ON THE DEGREE OF C^l-DETERMINACY

MARIA APARECIDA SOARES RUAS

1. Introduction.

In this paper, we obtain estimates for the degree of $C^l - \mathcal{G}$-determinacy ($\mathcal{G} = \mathcal{A}$, \mathcal{C} or \mathcal{X}) of C^∞ map-germs $f: (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$ that satisfy a convenient Lojasiewicz condition.

These estimates generalize a result of Takens [4], and refine in many cases, the results of D. Lefebvre and M. T. Pourprix [2].

When applied to homogeneous germs, our results imply the following: (3.14) Corollary: "Let $f: (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$ be a C^∞ map-germ of corank k, given by

$$x = (x_1, x_2, \ldots, x_n) \mapsto (x_1, \ldots, x_{p-k}, f_1(x), \ldots, f_k(x)),$$

with f_j homogeneous of degree r_j.

For all $l, 1 \leq l < \infty$ and $r = \max r_j$, we have

(a) If 0 is an isolated singular point of f, then f is $(r+l-1) - C^l - \mathcal{A}$-determined.

(b) If $f^{-1}(0) = \{0\}$, then f is $(r+l-1) - C^l$-determined.

(c) If 0 is an isolated singularity in $f^{-1}(0)$, then f is $(r+l-1) - C^l - \mathcal{X}$-determined.

Furthermore, with the hypothesis of (a), (b) or (c), it follows respectively that small deformations of order r are $C^0 - \mathcal{A}$-trivial, $\mathcal{G} = \mathcal{A}, \mathcal{C}$ or \mathcal{X}.

The above estimates are sharp in the following sense: if $f(x)$ is $(r+l_0-2) - C^{l_0} - \mathcal{G}$-determined for some $2 \leq l_0 < \infty$, then f is in fact $C^\infty - \mathcal{G}$-determined by its $(r+l_0-1)$-jet.

The author thanks L. Wilson for his valuable suggestions.

2. Notation and basic definitions.

Let $C(n, p)$ be the space of smooth map-germs $f: (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$.

We denote by $J^k(n, p)$ the set of k-jets of elements of $C(n, p)$.
(2.1) **Definition.** For any group \(\mathcal{G} \) acting on \(C(n, p) \), we say that \(f \) is \(k \)-\(\mathcal{G} \)-determined if the \(\mathcal{G} \)-orbit of \(f \) contains all germs \(g \) such that \(f^k g(0) = f^k f(0) \).

In this work, we are interested in the groups \(C^l - \mathcal{G}, \mathcal{G} = \mathcal{R}, \mathcal{C} \) and \(\mathcal{H} \), defined below.

(2.2) **Definition.** (a) The group \(\mathcal{R} \) is the group of germs of \(C^\infty \)-diffeomorphisms \((\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0) \). \(\mathcal{R} \) acts on \(C(n, p) \) by composition on the right;

(b) \(\mathcal{C} \) is the group of germs of diffeomorphisms \(H \) of \((\mathbb{R}^n \times \mathbb{R}^p, 0) \) which (i) leave fixed the projection on \(\mathbb{R}^n \), and (ii) preserve the subspace \(\mathbb{R}^n \times \{0\} \). We may also describe \(\mathcal{C} \) as the group of germs of families of diffeomorphisms of \((\mathbb{R}^p, 0) \) into itself, parametrized by \((\mathbb{R}^n, 0) \). Thus any \(H \) in \(\mathcal{C} \) is of the form \(H(x, y) = (x, h(x, y)) \), where \(h(x, 0) = 0 \). \(\mathcal{C} \) acts on \(f \) in \((\mathbb{R}^n \times \mathbb{R}^p, 0) \), by the formula

\[
(id_{\mathbb{R}^n}, H \cdot f) = H \circ (id_{\mathbb{R}^n}, f), \quad \text{where } H \cdot f = h(x, f(x)),
\]

and \(id_{\mathbb{R}^n} \) denotes the identity map on \((\mathbb{R}^n, 0) \).

(c) \(\mathcal{H} \) denotes the group of invertible map-germs

\[
H: (\mathbb{R}^n \times \mathbb{R}^p, 0) \to (\mathbb{R}^n \times \mathbb{R}^p, 0),
\]

which preserve the subspace \((\mathbb{R}^n \times 0) \), and such that there exists a map germ \(h: (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0) \), which makes the diagram below commutative:

\[
\begin{array}{ccc}
(\mathbb{R}^n, 0) & \xrightarrow{i} & (\mathbb{R}^n \times \mathbb{R}^p, 0) \quad \xrightarrow{\pi} \quad (\mathbb{R}^n, 0) \\
\downarrow{h} & & \downarrow{H} \quad \downarrow{h} \\
(\mathbb{R}^n, 0) & \xrightarrow{i} & (\mathbb{R}^n \times \mathbb{R}^p, 0) \quad \xrightarrow{\pi} \quad (\mathbb{R}^n, 0)
\end{array}
\]

where \(i \) denotes the germ of inclusion \((\mathbb{R}^n, 0) \to (\mathbb{R}^n \times \mathbb{R}^p, 0) \) and \(\pi \) the germ of projection \((\mathbb{R}^n \times \mathbb{R}^p, 0) \to (\mathbb{R}^n, 0) \).

