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GENERAL TAUBERIAN THEOREMS IN R?
CONNECTED WITH A THEOREM OF
KORENBLUM

SONJA LYTTKENS

1. Introduction.

This paper deals with so called Tauberian remainder problems. To
explain the nature of these problems, consider first the following well
known theorem.

WIENER'S THEOREM. Let @: R — R be bounded, let F e [}(R) and
suppose F(£) #0, & € R. If & satisfies the Tauberian condition

1.1) lim lim inf (P(u+y)—Pu) =0
h—*0+ x— 00 u2
0=<yzh
then
(1.2) ®*xF(x) =0(l), x>
implies
(1.3) &(x) =o(l), x—>o00.

In a Tauberian remainder theorem we introduce stronger conditions on
F, mainly consisting of restrictions on the order of magnitude of 1/F and
its derivatives, and we also use stronger Tauberian conditions than in
Wiener’s theorem. Knowing the order of magnitude of @ * F(x) as x — o0,
say @ * F(x) = o(m(x)), x—>oo, where m, we then obtain a more
refined estimate of @(x) as x — oo than merely #(x) = o(1), x > oo. The
Tauberian condition mostly used in this connection is that &(x) + Ax 7,
X 2 x,, for some constant A. In the papers [5] and [6] some Tauberian
remainder theorems were proved which, in many special cases, yielded
sharp results for such a Tauberian condition.
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In the present paper corresponding problems are studied for stronger
Tauberian conditions, conditions which are strong enough to yield the
same result as the monotonicity of . For instance, in Theorem 3, below,
conditions on m and F are introduced such that if @ is a bounded function
satisfying the Tauberian condition

Du+y)—Pw) _

a4) o Mmoo 0
0=y=h

then

(1.5) O*F(x) = o(m(x)), x—> o,

implies

1.6) ?(x) = o(m(x)), x - ©,

which expresses the analogy of Wiener’s theorem.

Theorems 1 and 2 below contain some preliminary Tauberian results
which might be interesting in themselves. The main result of the present
paper is given in Theorem 3 and the above mentioned Theorem 3, is a
special case of this theorem. From Theorem 3 we deduce Theorem 4 which
may be considered a general Tauberian theorem corresponding to
Korenblum’s Tauberian theorem for Laplace transforms in [3]. Theorem
4, is a special case of Theorem 4. It is a generalization to R? of Korenblum’s
theorem with the “non decreasing” condition relaxed and it may be applied
even to some functions which tend to zero as x tends to infinity.

The methods used in the earlier papers [5] and [6] do not apply directly
to the strong Tauberian conditions considered here. Therefore, though the
main idea is the same, the methods are modified on some essential points in
order to suit the new purpose. The methods are also extended to R, d = 1
and to the case when |® * F(x)| may tend to infinity as x tends to infinity.

Due to these extensions the theorems are burdened with some
supplementary conditions. However, in order to include Koremblum’s
theorem, an extension to unbounded @ is necessary.

A generalization in another direction of Korenblum’s theorem to R? is
- presented by Stadtmiiller and Trautner in [8] and [9].

Tauberian theoremsin R?, d = 1, for Tauberian conditions correspond-
ing to the condition ®(x)+ Ax 7, x = x,, were considered long ago by
Frennemo and applied to the d-dimensional Laplace transform (see [1]
and [2]).
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2. Definitions and notations.

All functions are supposed to be measurable. Let x = (x,, . ..,x,;) € RY,
d=1, 0=(,...,0)e R, 1=(,...,1)eR" Let y € RY,
xy=Y4-1xy I =Y4lx), lxll,=max;-;, ,.x), and
max (x, y) = (max (xy,,), . . ., max (x4, y4)) € R%.

The notation x £ y means x; < y;, j=1,2,...,d, and x - o0 means
x;j—, j=1,2,...,d. The notations min(x,y), x<y and x—0 are
defined in an analogous way. Let

R, ={x|xeR% x=0}, RL, ={xlxeR% x>0}

Let f: R? > R!. The notation f” means that f is componentwise
nondecreasing, i.e.

f(xl,...,Xj+h,...,xd) _Z_f(xl,...,xd), h > 0, J= 1,2,...,d,

and £\ means that f is componentwise nonincreasing. I use standard
notations for convolution and for the IP-norm. Thus

i/p
Nixfax) = | fik=f0)dy, Ifll,= ( |f(x)l"dx) .
R¢ R¢
Let I be a subset of {1,2,...,d} and let J be the complementary subset.

Thus

@.1) 1UJ={1,2,...d}, InJ = @&.

Let x and ¢ belong to R (or C?) and let x{ € R? (or C%) be defined by

2.2) (x));j=¢ forjel and (x§);=x; for jeJ.
Introduce the class & of functions k: R? — R, as follows
DEFINITION. k € & if

23) k(x +y) £ k(x)k(y), x,y€R?

and

(2 4) k(tlxl,...,tdxd)gk(xl,...,xd), X € Rd, te Rd, tgl
' k(x)2 k(x}) 21, 1<{1,2,...,d}, xe R’

For functions ke # we introduce the class R[k] of functions
m: D, —»RY,, D, < R asfollows
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DEeFINITION. m € R[k] if

(2.5) m@n) S m)k(& —n), ¢, neD,.

We also need the subclass %~ of 2 of functions x: R? - R% , defined as
follows

DEFINITION. k € W if kK € R,
d
2.6) () = [Tx;(x) and x0)=1, j=1,2,...,d.
1
Note that if m; € R[k] and m, e R[k] then max(m,,m,) e R[k],

and if

+
(2.7) K](xj) = 1’ xj é 0, xj 7', D K](XJ)

—LE N, x;20, j=1,2,...,4d,
K;(x;) s

then x(x) = []{., K;(x) belongs to ¥
Note also that if x € # then x(—x) and x(Ix|) belong to ¥,

1 1
; € R[K], j=?ia,§.,dm € R[K] .

and x € R[k(—x)].
Let ae R4, be R% and

(2.8) g(x) = gap(x) = X0 hmax(—x0)

Then q € # and

gi(x) =e€¥9, x;20, gj(x)=e"b5, x;<0, j=1,2,...,d.

3. Some preliminary lemmas.
First, three lemmas concerning the class R[k] will be proved.

LeMMA 1. Let q = q,, be defined by (2.8) and let we &. Let m(x),
x 2 X, belong to R[qw]. Let ae RY, 0 <a < a, and

m*(x) = *™*X —%0 y(max(x, X)), x € R

Then m* € R[gw].
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PrOOF. Letting x* = max(x,X) and x'© = max(X —x,0), we have
m*(n) = &' m(n*). By assumption m(r*) < q(£* — 1*)w(E* —n*)m(E*).
Therefore (2.5) is satisfied with m replaced by m* and k = gqw if we can
prove

(3.1) &M= g(E* —n*)w(E* —n*) < g€ —mw(E—1n), EeRY, neR-

Using the definition of £ we find that (3.1) is satisfied if, for ¢ € RY, 5 € R?
and j=1,2,...,d,

(3.2) e = g.(EF —n¥) < g4 —my)

and
(33) &F—nr=0 or ¢&—nj=t;(lF—nt) forsomet 1.

