7) holds. The last statement
follows from (1.2.6). The proof is complete.

It is not difficult to find sets that satisfy the conditions in the theorem:

THEOREM 3.2.5. Let K be a compact convex subset of R" with supporting
function H. Suppose that K has a non-empty interior and that 0K is a C*
manifold with strictly positive curvature. Let k be a positive integer. Then
there exist positively homogeneous functions qy,. . .,qy with q,%q,, if l+m,
such that the convex hull of {q,. . ., q.} satisfies all conditions in Theorem
3.24.
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Proor. Let p be a function satisfying the conditions in Proposition
3.2.3. For j=1,. ..,k we choose a real function y; in C*(C"\{0}) such
that x; is positively homogeneous of order zero, suppy;=(C"\C
R") U {0}, and y, %y, if [+m. Welet ¢ >0 and set ¢;= (1 —&y;)p. Then g; is
infinitely differentiable in C"\ R", positively homogeneous of order one,
and q,+q,, if I+m. Since p is strictly plurisubharmonic in C*\CR" and
p(()<H(Im{) for { € C*\CR", it follows that g; € Py and g; is strictly
plurisubharmonic in C*\ CR", if ¢ is sufficiently small. If we take I" as the
union of the supports of yx;, then M=ch{q,,...,q,} satisfies all the
conditions in Theorem 3.2.4. The proof is complete.

3.3. Asymptotic approximation of plurisubharmonic functions by
Fourier-Laplace transforms of distributions.

Let K be a compact convex subset of R" and let H denote its supporting
function. In this section we continue our study of the problem of
constructing a distribution u with ch suppu =K and the limit set of log ||
contained in a prescribed subset of Py, by proving an approximation
theorem similar to that in section 1.3. We are not able to prove the
theorem for a general plurisubharmonic function p satisfying the
necessary growth conditions, for we have not been able to modify Lemma
1.3.3 by using the regularization operator studied in section 3.2.

THeOREM 3.3.1. Let K be a compact convex subset of R" and let H be its
supporting function. Let p be a plurisubharmonic function in C" with limit set
contained in Py. Suppose that

i)  there exist positive constants C, N, and ¢ such that

(3.3.1) p©) £ log(CA+KNY)+cIm¢|, (eC".

il) p is infinitely differentiable and strictly plurisubharmonic in C"\ CR".
There exists a positive number k <1/3 such that for every closed cone I
contained in (C™\ CR") U {0} there exists a positive number R . such that

(3.3.2) 2 ()L 00w w2 117 7MWl

for all { € I' with |{|ZR and w € C".
iii) for every closed cone A contained in (C"\CR") U {0} there exists a
positive constant C , such that

(3.3.3) ID’p(Q)] < Cy(log(2-+KNYICIA,

for all {e AN\ {0} and every multi-index B with 1<|B|<3. Here
D =(8/0(,0/0C) and p is a positive constant.
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Then there exists a distribution u with chsuppu=K such that
Tp—T,loglid| —» 0in LL.(C") ast - 0.

If we combine Theorem 3.2.4, Theorem 3.2.5, and Theorem 3.3.1 we
can give an example of a distribution with a prescribed limit set:

CoroLLARY 3.3.2, Let K be a compact convex subset of R" with
supporting function H. Suppose that K has a non-empty interior and that 0K
is a C*® manifold with strictly positive curvature. Let k be a positive integer.
Then there exist positively homogeneous functions q,,. . .,q, With q,¥qn
if l&=m, and a distribution u such that chsuppu=K and the limit set of
log|il] is equal to the convex hull of {q,. . .,qi}-

ProOF OF THEOREM 3.3.1. We choose a positive constant ¢ such that
k+21<1 and k<7, and let the notation be the same as in the proof of
Theorem 1.3.1. We are going to show that the function f can be
constructed as before with {z,} replaced by a subsequence.