The action of \(\mathcal{H} \) on \(f \) is defined by

\[
(id_{\mathbb{R}^n}, H \cdot f) = H \circ (id, f) \circ h^{-1}.
\]

Clearly \(\mathcal{C} \) is a subgroup of \(\mathcal{H} \). The identification of \(h \in \mathcal{R} \) with \((h, id_{\mathbb{R}^p}) \in \mathcal{H} \) makes \(\mathcal{R} \) a subgroup of \(\mathcal{H} \). Furthermore \(\mathcal{H} = \mathcal{R} \cdot \mathcal{C} \) (semi-direct product).

(2.3) **Definition.** \(C^l - \mathcal{G}, \mathcal{G} = \mathcal{R}, \mathcal{C} \) or \(\mathcal{H} \), \(l \geq 0 \), are defined as before, taking diffeomorphisms of class \(C^l, l \geq 1 \), or homeomorphisms, when \(l = 0 \).

Let \(C(n) \) denote the ring of germs of smooth functions and \(m_n \) its maximal ideal.

Following Wall [5], we denote by \(I_\mathcal{G}(f) = J_f \), the ideal of \(C(n) \) generated
by the $p \times p$-minors of the Jacobian matrix of f, by $I_\varphi(f) = f^*(m_p)C(n)$, the
ideal generated by the coordinate functions of f, and $I_{\mathcal{F}}(f(x)) = I_{\varphi}(f(x))$
$+ I_{\mathcal{A}}(f(x))$.

Now, write $N_{\varphi}(f(x)) = |f(x)|^2$, $N_{\mathcal{A}}(f(x)) = |df_x|^2_{\mathcal{A}} = \det \{(df_x)(df_x)\}^2$
= sum of squares of $p \times p$-minors of df_x, and

$$N_{\mathcal{F}}(f(x)) = N_{\varphi}(f(x)) + N_{\mathcal{A}}(f(x)).$$

We say that $N_{\mathcal{A}}(f(x))$ satisfies a Lojasiewicz condition of order $r (>0)$ if there
exists a constant $c>0$ such that $N_{\mathcal{A}}(f(x)) \geq c|x|^r$; we denote such a condition (c_r).

The following proposition relates the existence of a Lojasiewicz condition for $\varphi = \sum_{i=1}^k \varphi_i^2$ with the condition that the ideal generated by the
φ_i's is elliptic.

(2.4) PROPOSITION. Let $I = \langle \varphi_1, \ldots, \varphi_k \rangle$ be a finitely generated ideal in
$C(n)$. Then the following conditions are equivalent:

(a) I is elliptic (or, $I \supset m_n^\times$);
(b) there exists g in I such that $|g(x)| \geq c|x|^\alpha$ for some $c>0$ and $\alpha>0$;
(c) there exists $c>0$ and $\alpha>0$ such that $\sum_{i=1}^k |\varphi_i(x)|^2 \geq c|x|^\alpha$.

If φ_i are analytic, then the above conditions are equivalent to:

(d) 0 is an isolated point in $\varphi^{-1}(0)$, where $\varphi(x) = (\varphi_1(x), \ldots, \varphi_k(x))$.

(See [5] for a proof and comments.)

To obtain good estimates for the degree of $C^1-\mathcal{A}$-determinacy it is
necessary to impose a condition to control the growing of the derivative of
$1/N_{\mathcal{A}}(f)$ such as:

$$\left| \frac{\text{grad } N_{\mathcal{A}}(f)}{N_{\mathcal{A}}(f)} \right| \leq \frac{C}{|x|^\lambda}, \quad \lambda \geq 1.$$

The control will be exercised via the condition (d_{r_0}), which we take to mean
that r_0 is the largest integer such that $N_{\mathcal{A}}(f) \in m_n^{r_0}$.

The information contained in $I_{\mathcal{A}}(f)$ (hence in the tangent space to
the \mathcal{A}-orbit of f) will be used in the construction of controlled vector fields,
whose class of differentiability depends on the conditions (c_r) and (d_{r_0})
of the control function $N_{\mathcal{A}}(f)$.