Choose ¢ and # and denote the left hand side of (3.2) by ¢;. Consider for
instance the case n;< X;<¢;. Then &;—n;2 §i—X;=¢&f-nr=0 and
(3.3) is satisfied. Furthermore,

(0) 5(0) = Xj—'ﬂj >0
and
0; = A Ximm)+aG-X) < o= M) = q;(&—ny).
Thus (3.2) is satisfied. The remaining cases may be treated similarly. Thus
(3.1) holds true and Lemma 1 is proved.

We will now prove the following fundamental Lemma 2. For d =1 the
result of Lemma 2 is easily obtained and for d = 1 and @ bounded it is used
earlier (see [5, p. 87-88]). The notation &} is introduced in (2.2).

LEMMA 2. Let b and Y be constants in R%. Let ®: R — R! and suppose
®(x)e >, x > Y, bounded. Let k € &, k(x)e®™™ < ¢, x £ 0, and let m(x),
x 2 Y, belong to R[k].

Then there exists a majorant u(x), x 2 Y, of ®(x), x = Y, such that
umA,

(3.4 HE R[k (x)k(max( -x, 0))ebmax(—x,0)]

and p has the following property: There exist I and J satisfying (2.1) such that
(I) For some constant C and for every x 2 Y there exists £, &= x,
satisfying
1
is #) o 1)
3 mx) = € m(ey
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(I) Either J = & or there exists a sequence (x™)? in {x| x = Y} such
that x{® 70, n—o0, jeJ and

R (n)
(3.6) lim I%(%'_'T)' 25

n—=o

Proor. If ¢(x) =0, x = Y, wemay choose u = m and there is nothing
to prove. Suppose sup,» y|®(y)l > 0. Let

o(x) = e""sgp@(y)le"”’, x2Y,
yex

and

u(x) = m(x) sup M x2Y.

x m(y)’

Then 1 >0, p=|®| and u/m ~. We will prove that for 2 Y, =Y
3.7 pn) £ p)k(E —n)k(max(y —&,0))m>x0 =40,

Choose £ and 5. Introducing I and J by (2.1) and letting

(3.8) E, = {yeR!l YSy=<n, yjS¢forjelandéj<y;forjel},

then, for some I,

°0) . o)
Yorkn my)  yeb mGy)’
Now
'(3.9) 0<y-y}=max(y—¢0), yekE,.

Using (3.9) and ¢(y)e X we find

p(y) S L™= o(y]), yeE,

Hence

su (A0 < pmx-80) gy E

, m(y) = 'n()') ’

Furthermore,

20) 5 o) o ()
V352 ) Z v S m0d) 5B mod)
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Thus we have proved

”(’7) < —2 m(ﬂ) bmax(q 60) m(y,)
w@ =m@E° yeb M)

If we further use m € R[k] and (3.9) we find

l‘(ﬂ) < k(& - n)ebmax(q £0) k(max(” —&). 0)
n@
which proves (3.7). Thus (3.4) is satisfied.

Let 2 denote the set of all subsets of {1,2,...,d}. Let Q denote the set of
subsets U of & with the property that I € U implies that all subsets of I
belong to U.

The last property of u will follow by induction when we have proved the
following

ProrosiTioN. Let U e Q, U # Q. If (I) holds true and (1) is false for
every I € U, then there exists U e Q, U< U,, U # U, such that (I)
holds true for every I € U,.

Proor.Let V =Q \ U. Then & ¢ V. Itis sufficient to prove that there
exists Iy € V, such that (I) holds true for I = I,. Let U = {I,...,I,} and
introduce J, as usual, ie. I,UJ,={1,2,...,d}, I,NJ, =g, v
=1,2,...,n. Since (Il) is false for J =J,, v=1,2,...,n, by assumption,
there exists A > [ Yl , such that, letting

(3.10) E = v[;jl {x| ﬂx}lpr}
we have

(3.11) lp(x) < 273 c tu(x), xekE.
Choose

yelE = h {xlminx,§A}.
v=1 jeJd,

Then there exist j, € J, such that ypsA v= 1.2.....n. Let I =1,
={j1s- - -Ja}. Then I € V and max;.; y; < A. Letting

(3.12) a = {x| maxx,SA}
jel
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we thus have
3.13 Ec .
(3.13) E lleJV ar

Let us now prove
a) For every x 2 Y there exists &, & Z x, such that

() 16%)
619 m© = r5e moy
ye[E

First, we prove the following auxiliary result

o) If *
u@) [2d0)]
(3.15) m@® = Yé‘}%c m()
ye

then there exists n, n > {, such that
(3.16) nQe ¥ =272 u(m)e"".

Using (3.15) and the definition of ¢ wefindvandn, ve E, YSv <,
n 2 v, such that

1) @) 2@ _piq-
—n'i—('z')'ézl/sm—(v)'§21/4——n7(?)—e b ).

Now #n € E since v e E and n = v. Using (3.11) with x =5 we find

@) _ 272 pm) e
(3.17) B = o mio)® bin=v),

Theinequalities m() < cm(v)e®™~? and m({) £ cm(v)e?¢~? follow from
me R[k] and k(x)<ce ™, x<0. Combining the first of these
inequalities with (3.17) and using y/m .7 we find n > {. Combining the
second inequality with (3.17), we have proved (3.16). Thus «,) is proved.

We will now give an indirect proof of ). Choose x and suppose (3.14)
false for every ¢ = x. Then (3.15) holds true for every { = x. Let x = x'V.
Repeated applications of a;) with { = x®, n = x"*D n =1,2,..., yield

(3.18) p(x)e b < 27M2 Y (xrF D)= g 2L

where x™ < x®*1 pn=1,2,....
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Using the definition of 4, m € R[k] and k(x) < ce™®*, x £ 0, itis easy
to verify that

sup p(y)e ™ < c sup |D(y)le™? < 0.
yzY y2Y

Thus (3.18) is impossible, (3.14) holds true and «) is proved.
Remembering that u/m .7 the following result follows. There exists
E0 = £°%(x) such that

u(x) (4]
(3.19) ;I—(—)—C—) < Yss;l[rs)fo m(y) 60 = éo(x) =2x, x=Y.
yelE

Let,for I € V, a;bedefined by (3.12), choose &® = &@(x) according to
px) . o)
m(x) = ysyseo m(y) |

(3.19) and let
wi={x
yea,

Then UW=xlxzY)
IeV

according to (3.19) and (3.13). Therefore at least one of the sets W;, say
W},, has the property that

Wy, N{x| x= X} # & forevery X.