Let {I';} be an increasing sequence of closed cones with |JI;
=(C"\CR") U {0}. By ii) we can choose an increasing sequence {R;} of
positive constants such that (3.3.2) holds for { € I';and |{|= R;. We set A4;
={{ e I';; |{| = R;}. There exists a positive constant C; such that (1.3.10)
holds with C'=C;if W,<TI';. We can replace R; by a larger number such
that (1.3.11) holds if W,cA;. If we replace {z} by the subsequence
consisting of all z; with W, < U A, then the analytic function f can be
constructed as in the proof of Theorem 1.3.1. By (1.3.17), (3.3.1), and the
Paley—Wiener theorem it follows that f'is the Fourier-Laplace transform
of a distribution u with compact support.

The fact that T,p— T,log|d] — 0 in L (C") as t — oo follows in the
same way as in the proof of Theorem 1.3.1. We only have to observe that
CR" has Lebesgue measure zero, and that if z € Y\ CR" is a limit point of
{¢,} with {; € Z;,,, then 4{, is an element in the sequence {z;} if k is
sufficiently large. Since L(p)=L(logli|)< Py, we have ch suppu=K. This
completes the proof.

3.4. Discontinuous indicator functions.

We have seen in section 1.1 that every positively homogeneous
subharmonic function in the complex plane is continuous. An analogous
result does not hold for plurisubharmonic functions as Lelong [14] has
proved. The following theorem combined with Theorem 3.1.4 shows that
for every n>1 there exists a distribution u in R" with i; discontinuous.
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THEOREM 3.4.1. Let n>1 and let H be the supporting function of a
compact convex subset of R" with non-empty interior and C* boundary with
strictly positive curvature. Then there exists a discontinuous function in Py
which is positively homogeneous.

ProoF. By writing K as a sum of a closed ball and a compact convex set
as in the proof of Proposition 3.2.3, we can suppose that K is the closed
unit ball. Let {, e C"\CR". We begin by constructing a positively
homogeneous plurisubharmonic function r in a conic neighborhood of {,
which is discontinuous at {,. Let {z,} be a sequence of non-zero complex
numbers converging to zero. Let ) g, be a convergent series with positive
terms such that ) a,log|z,|> — oo and define g by

q(z) = Y aloglz—z), zeC.

Then g is subharmonic in C, ¢(0)=) a,log|z|> — 0 and lim, ., q(z)=
— 0. We choose j and k with {,;#0 and k=+j and set

r@¢) = KjlexP(Q(Ck/Cj"COk/COj)—Q(O)) .

Then r is plurisubharmonic in {{ € C"; {; %0}, positively homogeneous of
order one and discontinuous at {,.

Let p be the function constructed in the proof of Lemma 3.2.2. Then
p is positive in C"\CR". Set I'={( e C";{;+0} N (C"\CR") and
choose an open conic neighborhood A of {, with A\ {0}<I. We
choose k € C*(C"\ {0}) which is positively homogeneous of order zero,
with suppk<T U {0},0<x<1, x=01in a neighborhood of {,,and x=1in
a neighborhood of dA\ {0}. Let § and ¢ be positive real numbers and set

s@) = {max {(1=8x@)p O +er@pQ)}, Le4,
p(©) {eC~\ 4.

Since p is strictly plurisubharmonic in C"\ CR" and x has its support there,
the number & can be chosen such that {~ (1-3x())p() is
plurisubharmonic in C". In a neighborhood of dA\{0} in C"\CR" we
have k=1 so & can be chosen such that (1 —x())p({)+er({)<p(() for all {
in a neighborhood of 84 and (1—4dx({))p()+er(()<H(Im{) in A. Then
s € Py. Since k=0 in a neighborhood of {, we have s=max {p+er, p}
there so

$(o) = p(o)+ellofl, lim s(w) = p(Co)

w—{,

Hence s is discontinuous at {,. The proof is completed.
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