3. Estimates for the degree of $C^1-\mathcal{A}$-determinacy ($\mathcal{A}-\mathcal{F}$, \mathcal{C} or \mathcal{N}).

Let $f: (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^p, 0)$ be a C^∞-map-germ, with corank k, in the form

$$(*): (x_1, x_2, \ldots, x_n) \mapsto (x_1, \ldots, x_{p-k}, f_1(x), \ldots, f_k(x)).$$
and let $s = \max \{ q \mid f_j \in m^q_n, j = 1, \ldots, k \}$.

Case 1. $\mathcal{G} = \mathcal{R}$.

(3.1) **Proposition.** If $N_\mathcal{R}(f)$ satisfies conditions (c_{2r}) and (d_{2r_0}), it follows that f is $N = [r + l(r - r_0 + 1) - (s - 1)(k - 1)] - C^l - \mathcal{R}$-determined.

The proof follows easily from the following two lemmas.

(3.2) **Lemma.** (See [5, Lemma 2.12], or [1, Lemma 4.7].) Let θ_f be the set of germs of vector fields along f, that is
\[
\theta_f = \{ \xi : (\mathbb{R}^n, 0) \to T(\mathbb{R}^p) \mid \pi_{\mathbb{R}^p, 0} \xi = f \}.
\]

Then, for $h \in \theta_f$ and
\[
M = (\frac{\partial f_r}{\partial x_i})_{1 \leq r \leq p},
\]
a $p \times p$-minor of df_x, the following holds
\[
(\det M) \cdot h = df \left[\sum_{s=1}^{p} \sum_{r=1}^{p} \left[\text{cof} \left(\frac{\partial f_r}{\partial x_i} \right) h_r \right] \frac{\partial}{\partial x_i} \right]
\]
where $\text{cof} (\frac{\partial f_r}{\partial x_i})$ denote the cofactor of $\frac{\partial f_r}{\partial x_i}$, and h_r are the component functions of h.

(3.3) **Lemma.** Let $N(x)$ be defined by $N(x) = \sum_{j=1}^{L} (d_j(x))^2$.
Suppose that $N(x)$ satisfies conditions (c_{2r}) and (d_{2r_0}).
Given any germ of a C^∞ function h, with $h(x) \in m^N_n$, $N = r + l(r - r_0 + 1) + 1$, then $\varepsilon(x) = h(x)d_j(x)/N(x)$ is differentiable of class C^l, $l \geq 1$, for any $j = 1, \ldots, L$.

Proof of Lemma (3.3). Since $|d(x)| = |d_j(x)| \leq [N(x)]^{1/2}$, it follows that
\[
|\varepsilon(x)| \leq \frac{h(x)}{[N(x)]^{1/2}} \leq c|x|,
\]
hence continuous.

We can now proceed by induction. Given
\[
\varepsilon(x) = \frac{H(x)D(x)}{N^x(x)},
\]
where $H(x) \in m^N_n$, $N = [r + l(r - r_0 + 1) + 1] + (\alpha - 1)(r_0 - 1)$, $l \geq \alpha - 1$ and $D(x) = p^*(d_j)$, a polynomial of degree α, in the variables d_j, $j = 1, \ldots, L$.
Then
\[
\frac{\partial \varepsilon(x)}{\partial x_j} = \frac{\partial H(x)}{\partial x_j} D(x) + H(x) \frac{\partial D(x)}{\partial x_j} \frac{\partial N}{\partial x_j} \frac{\partial x}{\partial x_j} - H(x) D(x) \frac{\partial N}{\partial x_j} \frac{\partial x}{\partial x_j},
\]
which is a linear combination of terms in the form
\[
\frac{\tilde{\nabla} \hat{D}}{N^{\alpha+1}(x)},
\]
where \(\tilde{H} \in m^N_n \), \(N = r + l(r - r_0 + 1) + 1 + \alpha(r_0 - 1) \), \(D(x) = p^{\alpha+1}(d_j), \ l \geq \alpha \).

It follows that
\[
\left| \frac{\tilde{H} \hat{D}}{N^{\alpha+1}(x)} \right| \leq c |x|^k,
\]
where \(k \geq r + \alpha(r - r_0 + 1) + 1 + \alpha(r_0 - 1) - (\alpha + 1)r = 1 \), so that \(\partial \varepsilon(x)/\partial x_j \) is continuous. The induction step, and hence the proof is complete.