Introduce ¢ = &(x) as follows. Let &(x) = £°(x), x e Wy,. If x ¢ W,
choose xo, Xo > x, Xxo € W, and let &(x) = £°(x,). Then

(3.20) ”((x))g 38 mg; E=¢x)2x, x2 Y.
Y€ay,

Using ¢ (y)e ™"\, the definition of a; and m € R[k] we find that the right
hand side of (3.20) is majorized by

ap 205 _ BER)
yeysem(yP) ~ m(EP)’
where C =k(AIl—Y)e?™I-Y), Thus, we have proved that for every x,
x 2 Y, there exists &, £ 2 x, satisfying
Bx) 1)
G = CmEpy

i.e. (I)holds true for I = I,. Since I, € V we have proved the proposition.
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We are now ready to prove the last property of u. Suppose, to prove the
contrary, that (I) and (IT) are not satisfied for any I. Since (I) is trivially
satisfied for I = @&, U = {@&}, using the Proposition repeatedly we find
that (I) is satisfied for every I € Q. Thus (I)is satisfied for I = {1,2,...,d}.
Since (IT) is trivially satisfied for J = & we have obtained a contradiction.

This concludes the proof of Lemma 2.

The following simple variant of Lemma 2 will be used first in the proof of
Theorem 3.

LemMA 3. Let ¢: R? - R! be bounded, ¢\ and ¢(x) -0, x - 0. Let
K satisfy

(321) xew, k7, and kj(x;) > o, x; > ©, j=1,2,...,d.

Then there exists a majorant u of ¢ such that p e R[k] and pu(x)—0,
X ~» Q0.

Proor. If ¢ =0 choose u=1/k. If ¢ # 0 let

p(x) = ( y su pfp(y)x(y), x € R?.

Then u 2 ¢ and xu 7. To prove that u € R[x] choose é and nandlet E;
be defined by (3.8) with the restriction y = Y omitted. Then, for some I,

sup @ (y)k(y) = Sugfp(y)x(y).
ysn YeE£E,

Using ¢~ and k7 we find
sup 9 (Ik0) = ( Il x,-(nj)) sup (w(yé)J];II rcj(yj)> :

Furthermore,

§gg¢(y)x(y) 2 gggrp(yg’)x(yé) = ( ;eHJ x,-(f,-)) ggg(rp(%) E k;(y,-)) .
Hence

pl)  xC) rpxmy) _ oy 6
u(€) = x(m) jeJ Kj(fj) jel Kj(ﬂj).

Using (2.3) we find

nn) < p@) jel'llx,(éj —n).
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Now kj(x;) =1, x; 0, j=1,2,...,d, and therefore the right hand side

equals pu(&)x( —n). Thus u € R[k].
It remains to prove that u(x) -0, x - oo. Choose ¢ > 0 and choose
X such that ¢(y) < e, y = X9. Using xk / we find

1
(3.22) ) xR p()xk() e xz XO.
Let
={yeRily<x, y, <X}, j=1,2,....,d, xeR%.
Then

K;(X1?)
@ 2 o0r0) £ lolaSns j=12,....d.

Let A, = U}":laj,x. Since x;(x;) = 00, x; 00, j=1,2,...,d, there exists
X, X > X such that

(3.23) e su p e(k(y) S x 2 X.
Now

AVl XO<y<x}={lysx}
and (3.22) and (3.23) yield

pux) = ——

Thus u(x) - 0, x - 0, and the lemma is proved.

K(x) sup e(k()<e x 2 X.

Let #: R>R!, m: R*> R%, and t: R > Ry ,, t\. In Theorems 1
and 2 we introduce a Tauberian condition of the following type
(3.24) P(x+y)-dx)2 -mx), 0y St(x)1, x=xO.

In the following lemma we will derive corresponding results for any
y 2 0 provided that m € R[k].
LeMMA 4. Let t\, m € R[k] and let (3.24) be satisfied. Then

(3.25) P(x+y)—d(x) 2 - (t(llyj'_";) + l)k(—y)m(x), y20, x2x°.
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Proor. Choose x and y, x=x®, y>0. If |yl <t(x) there is
nothing to prove. If llyll, >t(x), let y=9, x=¢& =&Y and define
recursively

(n)
ot = g —"—W—t(i )", n=12,....
Choose the integer N such that
N-1 N
2t <liply < ¥ €™
n=1 n=1
Then

gl
(3.26) N < Ghe 4l

Applying (3.24) with x =¢&™, y=¢t(E™y/lyll,, n=1,2,...,N—1, and
x=(M y=¢4+n—¢(™ and adding the inequalities thus obtained

we get
BE+) -2 2 ~ % m(c),
Using m e R[k] we find
m(E®) S mEK(E — &) S mEk(-m), n=1,2,...,N.
Therefore

D(E+n)—P() 2 —Nk(—n)m(¢).
Using the estimate (3.26) of N we have proved (3.25).

4. A Tauberian theorem for positive kernels.
Introduce the class & of functions t: R? —» R% , as follows:

DEerFmviTION. t € & if t X and

lim t(x + at(x))
x> ® t(x)

The definition may appear odd. However, such a class has been used

earlier in Tauberian theorems (see [7, p. 167]).
We will prove the following theorem which is a modification of a result in

R! proved earlier ([5, Lemma 6, p. 84]).

=1 forevery ae R’
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THEOREM 1. Let K:R‘—>RY, K#0, ¢K(u)e I!(RY) for some
¢ > 0. Let m € R[ce*™'] for some ¢ 2 1 and some 4 > 0. Let ®: R* — R!
and suppose for some s, 0 < s < Al

@(x)e—smax(x—x,o)

“.1) m(max (x, X))

bounded in R?\ {x|x = X} for every X = X®,

Let

(42) te &, t(x) > 0, x » 0, and t(x) = Ixle=™ x > x©
and

4.3) D(x+y)—Px)=—m(x), 0y =<tx), x=XO,

Suppose that for some w >0 and for every t: R? — R% satisfying
T(x)/t(x) > w, X = ®©

4.4) Tim m—t-c—) J Rdf(x —wr(x)K(w)du| 1.
Then
4.5) Iim 'zg;' <C(l+w),

where C = C(c,¢, K).

Proor. It is easily seen, by using Lemma 4 and the properties of the class
&, that it suffices to prove the theorem for w = 1. We may also suppose
X© > 0 and (K (u)du = 1. Thisis obviously no restriction.

