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COMPLETE HOLOMORPHIC
VECTOR FIELDS ON THE SECOND DUAL
OF A BANACH SPACE

SEAN DINEEN

Summary.

We show that a uniformly bounded collection of complete holomorphic
vector fields on By, (the unit ball of the Banach space E;), i € I, can be
combined to define a complete holomorphic vector field on the unit ball of
an ultraproduct of (E;);.;. Using this result the principle of local reflexivity
and a contractive projection property due to Kaup and Stacho we prove

(a) the second dual of a JB* triple system is also a JB* triple system
(b) each biholomorphic automorphism of the unit ball of a Banach space E
extends to a biholomorphic automorphism of the unit ball of E”.

The result (a) was proved for J* algebras in [3].

1.

In recent years the research of R. Braun, L. Harris, W. Kaup, L. Stacho,
J.P.Vigué, H. Upmeier and others has shown that, for bounded symmetric
domains in Banach spaces, the study of biholomorphic automorphisms,
complete holomorphic vector fields and JB* triple system are equivalent.
To a lesser extent this is still true of convex balanced bounded domains
which are not necessarily symmetric. Thus the problems we discuss in this
article may be approached from three different points of view. We adopt
the vector field approach although in some cases (e. g. Corollary 11) the JB*
approach might have been easier.

We refer to [4] for basic concepts and results in infinite dimensional
holomorphy and to [10], [11], [16] for properties of symmetric domains
and JB* triple systems.

In this section we sketch the relationship between the various approaches
and recall specific results that we shall use in later sections. We also discuss
Banach space ultraproducts.

Received April 17, 1985.



132 SEAN DINEEN

Notation.
E a complex Banach space.
Bg the open unit ball of E.

Z("E) The Banach space of all continuous symmetric n linear
mappings from E into E endowed with the topology of uniform
convergence on By (for n =1 we use the notation Z (E)).

P("E) the Banach space of all continuous n-homogeneous E-valued
polynomials on E endowed with the topology of uniform
convergence on Bj.

h(E) the (real) vector subspace of Z(E) consisting of all Hermitian
linear operators (@ is hermitian if and only if ¢ (x)ll = lIxl
for all t € R and all x € E).

H(Bg) the set of all E-valued holomorphic functions on B (we identify
by means of the restriction mapping P("E) with a subspace of
H(Bg)).

G(Bg) the group of all biholomorphic automorphisms of Bg.

G(Bg)(0) the orbit of the origin under the action of G(Bg).

g(Bg) the (real) vector space of all complete holomorphic vector fields
on By (if X € g(Bg), then X = h6/dz where h € H(Bg)and zis
the variable in E).

g (Bg)  {ho/dz € g(Bg): h(0) = 0}.

& (Bg)  {hd/dz € g(Bg): (0) = 0}.

ProrosiTioN 1.

(@) (See [14], [16].) If hé/oz € g(Bg), then h =& + 1+ p, where & € E,
le #(E), pe P(E) and, moreover, p is determined by ¢ and hence
written as p;. We also have ¢+p;eg (Bg), leg*(Bg) and
g(Bg) = g* (Bg) ® g~ (Bg) is a direct sum decomposition.

(a) ih(E) = g* (Bg).

(c) (See [14].) V= {h(0)| hd/5z € g(Bg)} is a closed complex Banach
subspace of E and g(Bg) is tangent to V (that is, h(V) <= V for all
hé/dz € g(Bg)).

(d) (See [14].) V N Bg = By, = G(Bg)(0) and By is a symmetric domain
(i.e. for all a € By there exists s, € H(By) such that s2 = I (identity
mapping) and a is the unique fixed point of s,).

(e) (See[14].) ps; = IPC'
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(f) (See [3], [13], [15, Theorem 2.3].) If hd/éz € g (Bg) and ¢ is a
contractive projection on E then

¢ © hlyg)0/00 € 87 (By(g)
(¢ is a contractive projection if ¢* = ¢ and Il < 1). In particular,
using Proposition 4 below, we see that if Bg is symmetric then B g, is also
symmetric.

DerniTion 2. (See [10], [12].) A Banach space E is called a JB*
triple system if there exists a (necessarily unique) continuous mapping
¢: Ex E— #(E) such that
(i) {xyz}:= @(x,y)(z) is linear in x, antilinear in y and symmetric in x
and z.

@) [ox,y), @@,0)] = @({xyu},v)— @, {vxy}) for all x,y,u,v in E
(Jordan triple identity).

(iii) lo(z,2)I = Izl for all z € E.

(iv) ¢(z,z) € h(E) and the spectrum of ¢(z,z) = R* for all zin E.