Proof of Proposition (3.1). Let \(g \) be such that the \(N \)-jets of \(g \) and \(f \) coincide at the origin, that is: \(J^N g(0) = J^N f(0) \), and \(F(x, t) = (f_t(x), t) \), where \(f_t(x) = (1 - t) f(x) + t g(x) \), \(t \in [0, 1] \). It is easy to see that
\[
I_{\mathcal{A}}(f_t) = I_{\mathcal{A}}(f) + m^{r+1}_n, \quad \forall \ t \in [0, 1].
\]
Hence, \(N_{\mathcal{A}}(f_t) + \varepsilon_t(x) = N_{\mathcal{A}}(f) \), where \(\varepsilon_t \in m^{2r+2}_n \), \(\forall \ t \in [0, 1] \) and this implies \(N_{\mathcal{A}}(f_t) \geq c |x|^{2r} \) for all \(t \in [0, 1] \).

Now,
\[
N_{\mathcal{A}}(f_t(x)) \frac{\partial f_t}{\partial t} = \sum_{j=1}^L \left[\frac{\partial f_t}{\partial t} \left(* \hat{M}_t^J \left(\det M_t^J \right) \frac{\partial f_t}{\partial t} \right) \right],
\]
where \(J \) enumerates all \(p \times p \)-minors of \((df)_t \) and
\[
* \hat{M}_t^J \frac{\partial f_t}{\partial t} = \sum_{s=1}^p \sum_{r=1}^p \left[\text{cof} \left(\frac{\partial f_r}{\partial x_{i_s}} \cdot \frac{\partial f_r}{\partial x_{i_r}} \right) \right] \frac{\partial}{\partial x_{i_t}},
\]
as in Lemma 3.2. (The coefficients of \(\partial/\partial x_j \) are zero for \(j \neq i_s \).)

Defining
\[
\varepsilon(t, x) = \sum_{j=1}^L \left[\left(* \hat{M}_t^J \left(\det M_t^J \right) \frac{\partial f_t}{\partial t} \right) \right] \frac{\partial}{\partial x_J}
\]

it follows from Lemma 3.3, that \(\varepsilon \) is differentiable of class \(C^l \).
Now,

\[\frac{\partial f_i}{\partial t}(x, t) = (df_i)_x(x, t)(e(x, t)) , \]

and this implies the \(C^l - \mathcal{R} \)-triviality of the family \(F(t, x) \) in a neighbourhood of \(t=0 \). Since the same argument is true in a neighbourhood of \(t = \bar{t}, \forall \bar{t} \in [0, 1] \), the proof is complete.

The estimates we obtain are, in many cases, more precise than the results in [2], as we can see in the following proposition and example.

(3.4) **Proposition.** Let \(f: (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0) \) be as in (*), with corank \(k \).
Assume that each \(f_i \) is homogeneous of degree \(r_j, j = 1, \ldots, k \). If \(I_\mathcal{R}(f) \) is elliptic, \(f \) is \((r + l - 1) - C^l - \mathcal{R} \)-determined, \(r = \max_{1 \leq j \leq k} r_j \).

Proof. We may assume that \(2 \leq r_1 \leq r_2 \leq \ldots \leq r_k \).

Each \(\mathcal{M} \times \mathcal{M} \)-minor of \(df_x \) is homogeneous of degree \(\sum_{i=1}^{k} (r_i - 1) = r = r_0 \).

The elements of \(\hat{M} = \text{cof} \mathcal{M}^t \) are \((p - 1) \times (p - 1)\)-minors of \(df_x \), which are homogeneous, and the degree depends on the omitted row. The smallest of these degrees is \(\sum_{i=1}^{k-1} (r_i - 1) \).

Hence, the degree of \(C^l - \mathcal{R} \)-determinacy of \(f \) is

\[r + l(r - r_0 + 1) - \sum_{i=1}^{k-1} (r_i - 1) = r - 1 + l . \]

(3.5) **Remark.** The above estimates are sharp in the following sense: if \(f(x) \) is \((r + l_0 - 2) - C^{l_0} - \mathcal{R} \)-determined, for some \(2 \leq l_0 < \infty \), then \(f \) is in fact \((r + l_0 - 1) - C^\infty - \mathcal{R} \)-determined.

Let us assume \(f \) is \((r + l_0 - 2) - C^{l_0} - \mathcal{R} \)-determined, for some \(l_0 \). Then, taking \((r + l_0 - 1) \)-jets of \(C^{l_0} - \mathcal{R} \)-trivial families

\[f_t = f + t(g - f) = f \circ h_t, \quad t \in [0, 1] , \]

\[j^{r+l_0-2}g(0) = j^{r+l_0-2}f(0), \quad h_t \in C^{l_0} - \mathcal{R}, \quad h_0 = \text{id}_{\mathbb{R}^n} , \]

we obtain

\[j^{r+l_0-1}(\partial f_i/\partial t)|_{t=0} = j^{r+l_0-1}(d f(h_t/\partial t)|_{t=0}) , \]

which in turn implies the \((r + l_0 - 1) - C^\infty - \mathcal{R} \)-determinacy of \(f \). (See [5] or [3] for more details.)