Let,forae R4 ,, E,={x| xeRY, —a<x<a}. Let 5=10"" and
choose a, a = a(c,¢,K), such that

(4.6) J e K (u)du < —5,.
R‘\E, ¢

Then

4.7) f K(u)du>1-34.
E,
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Introduce the notations
T,(x) = t(x + (—1)"t(x)a),

and

I,(x) = J. &(x —ut,(x))K(u)du, n = 1,2.
R‘

We will first prove that there exists x" such that
4.8) IL(x+ (=1 't(x)a)l < 2ecm(x), x2xV, n=1,2.

Observing that t € & implies that 7,(x)/t(x)—>1, x—>o00, n=1,2,and
using the assumption (4.4) we find x'? > X© such that

4.9) L) </2m(x), x=x®, n=1,2.

Choose x") > x( such that

(4.10) eHtld < 2, x 2 xV,

t(x) > (D
(411) m b 2, X £ X',
4.12) 4t(x) < ¢, x 2 xW.

Using m € R[ce*™] and (4.10) we obtain
m(x + (=1 't(x)a) < 2"*m(x), x = xM.

Thus (4.8) follows from (4.9).
Let C denote a positive constant depending on c, ¢ and K, not necessarily
the same one each time it occurs. Let

4.13) J,(x)= j D(x + (=1 t(x)a—t(x)u)K(u)du, n=1,2.
R‘\E, -
We will now prove

4.14) &(x) J-K(u)du SCm(x)—-J,(x), x=xM,
E,
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Applying Lemma 4 with k(x) = ce’™ and using t X, (4.10) and (4.11) we
obtain from the Tauberian condition (4.3)

4.15) S(x+y)—P(x)= —-Cm(x), 0 <y < 2t(x)a, x = xV,

Choose x = x", and let t=t(x). Letting y=ta—tu in (4.15),
multiplying with K (1) and integrating over E, we get

P(x) JK(u)du < Cm(x)+ f D(x + ta — tu)K (u)du.
E, E,
The last termis I, (x + ta) — J,(x). Using (4.8) with n = 1 we have proved
(4.14).

We will now prove that ¢(x)e‘2’“"| is bounded. Applying Lemma 4
with x = x¥) and using (4.3), (4.2), and (4.11) we find that & (x)e~ 2,
x 2 x, is bounded from below. Since m(max(x,x")) € R[cet™] ac-
cording to Lemma 1, m(max(x,x"))e~4 is bounded. The assumption
(4.1) thus yields that ®(x)e~2* is bounded in RY\ {x| x = x®}.
Hence ®(x)e~24 is bounded from below in RY. Thus, for some A4,
®d(x) > —Ae*™, x e RY Inserting in (4.13) and using (4.10) and
(4.12) we find

(4.16) Ji(x) = —21/2 ge2iix I MK (w)du, x = x.
RI\E,

Combining (4.16) and (4.14) and using (4.6) and (4.7) we obtain that
®(x)e~24* is bounded from above for x > x{*). Thus we have proved that
®(x)e—244, x e R4, is bounded.

Let Y = x4+ 2¢t(xV)a. We will now prove

4.17) ¢(x)'[ K@Wu)du 2z —Cm(x)—J,(x), x=Y.
E,

Replacing x by x — y in (4.15) and using t X, m € R[ce**'] and (4.10) we
find

(4.18) P(x)Z2P(x—y)—Cm(x), 0<y=<2(x)a, x=Y.
Choosing x 2 Y, letting t = t(x) and y = ta + tu in (4.18), multiplying
with K (4) and integrating over E, we get

?(x) J‘ K(u)du = — Cm(x)+ f & (x —ta — tu)K(u)du.
E, E
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Thelast termis I,(x — ta) — J,(x). Using (4.8) with n = 2 we have proved
4.17).
Combining (4.7), (4.14), and (4.17) we obtain

4.19) —Cm(x)—J,(x) < (1 —8)B(x) < Cm(x) = J,(x), x> Y.

We will use this inequality to estimate lim,_,, |®(x)l/m(x). Applying
Lemma 2 with k(x) = ce?™™l, b = 241 we find a majorant u(x), x = Y, of
@ such that u € R[v], where v(x) = c2e**. Let for x e R?

i1 (%) = p(max(x, Y))
and
m*(x) = eAimax(Y ~x0) p(max (x, Y)).

Then u, and m* belong to R[v] according to Lemma 1. From the
assumption (4.1) it follows that |®(x)l < Am*(x), x € R¢\ {x| x = Y}
for some A. Letting u* = max(u,, Am*) we find u* € R[v] and

(4.20) l®(x)l < p*(x), x € R

Proceeding as in the proof of (4.16) and using (4.20), (4.6), (4.10), and
(4.12) we obtain

4.21) 17,0 = Z‘i‘;i’fl, x=Y n=12.

Combining (4.19) and (4.21) we have proved

@.22) 1-8)ld(x) < Cm(x) + 2‘5“:("), x> Y.

So far we have not used the last property in Lemma 2 of the function .
We will now use this property and the inequality (4.22) to prove that u/mis
bounded.

Suppose, to prove the contrary, that u(x)/m(x), x = Y is unbounded.
Then (I) and (II) of Lemma 2 hold true for some J # @& and some
sequence (x™P, x"=Y, n=1,2.... Using (3.5) we find that
p(x})/m(xy), x 2 Y, is unbounded. Since y/m / and x{ 70, n— oo,
j€J, this implies that p(x®)/m(x™)— o0, n—>o00. Therefore u*(x™)
= u(x™), n=ny. By dividing both sides of (4.22) by u(x), choosing
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x =x", n=1,2,..., taking the upper limit as n - co and using (3.6) and
(4.21), we obtain
1-56
2c

m(x™)
=C »}»m pO™y’

Remembering that § = 10~! we have proved

4.23) ’}_1:_110_<> mG) <C.
Let
v = 2

m((<™))’

Then y(n)”, Y=< p(x™)/m(x™), and (4.23) yields y(@n)=<C,
n=1,2,.... Since y/m 7 and x{” 70, n—o0, j € J, this implies

#(xy) <C, x2V.
m(x}) = =

We have obtained a contradiction and conclude that u/m and hence ¢/m
are bounded in {x| x = Y}.

If
im 120 _p o
x>w M(X)
then it is easy to verify that
Tim lJ,,(x)l < ———, n=1,2.
e M(X) c

The result B < C then follows directly from (4.19). Thus Theorem 1 is
proved.