ProvosiTION 3. (See [12].) 4 Banach space E is a JB* triple system if and
only if By is a symmetric domain.

In this case we have

pe(x,y) = ¢(x,&)(y) = (x I &*)(y) in the notation of [12]
= —Z(,x,y) in the notation of [16].

When Bg is not symmetric we may use  pg(x,y) to define a partial JB*
triple system (see [1], [9]). Kaup [12] shows that in a JB* triple system E
we have

(1.1) N, )l < 2lxll- Iyl forall x,yeE,

and conjectures that we can replace the constant 2 by 1 in (1.1).

By [16] the unit ball of a Banach space E is symmetric if and only if it is
homogeneous (i.e. G(Bg)(0) = Bg). Hence Proposition 1(d) and
Proposition 3 imply the following:

ProrosiTioN 4. A Banach space E is a JB* triple system if and only if

E = {h(0)| h6/5z € g(Bg)}
= {h(0)| hé/dz € g~ (Bp)}.
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If (E;);r is a collection of Banach spaces, we let [°{(E;), .} denote the
setofall (x;);.r» X; € E;, such that sup; | x;ll < oo and weendow this space
with the norm

I xd;erll = sup lx;|l.

If each E; is a JB* triple system, then I®{(E;),.} is also a JB* triple
system (see [12]).
Let % be an ultrafilter on the set I" and let

Ny = {(x);cr: xi € E; and li;’n Il x, Il = 0}.

The (Banach space) ultraproduct (E;),, of the family (E;); - with respect to
% is the quotient space I”{(E));cr}/N4- (E;)q is a Banach space and we let
(x;)¢ denote the element (i.e. equivalence class) of (E;), which contains
(x);c - For any (x;);cpin I°{(E;);cr} we have

I (xi)gll = li;n ;1.

If E;=E for all i e I' we write E¥ in place of (E;), and call E¥ an
ultrapower of E. The mapping

xeE - (x;=x),€E¥

is an isometric embedding which we denote by I,.
If T; € P("E;) (respectively #("E;)) and sup; | ;| < oo, then we define
(Ti)s by

(E)q(xi)qv = (Tx:(xi))ﬂ
(respectively (T})g((x!)gs ..., (x1g) = (Ti(x},...,x}))q). It is easily seen

that (T;), is well defined and belongs to P("(E;),) (respectively £("(E;))
and also that

1(T)el = lign Il

We let E” denote the second dual of a Banach space E and let J denote the
canonical isometric embedding of a Banach space into its second dual.

ProposiTiON 5. (See [2], [8].) (Principle of local reflexivity). IfE is a
Banach space there exist an index set 1, an ultrafilter % on 1, an isometric
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embedding J,, of E" into E¥, and a contractive projection P, on E¥ (given
by Po{(x:)g) = J(a(E", E))—limg x;) such that

(12)  Py(E¥) = J4(E").
(1.3) JgoJ =1y (thatis Jg4 “‘extends” J).
(1.4) qung:J%.

2.

In this section we prove some estimates which will be used in the final
section to prove our main results. The following proposition is essentially
contained in Lemma 2 of [14].

ProposITION 6. If X = (¢ + p;)6/0z € g™ (Bg), then

Ipll = Sop Ipe(x)ll < 450 li&ll.

Proor. We show that whenever

(2.1) “:}Ilgg e+ pa(x)ll < %
then
"3}’124 e+ pe)ll < 198 &l

Then, since p,; = Ap,; (Proposition 1 (¢)), we have
Ip !l =9/4 “ :}fg% I pe(x)ll < 9/4 "’Sclnlgi (NE+p )l + gl
<9/4198 +1)lgll < 45010 ¢ll.

We now prove (2.1). Let g, (that is Exp (tX)) denote the one parameter
subgroup of G(Bg) associated with X, let g;(z) = 6/6z(g,(z)) and let
u(t) = (g,(0), g:(0)). Weendow E x Z(E) with the sup norm topology. By
[14] we have, if

Iles &+ pex)Il < 1/54
that |
lue) —u@)ll <lel el for led < 1.
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Let

gt(z)—gt(o)

e = o -

Since g,(z) € B we have llh,(z)l <1 for all z e Bg and hence h, is a
holomorphic mapping from B into itself. Since h,(0) =0 we have by

[5, equation (5)]

Ih(@) - KO)@)] < ﬁi‘___ﬂﬁ% 1, — K@) for Izl <1.

For llzll <% we have

lg,(z) — 2.(0)— g,(0)zll < %%’} I1—1lg,©)I1-gio)l.