Finally, we recall that if \(f \) is \(C^\infty - \mathcal{R} \)-finitely determined and \(0 \) is a singular point of \(f \), then \(p \) must be equal to 1 ([5, Proposition 2.3]). Thus if \(p > 1 \), \(f(x) \) can not be \((r + l - 2) - C^l - \mathcal{R} \)-determined for all \(l \geq 1 \).
(3.6) **Example.** $f: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ defined by

$$
\begin{cases}
 u(x, y) = x^r - y^r, \text{ } r \text{ even} \\
 v(x, y) = xy.
\end{cases}
$$

$N_{\mathcal{G}}(f) = r(x^r + y^r)$ and f is $(r + l - 1) - C^l - \mathcal{R}$-determined for all $l \geq 1$.

From Remark (3.5), it follows that $f(x)$ cannot be $(r + l - 2) - C^l - \mathcal{R}$-determined.

Case 2. $\mathcal{G} = \mathcal{C}$.

We shall assume $I_{\mathcal{C}}(f)$ is elliptic. If f is as in (*), of corank k, we consider

$$
N^*_\mathcal{C}(f) = (f_1)^2 + \ldots + (f_k)^2 + (x_1^1)^2 + \ldots + (x_{p-k}^s)^2.
$$

Clearly, $N^*_\mathcal{C}(f)$ satisfies a Lojasiewicz condition, that we shall denote by (c_{2r}^s).

In this case, $N^*_\mathcal{C}(f) \in m_n^{2s}$, that is $s = r_0$.

(3.7) **Proposition.** If $N^*_\mathcal{C}(f)$ satisfies conditions (c_{2r}^s) and (d_{2s}), it follows that f is $N = [r + l(r - s + 1) - 1] - C^l - \mathcal{C}$-determined.

It is not hard to show that f is $(N + 1) - C^l - \mathcal{C}$-determined. The reduction to N depends on the next Lemma, in which we construct a conic bump function, with controlled derivatives.

(3.8) **Lemma.** Let $|y| \leq c_1 |x|$ and $|y| \leq c_2 |x|$ be cones in $\mathbb{R}^n \times \mathbb{R}^p$, with $c_1 < c_2$. There exists a function $p: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}$, $p \in C^\infty$ in $\mathbb{R}^n \times \mathbb{R}^p - (0 \times 0)$,

$$
p(x, y) = \begin{cases} 1 & \text{if } |y| \leq c_1 |x|, \ (x, y) \neq (0, 0), \\
0 & \text{if } |y| \geq c_2 |x|, \\
0 \leq p(x, y) \leq 1 & \text{if } c_1 |x| \leq |y| \leq c_2 |x|, \\
p(0, 0) = 0,
\end{cases}
$$

such that

$$
|D^s(p(x, y)y)| \leq \frac{K_s}{|x|^{s-1}}, \quad K_s = \text{constant}, \forall s \geq 1.
$$

Proof. For $n = p = 1$, let $h: \mathbb{R} \to \mathbb{R}$ be the usual C^∞ bump function,

$$
h(\theta) = \begin{cases} 1 & \text{if } 0 \leq \theta \leq \theta_1; \\
0 & \text{if } \theta \geq \theta_2; \\
0 \leq h(\theta) \leq 1 & \text{if } \theta_1 < \theta < \theta_2.
\end{cases}
$$

We define

$$
p(x, y) = h(\theta), \quad \text{where } \theta = \arctg \frac{y}{|x|}.
$$
Then \(|p(x, y)y| \leq (\tan \theta_2)|x|\). By successive derivations, we see easily that

\[
|D^sp(x, y)y| \leq \frac{K_s}{|x|^{s-1}}.
\]

For \(n \geq 1\) and \(p = 1\), let \(p(x, y)\) be defined by

\[
p(x_1, \ldots, x_n, y) = h(\theta), \quad \text{if } |x| \neq 0
\]

\[
p(0, y) = 0, \quad \theta = \arctg \frac{y}{|x|}.
\]

In the general case

\[
p(x_1, \ldots, x_n, y_1, \ldots, y_p) = p_1(x, y)p_2(x, y) \ldots p_p(x, y), \quad |x| \neq 0
\]

where

\[
p_i(x, y) = h(\theta_i), \quad \theta_i = \arctg \frac{y_i}{|x|}, \quad p(0, y) = 0.
\]

Proof of Proposition (3.7). Let \(f: (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)\) be given by

\[
(x_1, x_2, \ldots, x_n) \mapsto (x_1, \ldots, x_{p-k}, f_1(x), f_2(x), \ldots, f_k(x)).
\]