S. Tauberian theorems with conditions on the Fourier transform
of the kernel.
First, we introduce some notations. A function : R* > R., ¢ #£0, is
called almost increasing if there exists a positive constant B such that

(.1) Yy =By, n=¢,
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for all &, where ¢ is defined. Let « € Z%, y € Z%, x € R? and

@ I!Ix“ , ﬁ | (cx o! <
= 5, ol = o, =—=0 7=
AL ALES Ly ) T ey =

We will now introduce log convex sequences in a way similar to the log
convex sequences introduced in [5, Section 2.1].

Let Pi(n), neZ,, j=1,2,...,d, satisfy P;(0) =1, logP;(n) convex
in n,

(5.2) P:l('n ) almost increasing and n™!'P;(n)'" —» o0, n —» .
For a € Z% let

d
P() = I;Ix P;(a;).

Let
(5.3) p(x) = sup II,(G‘), x € R4,
wes,
and
(5.4) hp(x) = g‘ f',%, x € R4
=
Then
(5.5) hp(8,x) < C(P,0,,0,)p(0,x), 0, <6,, xeR
Let
5,0) =0, &,(n)= Pf(")l), n=12..., j=12,...d,

and let, for >0, x € 24,
(5.6) aa = {X' 6}(“}) < G’XJ' S 5j(aj+ 1), ] = 1 2 d}

Then

6 | x|

(57) p(0x) = ——P—(Ej—, X

€ ﬂa,@‘
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For the above results see [5, p.68]. The condition n~* P;(n)!/"- oo,
n—o, j=1,2,...,d, was not introduced in [5]. Note that this condition
implies that for every ¢ > 0, h,.(x)e""‘l is bounded in R
Let a € R4, b e R% begiven. Let I = {j| a;+b; > 0}. By renumbering
the variables, let I = {1,2,...,k} and J ={k+1,k+2,...,d}. Let
{ =¢+ineCd,
C’ = 6’ +"” = (CI’CZ""’Ck)’
(=& +in" = ((x+1,lk+25---5Ca)s
{=C.0
and introduce the notations
B'(a,b) = {n' € R¥| -bj<ni<a;, j=12,...,k}
B(a,b) = {ne R’y € B'(a,b), n" =0}
T'(a,b) = {' € C*| ' € B'(a,b), & € R¥}
T(a,b) = {{ € C?l n e B(a,b), £eRY.
If a+b>0, then B'(a,b) = B(a,b) and T'(a,b) = T(a,b). If a+b =20,
then T'(a,b) = &, otherwise T'(a,b) is a tube in C* with base B'(a,b).
Let F: R?— C belong to L' and

F@) = J e ¥*F(x)dx, &e R4
R‘

Let W:RLY - Ry, W and introduce the class & = o/ (W, P,a,b) of
functions F as follows.

DeFINITION. F € of (W, P,a,b) if F(£)#0, EeR? 1/F()=f(),

-¢eRY and

a) If a+b # 0 then for almost all ¢” € R?"* there exists a function
o) = f(,¢&") analyticin T'(a,b) and

1,'1“:, fE+in', &) = f(&) a.e.inR%
'I'ZB’ (a,b)
b) There exists a constant C such that

D*f(C +iB)

W || S CP@, xeZ4, feBab)

2

(5.8) I
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We use functions W of the type

(5.9 W(r) = exp (™), r Z 1o,
where
(5.10) v decreasing and v(r) - 0, r — o0,

and we let v~ ! denote the inverse function of v.

Theorem 2 below may be considered a variant of a theorem proved
earlier ([5, Theorem 1], cf. [6]). This theorem was proved by using certain
non-quasianalytic sequences and therefore it was necessary to impose a
condition on the function ¢, introduced in the Tauberian condition (4.3), of
the following type: As x — 00, t(x) tends to zero as fast as

(loglx)™! (logloglxl)=t - (log -~ loglxl)=1=2

for some 6 > 0. In Theorem 2 below we let an argument of Paley—Wiener
type replace the non-quasianalytic sequences used in [5]. In doing so, we
gain that the function ¢t may tend to Zero arbitrarily slowly as x tends to
infinity. On the other hand, the condition (5.15), imposed in Theorem 2
below, is stronger than the following condition, which was sufficient in
Theorem 1 in [5]: For some w > 0

wt(x)

(5.11) p(x)W(———l——) < m(x).

The functions q,;, and hp are defined by (2.8) and (5.4) respectively.

THEOREM 2. (1) Let a€ R%, be R% and F € o/ (W,P,a,b). Let we #
and let for some 0, 0 <0 <1,

w(x)

(5.12) )

e I2(RY).

Let m € R[wq, ;] and let ®: R* - R! satisfy

|l «| Fl(x)

—————-———w( s P | bounded.

(5.13)

(2) Let ® and m satisfy (4.1) for some s = 0, let t satisfy (4.2) for some
A >0 and let (4.3) hold true. Let p € R[wq,,] and

(5.14) lo*F(x) < p(x), xe R
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Suppose that for some @ > 0
(5.15) pX)W (v~ (wt(x))) < m(x), x=XO.
Then

®(x) = O(m(x)), x—co.

REMARK. If, in Theorem 2, a = b = 0 and (5.2) is replaced by n!/P;(n)
sub-multiplicative and

a0
Y Pn) <o, j=1,2,...,d,
n=0

then the conditions (5.9) and (5.10) may be omitted and (5.15) may be
replaced by the weaker condition (5.11).

Proor oF THEOREM 2. Let

G = f] exp(— (e +e~%), ¢EeRf,

i=1

and let K=G*G. Then K is the Fourier transform of a function K,
K > 0. Furthermore, K is analytic in the tube T(nl,4nl) < C? and

d d
(5.16) IRE+in) < —dl—exp<—z e'ff'/zcosn,-), n € Bénl,inl).
'—1_11 cosn; =1

J

Hence K (¢ +if) € I?(R%), fe BGnl,inl).
Thus K € H¥(T@n1,4n1)), K(+iP) is the Fourier transform of
e#*K(u), pe B(3n1,4n1) and Parseval’s relation yields

ef*Ku)e >(RY), —inl<p<inl.
It follows that
(5.17) e K(u) e I}(RY), &< in.
The inequality (5.16) further implies that for { = £ + in

(5.18) IR <2342 exp( - %e"f"“ﬁ), ¢ € T@nl,4nl).
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Using Cauchy’s inequality and (5.18) we obtain

(5.19)  ID*R(Q)| < 2342 ¢! (3 ) exp( - %e“‘f“wﬂ>, { € TGnl, ).

Let A;=2+max (|a]s,bllo). Choose r;=r, such that
ry2(2%°4)/r, r(r)=1 and let 1,=4/r;. Let, for 0<t=<71,,
K.(x)=1"?K(xt™') and U.({) = K.O)fQ), { € T(a,b).