Since g¢(0) =0 and g, = I, we thus have
g (z) — g,(0) — 2(0)zll < 64llu(t)—u@©)l for llzIl <%.
Hence for |tl <1 and lIzIl <%

lge(z) — 21l < llg,(z) — £,(0) - £:(0)zl + I ,(0)(2) — g5, (0)z 1l +
+112,(0) — £0(0)
< (64 +2) lu(®) —u©)ll < 198¢eli&ll.

Thus
||¥iix;t"(g,(z)-—z)|| = &+ p@)ll < 198l¢l for Izl < 4.

Hence (2.1) holds and this completes the proof.

PropositioN 7. For each pe (0,1), M e R*, a € R*, there exists
A=A(p,M,x)e (0,1) such that for any Banach space E and any
X, = (¢ +p;) 6/0z € g~ (Bg) we have

22)  sup{lExp(X)x)l; IEl < M, Ixll < p, ltl Sa} < A4.
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Proor. Since tX, = X,, (Proposition 1 (e)), it suffices to show
sup { IExp(X)(x)Il; Il = M, lIxll < p} < 1.

Wefirst consider the case, where E is a JB* triple system. Suppose for each n
there exists 6, € (0,1), E, a JB* triple system, £, € E,, &1 <M,
x, € E,, Ix,Il < p such that

lExp(X;)(x)l =6, - 1 as n—c0.
Let & = (£,)%y, now E = I®{(E,)%,} is a JB* triple system and
Xg={(a+pg)0/02,}4
is a complete holomorphic vector field on Bg. Hence
I(Exp (X ¢ )(xa)e-1 | = 1 Exp(X)(xn), I < 1.
This is impossible and hence
sup{ I Exp(Xg)(x)" céxeE IEl M, Ixll < p, E a JB* triple system}

= Al < 1.
We now suppose E is arbitrary.
Let
V = {h(0)| h5/6z € g(Bg)}.
If
X¢= (£ +p;)d/dz € g~ (Bg),
then

eV and (§+pgy)d/ov e g™ (By)

(Proposition 1 (c)) and Vis a JB* triple system (Proposition 1 (d) and
Proposition 3). Hence || Exp(X,)(0)l < 4,.

Let k denote the Kobayashi distance on Bg (see [3], [6]), then since
Exp(X,) € G(Bg) we have

k(0, Exp(X;)(x)) < k(0, Exp(X)(0)) + k(Exp(X )(0), Exp(X ;)(x))
= k(0, Exp(X;)(0)) + k(0,x)

1, 144, 1, 14p
< 1 — __
=< zlogl__A1 + 2log1_p
(see [4, p. 87]). Hence, by [7, Proposition 23], there exists A <1 (which
depends only on A4, and p) such that | Exp(X,)(x)|l < 4. This completes
the proof.
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ProrosITION 8. For each p € (0,1), M e R*, a € R*, e e R*, there
exists & > 0 such that for any Banach space E and

Xe = (£ +pe)6/06z = h(z) 6/0z € g~ (Bg)

we have

sup{lls=*(Exp((t + ) X ;) (x) — Exp(tX £)(x)) — h(Exp (¢ X ;) (x)) Il :
el s M, lIxl g p,ld ga,lsl < o} <e.

ProOF. Let ¢, denote the integral curve to X, with initial point x, that is
0.(t) = Exp(tX)(x) forall t € R, ¢,(t) = h(p,(t)) and ¢,(0) = x. Hence

3

0ut) = x+ f h{g(w)dw

0

and
$Hul+5) = 92(0) = hlp) = 5 j {hl@(t +u) = h(px(t))} du
0

= % J {Pe((t + 1)) — Pe(@(t))} du.
0
Hence

Is™ (@t +5) = @(2)) = h(@®)
= sup. I pe(@x(t + w)) — pe(e (@)
<2lp,l - Sup lo, .t +ul - sup Il (t+u)— o, @)
<2-450l¢l - sup I J:h((px(t +w))dwl (Proposition 6)

<900 - el - (el + pely - Il
<900 -451- &2 -1sl (Proposition 6)

This completes the proof.
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3.
We prove our main results in this section.