If \(j^N g(0) = j^N f(0)\), where \(N = [r + l(r - s + 1) - 1]\), and

\[
F(x, t) = (f_1(x), t), \quad f_i(x) = f(x) + t(g(x) - f(x)), \quad t \in [0, 1],
\]

we have

\[
N^*_g(f_i) \frac{\partial f_i}{\partial t} = \sum_{i=1}^k (f_i) \frac{\partial f_i}{\partial y} F^*(y_{p-k+j}) + \sum_{i=1}^{p-k} (x_i) \frac{\partial f_i}{\partial y} [F^*(y_i)]^s,
\]

where \((x_i)_i, i = 1, \ldots, p-k\) denote the first \(p-k\) coordinate functions of \(F(x, t)\), and \(y = \{y_1, \ldots, y_p\}\) is the system of local coordinates at \((\mathbb{R}^p, 0)\).

Let \(\eta: (\mathbb{R}^n \times \mathbb{R}^p \times \mathbb{R}, 0) \to (\mathbb{R}^n \times \mathbb{R}^p \times \mathbb{R}, 0)\) be the vector field defined by

\[
\eta(t, x, y) = \eta_1(t, x, y) + \eta_2(t, x, y),
\]

where

\[
\eta_1(t, x, y) = \frac{1}{N^*_g(f_i)} \left[\sum_{i=1}^k (f_i) \frac{\partial f_i}{\partial y} y_{p-k+j} \frac{\partial}{\partial y_j} \right]
\]

and

\[
\eta_2(t, x, y) = \frac{1}{N^*_g(f_i)} \left[\sum_{i=1}^{p-k} (x_i) \frac{\partial f_i}{\partial t} (x_i) \frac{\partial}{\partial y_i} \right].
\]

From Lemma (3.3), it follows that \(\eta_2\) is of class \(C^1\), while \(\eta_1\) is only \(C^{l-1}\).

However, using the function \(p(x, y)\) of Lemma (3.8), we may modify \(\eta_1\) to obtain a \(C^l\)-vector field. We define
\[\tilde{\eta}_1(t, x, y) = p(t, x, y)\eta_1(t, x, y). \]

Since \(\tilde{\eta}_1 \) coincides with \(\eta_1 \) in a conic neighbourhood of the graph of \(F(t, x) \), equation \(\partial f_i / \partial t = p \cdot \eta_1 + \eta_2 \) also holds.

The result follows as in Proposition (3.1), by integrating the vector fields.

\[(3.9) \text{ P}r\text{oposition. Let } f: \mathbb{R}^n, 0 \to \mathbb{R}^p, 0 \text{ be of corank } k: \]

\[(x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_{p-k}, f_1(x), \ldots, f_k(x)), \]

where \(f_j \) are homogeneous of degree \(r_j \).

If \(I_{q}(f) \) is elliptic, \(f \) is \((r + l - 1) - C^l - \mathcal{C} \)-determined \((l \geq 1) \), \(r = \max r_j \).

\[\text{P}r\text{of. Let } \mathcal{G} = r_1 . r_2 r_k \text{ and } \mathcal{H}_m = \prod_{i+m} r_i. \text{ The convenient control function is given by } \]

\[N_{q}^{**}(f) = (f_1)^{2\mathcal{G}_1} + \ldots + (f_k)^{2\mathcal{G}_k} + (x_1)^{2\mathcal{G}} + \ldots + (x_{p-k})^{2\mathcal{G}}. \]

The rest of the proof is just as in Proposition 3.7.

\[(3.10) \text{ R}e\text{mark. Using similar arguments as in Remark 3.5, we conclude that the estimates of Proposition 3.9 are exact. Thus, if } f \text{ is } (r + l_0 - 2) - C^{l_0} - \mathcal{C} \text{-determined for some } 2 \leq l_0 < \infty \text{, then } f \text{ is in fact } (r + l_0 - 1) - C^\infty - \mathcal{C} \text{-determined. } \]

\[\text{Case 3. } \mathcal{G} = \mathcal{H}. \]

We are still considering \(f \) as in (*) Let

\[r_0 = \max \{ q \mid d_i \in m^R_q, \ i = 1, \ldots, L \}, \]

where \(d_i = \det M_i, p \times p \)-minor of \(df_x \).

Let \(s \) as before.

If \(I_{\mathcal{G}}(f) \) is elliptic, there exist constants \(\alpha > 0, r > 0 \), such that:

\[N_{\mathcal{H}}^{*}(f) = (d_1^2)^2 + (d_2^2)^2 + \ldots + (d_L^2)^2 + (f_1^2)^2 + \ldots + (f_k^2)^2 + \ldots + (x_{s_1}^2)^2 + \ldots + (x_{s_k}^2)^2 \geq \alpha |x|^{2r}. \]

Clearly, \(r \geq s r_0 \) and \(r_0 \geq k(s - 1) \).