We will first prove that there exists a constant C such that, for
0<t<1, and f € B(a,b)

(5.20) ID* U ¢ +ip)ll, < CP@)W(v™1(z/4)).
Let C denote a positive constant independent of 7 and f, not necessarily the

same one each time it occurs. Using K, () = K(z{) and Leibniz’ formula
we find

(5.21) LUXGED) (:)D’K(rC)D“"f(C)-
ysa
If0<t<1, and { € T(a,b) then t{ € T(}n1,4n 1) and (5.19) yields
(5.22) ID?* R (x0)) < 234291 2-Wexp (-— —\-1[-2— ef“‘:"wﬂ), { € T(a,b).
Let

Y(,r)=W(r) exp( - % etr/Z)

and x(t) = sup, o ¥(r,7). The inequalities (5.21) and (5.22) yield

_ 27M1De £ (¢ +ip)
IDUC+iB)l < x @2l ¥ T,y

Using Minkowsky’s inequality and the assumption (5.8) we get

100.¢ +iB)l, < Cra! T 27 =
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Remembering that P(x)/«! is almost increasing we find, after a summation
over y

(5.23) ID*U.(& +ip)ll, < CP@)x(r).

Now, Y(t,r) S W(v™'(t/4)), 0<r<v~'(cz/4). If r 2 v~ (1/4), then .
v(r) S t/4<1/ry Sv(ry) and hence r 2 r, 2r, Putting @)= o.(r)
= logy(t,r) we thus have

(P(r) = _\}__jew/z’ ruv 1(1/4).
Since v\ we find

D*o(r) S o)™ — " _¢"2 <0, r2 01 (z/4).

23

Hence y(r,r)< W(v~'(x/4)), r=v"!(z/4). We have proved that
x(t) < W(v~*(z/4)). Thus (5.20) follows from (5.23).

Let U,(¢) = K.(&)f (&), & e R% If a+b =0, then (5.20) applied with
a =0, yields that U,e I?(RY. If a+b+#0 then the assumption
F € o/ (W, P,a,b) further implies

(5.24) l,imo U.(& +in,&") = U/&) a.e.inRY,
r]':B’(a,b)

and (5.20) and Fatou’s lemma yield that U, € I?(R%). Thus U, is the
Fourier transform in the I?-sense of a function U, € I?(RY). If a+b # 0,
then g({') =gz({) = U.(,¢") is analytic in T’(a,b) for almost all
& e R4k Using (520) and Fubini’s theorem we find that
g:(') € H*(T'(a,b)) for almost all ¢’ € R*"*. From the theory of H?-
spaces in tubes (see for instance [8, Chapter III]) and (5.24) it follows that,
for B € B(a,b), U,(¢ +ip) is the Fourier transform of &* U, (x).

Similarly, if B e B(a,b) and P(x) <o, then D*U,(&+ip) is the
Fourier transform of (——i)”"I x*ef* U (x). Using Parseval’s relation and
(5.20) we thus find

I x*ef* U, (x)Il, £ CP (x)W(v™'(z/4)), B e Ba,b),
and it follows that

(5.25) I gup(x)x* U (x)Il, £ CP()W (0™ (z/4)).
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Let us now prove that for 0 <t < 1,
(5.26) lguywU.l, < CW(v™1(z/4)).

Let g = q,, and choose 6,, 6 < 0, < 1. From (5.5) and the assumption
(5.12) it follows that

w(x)

@) € F R

(5.27)

Introduce 2, = Q, , according to (5.6). Using Schwarz’ inequality, (5.27)
and (5.7) we get

J g)wx) I U.(x)l dx < cO | g(x)x* U, (x) I, P() 1.
Q,
Combining with (5.25) we obtain
(5.28) J a()w(x) U, (x)l dx < COE W(v~1(c/4)).
Q,

Now J,ez¢ 2. =R? and therefore (5.26) follows from (5.28) after a
summation over 2.

Let ¥ =¢* F. By assumption /%l <p and p € R[qw]. Hence

U Y(x—uw)U_ (u)du| < Lp(x—-u)lU,(u)l du < p(x)lligwU.,ll;, x e RY.
R‘ d

Using (5.26) we have proved that for 0<t<7,
(5.29) lP*U,(x) < Cp(x)W(v™'(x/4)), x € R

Using (5.26) and the assumptions w € # and (5.13) it follows rhat the
integral @ * F * U, is absolutely convergent and may be inverted.‘ Thus

Y+U, = ¢*(F*U, = &*K,.
Furthermore

?* K, (x)= J @(x —ut)K(u)du.
Rl
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The last two identities and (5.29) yield that for 0 <t < 1,

(5.30)

f O (x —ut)K(u)du| < Cp(x)W(v~'(z/4)), x e R
R‘

Let 7: RY—> R satisfy
(5.31) z—(zz—»Sco, X — 0.

t(x)
Then 4ot(x)<t(x)<7;, x2xP and v~ (1(x)/4) < v wt(x)),
x 2 x. Choosing x = x) and applying (5.30) with 7 = 7(x) we have
proved

(5.32) IJ;;« S(x—ut(x)K(u)du| < Cp(x)W ([~ Hwt(x)), x = xP.

From (5.32) and the assumption (5.15) it now follows that there exists
C = 1, such that for every 7 satisfying (5.31)

m L
x>0 M(X)

j &(x —ut(x))K(u)du| < C.
Rd

We will apply Theorem 1 with m replaced by Cm and w replaced by Sw. The
conditions on K are satisfied according to (5.17). Since h,,(x)e"“"‘I is
bounded for every ¢ >0, the assumptions w e # and (5.12) imply that
w(x) < cé™, x e R, for some ¢ = 1. Letting

2‘0 = max(l, 2.1, "S "w)

we thus have w(x)q(x) < ce™™ and m e R[ce"*’""]. Applying Theorem 1
with 1 replaced by Ao, we obtain @(x) = O(m(x)), x —co. This completes
the proof of Theorem 2.

The result of the Remark follows from Theorem 1in [5]if d = 1 and ®is
bounded. The general case may be treated by the same methods.

The Tauberian condition of Theorems 1 and 2 may be varied. By
considering — @ instead of @ it follows that the condition (4.3) may be
replaced by

(5.33) P(x+y)—D(x) S m(x), 0<y=tx), xz X

Also, the theorems hold true for complex valued functions @ as well,
provided that Re® and Im® satisfy either (4.3) or (5.33).
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Note also that the condition F € &/ (W,P,a,b) in Theorem 2 is
symmetric in the sense that it yields an estimate of |®(x)| as x - — o0 as
well, under appropriate changes of the conditions (4.1), (4.3), (4.4), and
(5.15). Using the notation

$(x) = p(-x)

the variant when x —» — oo is stated in parenthesis in Theorem 3 below.
Introduce the following notations:
If @ is real valued, let

Pu+y)—Pwu)

34 - T . .