THeOREM 9. If (E;), ., is a collection of Banach spaces indexed by the set I,
U is an ultrafilter on I,.

o o _
X = (5;"*'1’5,)5 = hia_eg (Be)

Z;

for all i and sup; |||l < o, then

Xy = (€)a+ (Pci)q);—z € g™ (By,) -

Proor. By Proposition 6,
(Pe)a € P((Ea)

and hence X, isa holomorphic vector field on B, . Let (x;)y € B(g,,.
We may suppose without loss of generality that there exists p <1 suc
that llx;I < p <1 foralli. For eachilet ¢, (t) be the integral curve to X,
with initial point x;. By Proposition 7,

sup ll o, (t) <1
13

and hence (¢, (t))y € B,, By Proposition 8 for every £ > 0 there exists
¢ > 0 such that, for fixed t we have

1™ (01, +9)a = (02,O)a) = Ba (@, )a)]
< suplls™ (9 +5) = (0 1)) — hilo, @) < &

whenever |s| < 6. Hence the mapping (¢,)4 is an integral curve to X )
with initial point (x;)4. Thus X e is a complete holomorphic vector field

and this completes the proof.

REMARK. If T € h(E), then *T € h(E”), where " T is the second transpose
of T. Hence using Theorem 9, it is easily seen that if
)
X, =+ +p")6_zi’ sup gl + sup 121 < oo,

then
(X:)q € 2(Bg,)-
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CoROLLARY 10. The ultraproduct of JB* triple systems is a JB* triple
system.

Proor. If E = (E;),, then it suffices to apply Proposition 4 to each E;,
then to apply Theorem 9 to E and finally to apply, once more, Proposition 4
to E.

Theorem 9 also shows that the JB* structure on (E;), is given by
(@i(xi, ¥:)(z:))q» Where o, gives the JB* structure on E; for each i.

CoroLLARY 11. If E is a JB* triple system, then E” is also a JB* triple
system (or equivalently if Bg is a symmetric domain, then Bg. is also a
symmetric domain).

Proor. Choose I and # asin Proposition 5. By Corollary 10, E¥isa JB*
triple system. By Proposition 5, Proposmon 1 (f) and Proposition 4, E” is
a JB* triple system.

CoRrOLLARY 12. If ¢ € G(Bg), then there exists ¢ € G(B g-) such that
poJ=Jog.
Proor. Let
G ={¥ e GBg): ¥ ° J(By) = J(By))
and let
g={X e g(Bg): Exp(X) = G}.

G is a closed subgroup of G(Bg.), when G(B;.) is endowed with the
topology of local uniform convergence.

If ¢(0) =¢, then X, = (¢ +p;) 6/0z € g~ (Bg). An examination of the
construction given in Theorem 9 and an application of the properties listed
in Proposition 5 shows that

X =€)+ ro) g € 8~ (B

and that moreover,
XJ(¢)°J=J°XC.
Hence
ooV (@) = J(e'®) = J(X{p () = Xyefd ()
for any integral curve ¢ to X,. This implies

Exp(t X )/ (Bs)) = J(Bg) forall ¢ € R.
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Hence Exp(X ) = G and X, € 2.

By [1, Theorem 1.2], J(¢) € G(0). Choose w e G such that w(J(¢))
=0. Let wy=J 1owoJ. Then w, € G(Bg) and Jowj!=w~1oJ,
We have w; ° ¢ € G(Bg) and w, °¢(0)=0. Hence, by Schwarz’s lemma
[see 5], T:=w, ° ¢ is a linear isometry of E. Let “T denote the second
transpose of T and let @ = w™! o *T. Since "T is an isometry of E” we
have ¢ € G(Bg.). Using the fact that J o T =T o J, we see that

~

poJ=wlofToJ=wloJoT=JowiloT=Jogp
and this completes the proof.

Corollary 12 answers problem V (i) posed by Kaup in [11].

REeMarks. Corollary 11 can also be proved using J* ideals or by showing
directly from the axioms of Definition 2 that the ultraproduct of JB* triple
system is a JB* triple system — this just uses the fact that ¢ is continuous
rather than Proposition 6 (this was our original approach). We can also
prove Corollary 11 by first proving Theorem 9 for E = E, for all i. This still
requires a weak version of Propositions 8 and 9. In addition to the
corollaries already given this also shows

(i) if F is a subspace of E and G(Bg)(0) > By, then G(B.)(0) > Bp..

(ii) the ultrapower of Partial JB* triple systems (see [1], [9]) is a Partial
JB* triple system.

If we require E; to vary in Theorem 9 we also need Proposition 6, which
in addition to the above also shows

(iii) the ultraproduct of Partial JB* triple systems is a Partial JB* triple
system and in addition

loGx, y)Il <9001 xll - Iyl

for any Partial JB* triple system.

(iv) in [9] the authors show that biholomorphic mappings of the unit ball
can be extended to holomorphic mappings on a strictly larger ball.
Using Theorem 9 we see that the functions which can be extended to a
ball of prescribed radius can be chosen independently of the
underlying Banach space.
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