With these assumptions, it is possible to obtain a result that enforces several variables, but gives good estimates.

\[(3.11) \text{ P}r\text{oposition. Let } \]

\[N_1 = \frac{r}{s} + l(r/s - r_0 + 1) - (k - 1)(s - 1) \quad \text{and} \quad N_2 = \frac{r}{r_0} + l(r/r_0 - s + 1) - 1, \]
then \(f \) is \(N - C^l - \mathcal{K} \)-determined, where \(N \) is the smallest integer greater than or equal to the max \(\{ N_1, N_2 \} \).

Proof. For simplicity, we shall assume \(p = k \).

For any \(g \) such that \(j^N_g(0) = j^N f(0) \), \(N = \max \{ N_1, N_2 \} \), we consider the following unfolding of graph of \(f \)

\[
F: (\mathbb{R}^n \times \mathbb{R}, 0) \to (\mathbb{R}^n \times \mathbb{R}^p \times \mathbb{R}, 0) \\
(x, t) \mapsto (x, f_t(x), t), \quad t \in [0, 1],
\]

where \(f_t(x) = (1 - t)f(x) + t g(x), \quad t \in [0, 1]. \)

We aim to find \(C^l \) retractions \(h \) and \(k \) of \(\text{id}_{\mathbb{R}^n} \times \mathbb{R} \) and \(\text{id}_{\mathbb{R}^n} \times \mathbb{R}^p \times \mathbb{R} \), respectively, such that the following diagram commutes:

\[
\begin{array}{ccc}
(\mathbb{R}^n, 0) & \xrightarrow{(\text{id}, f)} & (\mathbb{R}^n \times \mathbb{R}^p, 0 \times 0) & \xrightarrow{\pi_{\mathbb{R}^n}} & (\mathbb{R}^n, 0) \\
\uparrow^h & & \uparrow^k & & \uparrow^h \\
(\mathbb{R}^n \times \mathbb{R}, 0 \times I) & \xrightarrow{F} & (\mathbb{R}^n \times \mathbb{R}^p \times \mathbb{R}, 0 \times 0 \times I) & \xrightarrow{\pi_{\mathbb{R}^n} \times \mathbb{R}} & (\mathbb{R}^n \times \mathbb{R}, 0 \times I)
\end{array}
\]

If we can do so, then

\[h_1: (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0) \quad \text{defined by} \quad h_1(x) = h(x, 1) \quad \text{and} \]
\[k_1: (\mathbb{R}^n \times \mathbb{R}^p, 0 \times 0) \to (\mathbb{R}^n \times \mathbb{R}^p, 0 \times 0) \quad \text{defined by} \quad k_1(x, y) = k(x, y, 1), \]

will give a \(C^l - \mathcal{K} \)-equivalence between \(f \) and \(g \).

We shall construct \(h \) and \(k \) in a neighbourhood of \(t = 0 \) as follows:

Since

\[
N^*_\mathcal{K}(f_t) \frac{\partial f_t}{\partial t} = (N^*_\mathcal{K}(f_t) + N^*_\mathcal{K}(f_t)) \frac{\partial f_t}{\partial t},
\]

\[
N^*_\mathcal{K}(f_t) = \sum_{i=1}^L (d_i^p)^2 \quad \text{and} \quad N^*_\mathcal{K}(f_t) = \sum_{j=1}^p (f_t^{r_0})^j_j,
\]

we can proceed as in Propositions 3.1 and 3.7, to obtain the equation:

\[
(3.12) \quad \frac{\partial f_t}{\partial t} = df_t \left[\sum_{i=1}^L \frac{d_i^{2s-1}}{N^*_\mathcal{K}(f_t)} \frac{\partial f_t}{\partial x_i} \right] + \left[\sum_{j=1}^p \frac{(f_t^{r_0})^{2s-1}}{N^*_\mathcal{K}(f_t)} f_t^{r_0}(y_i) \right].
\]

To complete the proof, it remains to find germs of \(C^l \) vector fields

\[
\xi: (\mathbb{R}^n \times \mathbb{R}, 0) \to (\mathbb{R}^n \times \mathbb{R}, 0), \quad \pi_{\mathbb{R}^n} \xi = \frac{\partial}{\partial t}, \quad \pi_{\mathbb{R}^n} \xi(0, t) = 0, \quad \text{and}
\]

\[\eta: (\mathbb{R}^n \times \mathbb{R}^p \times \mathbb{R}, 0) \rightarrow (\mathbb{R}^n \times \mathbb{R}^p \times \mathbb{R}, 0), \]
such that \(\xi \) is a lift for \(\eta \) over \(F \), that is \(dF(\xi) = \eta \circ F \).