63 c@m=lim fm 5 T
0syshl

and

x(®,m) = max(t(P,m), t(—P,m)).
If & is complex valued, let
x(®,m) = min (y(Re®, m), x(Im®,m)).
Then Theorem 3 may be stated as follows.
THEOREM 3. (1) Let Condition (1) of Theorem 2 hold true, but for the fact

that ® might be complex valued. Let (® * F)/m be bounded and let ® and m
(respectively @ and ) satisfy (4.1) for some s = 0 and some X'?,

(2) Let
(5.35) 1(®@,m) =0 (respectively x(®, i) = 0)

and

(5.36) @*F(x)=o(m(x)), x—>o0 (respectively x - — o).

Then
d(x) = o(m(x)), x—>o0 (respectively x - —o0).
COROLLARY. Let Condition (1) of Theorem 3 hold true. If x(®,m)
(respectively y(®, 1)) is bounded then

@(x) = O(m(x)), x—>o0 (respectively x - — ).,
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RemMARrk. It might be interesting to investigate the necessity of the
analyticity condition imposed on 1/F in Theorem 3. An analogous problem
in R* has been treated earlier ([4, Theorem 6, p. 347]). The methods used in
that paper yield the following result.

Let d =1, a+b>0 and let F satisfy the supplementary condition

x}+4F(x) e (R!) for some & > 0.

Suppose further that F has the following property:

If a > 0 then for every a < a there exists a function @ % 0, bounded on
(—00,X) for every X, and satisfying the conditions of Theorem 3 with
m(x)=e"*, x> 0. If b > 0 then for every f§ < b there exists a function
@ %0, bounded on (X, o0) for every X, and satisfying the conditions of
Theorem 3 with m(x) = ef*, x <0.

Then the condition 1/F analytic in the strip T(a,b) is necessary in
Theorem 3.

Proor or THEOREM 3. First, we make two observations. It is no
restriction to suppose

rD* W(r)

(5.37) e

=1, r=r,.
Secondly, note that the assumption m(x)/hp(0x) € I?(RY) implies that
there exists a function x satisfying the condition (3.21) of Lemma 3 such
that x;(x;) < 1+x;, x;20, j=1,2,...,d, and

w(x)k(x)
hp(0x)

This is easily seen by constructing a function x(x) = [[4-; x;(x;) satisfying
(5.38) and (2.7) such that x;(x;) = c© as x;— 0 and x;(x;)<1+x;,
x;20,j=1,2,...,d.

Let

(5.38) e [*(RY).

& % F(y)
Y(x)= glg —mo) € Re.

Then y is bounded, ¥ X and y(x) - 0, x = 0. According to Lemma 3,
there exists a majorant u* of y such that u* € R[x] and u*(x)—0,
x - 00. Let p = mu*. Then p € R[q,,wk] and

(5.39) |® % F(x)l < p(x), xeR.
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Let p, = /p* and
(5.40) t(x) = o[W ™1 (1/u, (x))].

Thent, t(x)— 0, x = co0. Using (5.37), rv(r) / and p, € R[x] itiseasy
to verify that t € & and t(x)" ! «(x)~! is bounded. Thus (4.2) is satisfied.
Furthermore, W[v~*(¢(x))] = 1/p, (x) and hence

(5.41) POW™ ()] = m(x)y (x).

Let us prove the theorem under the assumption that @ is real valued and
x(@,m) = 7(P,m). Consider the function

o(x)=— inf w

uzx m(u)
Osyst(x)1

By definition, ¢  and ¢ = 0. Since t(®,m) = 0 by assumption, o(x) — 0,
x — 00, and we choose x(? such that ¢*(x) = o(max (x, x(?)) is bounded in
RY. Then o*\, ¢*(x)— 0, x — o0, and

(5.42) 2(x+y)—P(x) 2 —m(x)o*(x), 0<y=<t(x)1, xzxO.

According to Lemma 3 there exists a majorant u, of ¢* such that
Uz € R[k] and p,(x) -0, x—o0.
Let

(x)= max —1—
H3 J=1,2,...d Kj(X;)’

Then u; € R[k], us(x)—0, x— o0, and for every X

1

. . d
LX) bounded in R\ {x| x = X}.

(5.43)
Now, let
po=max(uy, 4z, H3).

Then p € R[x] and u(x) >0, x = c0. Let m; = mu and w; = wk. Then
m; € R[w, q,,]- We will apply Theorem 2 with m replaced by m, and w
replaced by w;. From (5.41) and u, < u it follows that (5.15) is satisfied
with m replaced by m, and w = 1. Since 6* < u, < u, (5.42) yields that
(4.3) holds true with m replaced by m;. Since u; < p we find from (5.43)
that the assumption that (4.1) holds true for m implies that (4.1) holds true
with m replaced by m,.
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Thus we may apply Theorem 2 and find @(x) = O(m,(x)), x —co. Since
my (x) = o(m(x)), x -0, this yields ®(x) = o(m(x)), x —>o0. If x(P,m)
= 1(—®,m) or @ is complex valued or x - — oo the result follows in the
same way. Thus Theorem 3 is proved.

The Corollary is easily derived from the Theorem and the details are
omitted.

Letd = 1. If m and @ is bounded then the conditions (5.13) and (4.1)
in Theorem 3 are trivially satisfied. If P(1) < o, then hp(x)"1(1+ Ix|) is
bounded and it follows that (5.12) holds true for w = ¢. Thus we obtain the
following special case of Theorem 3, mentioned in the introduction.

THEOREM 3. Let d =1, let F € /(W ,P,a,0) for some a > 0 and some
P, P(1) < oo, andlet m\, m € R[cq, ] for some c = 1. If @ is a bounded
function satisfying (1.4) and (1.5), then (1.6) holds true.

In the Tauberian theorems considered above, the behaviour of @ * K(x)
determines, in a certain sense, the behaviour of ¢(x) as x —o0. Another
problem of Tauberian character, a special case of which was considered by
Korenblum in [3], may be expressed as follows.

D, (x)
D,(x)

@, * K(x)

217 2
3, +K(x) — 1 as x - 00!

‘When does

~» 1 as x — oo imply that

Theorem 4 below is of this type. It yields Korenblum’s Tauberian
theorem for Laplace transforms ([3, Theorem 2, p.176]) for an
appropriate choice of the kernel K. Theorem 4 is derived from Theorem 3,
and Korenblum’s theorem may, from this point of view, be considered a
remainder Tauberian theorem.

The notion “almost increasing” is defined by (5.1), 7(®,m) is defined by
(5.34) and x} is defined by (2.2).

THEOREM 4. Let K: R? = RY. Suppose that, for some a € R% and for
every b € R, there exist P, P(I) <oo, and W such that q,,K e L}(R%)
and K € o/ (W, P,a,b).

Let &,: R*—> R. and suppose e ®,(x) almost increasing, n=1,2.
Suppose further

(5.44) o(—®,,8,) =0,

(5.45) (@5, P,) =0,
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and
D, * K(x)
(5.46) m—)l, X — Q0.
Then
(5.47) 22%) L1, x>0,

D, (x)

Proor. The condition e** @,(x) almost increasing yields that there exists
XM > 0 such that &,(x) >0, x = X", n=1,2 and constants B, = 1
such that

(5.48) ®,(x) £ B, e ™D, (y), x<y, n=1,2.

From (5.44) it follows that there exists X® > X and hy > 0 such that
(5.49) @, (x+y) <20,(x), 0=y <hod, x =X,

Let by =log2/hg, b =bol, ¢ =2By, and q = q,;,. We will prove
(5.50) ?,(x), x= X, belongs to R[cq].

Let us first prove
(5.51) () S P,(£)2M9, XD <<
Choose ¢ and n, X®<ign. Let &=, y=ho(—¢&)/In—Ellq
and "*1=¢" 49 pn=1,2 .... Choosing the integer N so that

N<M%—€J-°B§N+1,

0 .

applying (5.49) with x = &™), y =y©@ n=1,2,...,N—1, and x = &V,
y =n — Y and multiplying the inequalities thus obtained, we get

P, (n) < .82V

Using the above estimate of N and the definition of b, this proves (5.51).
Now, choose points =X, n2X?, and let I={jl n;<¢;}. Then

ni—n=max(—n,0020 and n;—¢=max(n—¢,0)20.
Using (5.48) and (5.51) we get
®,(n) < B, e*=M &, (n}) < 2B, 20N b= @, ()
= 2B, q(£ —n)® (%)
Thus (5.50) is proved.
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Let ¥,=9,*K, n=1,2. Then ¥,20, n=1,2, and (5.46) yields
that there exists X® > X® such that

(5.52) P,(x) £ 2¥,(x), x = X®.
Let
(5.53) m(x) = e X* =50, (max (x, X®)).

Then m € R[cq] according to Lemma 1 and (5.50), and m(x)=®,(x),
x 2 X®. Since e™®,(x) is almost increasing, ®,/m is bounded.
We will now prove that @,/m is bounded. Choose a € R% such that

f e K(u)du =w > 0.
usa

The inequality (5.48) with n = 2 yields
e P,(x) < By Py(x+a—u), ua.

Multiplying this inequality by K (u) and integrating over u < a we obtain

usa

(5.54) w®P,(x) £ B, e““J‘ @D,(x+oa—u)K(u)du

< B,e™¥,(x+a), xe€ R4

Using that &,/m is bounded, m € R[cq], and gK e I} (R?) we find, for
some C,

(5.55) ¥, (x) £ Cm(x), xe R

Combining (5.54), (5,52), and (5.55) and using m € R[cq] we have proved
that &,(x)/m(x), x = X® is bounded. From (5.48) with n = 2 and (5.53)
it then follows that @,/m is bounded.

We will apply Theorem 3 with m defined by (5.53), F =K,
® = P, — P, and w = ¢ and we will check that the conditions of Theorem
3 are satisfied.

The conditions ($*K)/m bounded and (5.13) follow from &/m
bounded, m e R[cq] and ¢K e L' (RY). If we further use the definition
of m it is immediate that (4.1) holds true with s=a and X9 =X®,
Since P(I)< oo, hp(x)~* []4=1 (1 +|x)) is bounded and hence (5.12) is
satisfied. The assumption (5.46) yields that ¥,(x)—¥,(x)=0(¥,(x)),
x — c0. Combining with (5.55) we have proved that @ * K (x)=o(m(x)),
X~ 0.
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It remains to check the Tauberian condition (5.35). Using @,/m posi-
tive and bounded for x = X™ and the assumption ©(®,,®,)=0 we find
7(P,,m)=0. Since 7(—P;,P;)=0 by assumption we have t(—®,,m)
=0. Thus

T(dsam) = t(QZ*qjlsm) g T(¢29m)+1(_¢lam) =0

and hence t7(®,m)=0=y(P,m) and (5.35) is satisfied. We may apply
Theorem 3 and obtain

d(x) = o{m(x)), x-» o0,
or
D,(x) — D, (x) = o(P;(x)), x>0,

which is equivalent to (5.47). Thus Theorem 4 is proved.

To give an example of a kernel K satisfying the conditions of Theorem 4
for every a, let x| denote the Euclidean norm and choose K (x)=e~*!",

To derive Korenblum’s theorem from Theorem 4, consider the kernel K,
defined by

d
(5.56) Ko(x) = [] e Mexp(—e™¥), xe R
ji=1
Then gq,,K, € L'(R?) for a < 1 and for every b € R% and
) y
Ko(&) = le(l +ig;).
J:

Choosing, for instance, W(r)=e™, r=r,, we find that
K, € o/ (W, P,a,b) forevery P, a,and b. Using the kernel K, in Theorem 4
we obtain the following special case of Theorem 4.

THEOREM 4,. Let A,: R4 — R%, n = 1,2 and suppose for some a € R,
a<l,

(5.57) t°A,(t) almost increasing, n=1,2.
Let

Ya(s) = J- e A, (t)dt, seRL,, n=1,2.
R4
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Suppose

e A (1)
5.58 lim 1 =
(5.58) im lim sup A =
and

. A, (1)
5.59 lim 1 O
( ) ;.—1.11n+ '_}'I% t<t<ht Az(t) L
If

s

%—»1, s—0, seR%,,

then
A, (¢)

(5.60) m—-}l, t —00.

PROOF. Substituting s; =e™™, t;=e”%, j=1,2,...,d, and letting

®,(x) = A,(e", €,...,e%), n=1,2,
we find
Yols) = eX=1% Ko @,(x), n=1,2.

Thus, Theorem 4, follows from Theorem 4.

If we suppose 4, 7, then Condition (5.59) in Theorem 4, is trivially
satisfied and may be omitted. If, further, A, 7 and d = 1 in Theorem 4,,
then (5.58) may be written 4, (t)/A,(t) > 1ast— oo and 1 <7/t — 1, and
we obtain, but for a partial integration, Korenblum’s theorem for Laplace
transforms ([3, Theorem 2, p.174]). In particular, it follows that the
conditions 4,7, n = 1,2, in Korenblum’s theorem may be replaced by the
weaker conditions (5.57) and (5.59).
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