So let,

\[\xi(x, t) = -\xi(x, t) + \frac{\partial}{\partial t}, \]

where

\[\xi(x, t) = \frac{1}{N^*_X(f_t)} \left[\sum_{i=1}^{L} d_i^{2s-1} \ast M \frac{\partial f}{\partial t} \frac{\partial}{\partial x_i} \right] \quad \text{and} \]

\[\eta(x, y, t) = -\xi(x, t) + \bar{\eta}(x, y, t) + \frac{\partial}{\partial t}, \]

where

\[\bar{\eta}(x, y, t) = \frac{1}{N^*_X(f_t)} \left[\sum_{j=1}^{J} (f_j)^{2r_0-1} \frac{\partial f}{\partial t} y_j \frac{\partial}{\partial y_j} \right]. \]

Then

\[dF(\xi) = \left(-\xi, df(-\xi) + \frac{\partial f}{\partial t}, \frac{\partial}{\partial t} \right). \]

From equation (3.12), it follows that \(dF(\xi) = \eta \circ F \).

To show \(\xi \) is of class \(C^l \) and \(\eta \) is of class \(C^{l-1} \), it is enough to observe that

\[\left| \frac{\text{grad} N^*_X}{N^*_X} \right| \leq \frac{C}{|x|^2}, \]

where \(\lambda \leq \max \{ \lambda_1, \lambda_2 \}, \lambda_1 = r/s - r_0 + 1 \) and \(\lambda_2 = r/r_0 - s + 1 \), and proceed by induction as in the proof of Lemma (3.3).

Using the function \(p(x, y, t) \) of Lemma 3.8, we may now modify \(\eta \) to obtain a \(C^l \)-vector field. We define

\[\gamma = -\xi + p \cdot \bar{\eta} + \frac{\partial}{\partial t}. \]

Since \(\gamma \) coincides with \(\eta \) in a conic neighbourhood of graph of \(f_t \), the equation \(dF(\xi) = \gamma \circ F \) also holds.

These vector fields are clearly integrable, hence determine \(C^l \)-diffeomorphisms \(H \) and \(K \) in \(\mathbb{R}^n \times \mathbb{R}, 0 \) and \(\mathbb{R}^n \times \mathbb{R}^p \times \mathbb{R}, 0 \), respectively.

The properties of \(\xi \) and \(\gamma \) imply that \(\pi_{\mathbb{R}^n} H = h \) and \(\pi_{\mathbb{R}^n} \circ K = k \) are the desired retractions.
(3.13) **Proposition.** Let \(f: (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0) \) be given by

\[
(x_1, \ldots, x_n) \to (x_1, \ldots, x_{p-k}, f_1(x), \ldots, f_k(x)),
\]

where \(f_j \) are homogeneous of degree \(r_j \) and \(r = \max r_j \).

If \(I_{\mathcal{X}}(f) \) is elliptic (or equivalently, if \(N_{\mathcal{X}}(f) \) satisfies a Lojasiewicz condition), then \(f \) is \((r+l-1) - C^l - \mathcal{X}\)-determined \((1 \leq l < \infty)\).

Furthermore, small deformations of \(f \) of degree \(r \) are \(C^0 - \mathcal{X}\)-trivial.

The following corollary follows from Propositions (3.4), (3.9), (3.13) and from the Lojasiewicz Inequality for analytic functions (Proposition (2.4)).

(3.14) **Corollary.** Given \(f \) as in (3.13) for all \(l, 1 \leq l < \infty \) and \(r = \max r_j \):

(a) If 0 is an isolated singular point of \(f \), then \(f \) is \((r+l-1) - C^l - \mathcal{R}\)-determined.
(b) If \(f^{-1}(0) = \{0\} \), then \(f \) is \((r+l-1) - C^l - \mathcal{G}\)-determined.
(c) If 0 is an isolated singularity in \(f^{-1}(0) \), then \(f \) is \((r+l-1) - C^l - \mathcal{X}\)-determined.

Moreover, with the hypothesis of (a), (b) or (c), it follows, respectively, that small deformations of order \(r \) are \(C^0 - \mathcal{G}\)-trivial, \(\mathcal{G} = \mathcal{R}, \mathcal{G} \) or \(\mathcal{X} \).

(3.15) **Example.** \(f(x, y, z) = (ax^m + by^m + cz^m, xyz) \), \(m \geq 3, \ a \neq 0, \ b \neq 0, \ c \neq 0 \). The usual procedure of computing the tangent space to the \(\mathcal{X}\)-orbit of \(f \) shows easily that \(f \) is \(2(m-1) - \mathcal{X}\)-determined.

So, \(f \) is \((m+l-1) - C^l - \mathcal{X}\)-determined, for all \(1 \leq l < m-1 \).

This is a sharp result.

REFERENCES