AN UPPER BOUND ON THE DOMINATION NUMBER OF A GRAPH

DÁNUT MARCU

Introduction.

Graphs, considered here, are *finite* and *simple* (without loops or multiple edges), and $\lceil 1 \rceil$, $\lceil 2 \rceil$ are followed for terminology and notation.

Let G = (V, E) be an undirected graph with V the set of vertices and E the set of edges. A graph is said to be complete, if every two vertices of the graph are joined by an edge. We shall denote by K_n the complete graph on n vertices. The complement G^c of G is the graph with vertex set V, two vertices being adjacent in G^c if and only if they are not adjacent in G. For any vertex v of G, the neighbour set of v is the set of all vertices adjacent to v; this set is denoted by N(v). A vertex is said to be an isolated vertex, if its neighbour set is empty. A set of vertices in a graph is said to be a dominating set, if every vertex not in the set is adjacent to one or more vertices in the set. The domination number $\beta(G)$ of G is the size of the smallest dominating set. The well known upper bound for $\beta(G)$ is due to V. G. Vizing [1], [4] and is as follows:

$$\beta(G) \leq n + 1 - \sqrt{1 + 2m},$$

where n = |V| and m = |E|. But, if $\beta(G) > 2$, this bound can be attained only for graphs having at least an isolated vertex. In [3], we have suggested an upper bound for $\beta(G)$, which can be attained for graphs with no isolated vertices and having $\beta(G) > 2$. More exactly, we have proved that for a simple graph G = (V, E) without isolated vertices and for which $\beta(G) > 2$, we have

$$\beta(G) \leq \lceil (n+1-\delta)/2 \rceil$$

where

$$\delta = \min_{v \in V} |N(v)|,$$

and $\lceil x \rceil$ denotes the smallest integer greater than or equal to the real number x. Our aim, in this note, is to suggest another upper bound for $\beta(G)$, when $\beta(G) \ge 2$.

The main result.

In the sequel, we shall denote

$$\Delta = \max_{v \in V} |N(v)|,$$

and for any real number x, [x] denotes the greatest integer less than or equal to x.

LEMMA.

$$\beta(G^c) \leq |\delta(\Delta-1)/(n-1)| + 2.$$

PROOF. Obviously, if G contains at least an isolated vertex, then $\delta = 0$, $\beta(G^c) = 1$ and the lemma is proved. So, suppose that G does not contain isolated vertices.

Let $v \in V$ be, such that $|N(v)| = \delta$, and $W = V - (N(v) \cup \{v\})$. If W is empty, then, by the choice of v, we must have $|N(u)| \ge \delta$ for each $u \in N(v)$, that is, $G = K_n$. Thus, $\delta = \Delta = n - 1$, and every vertex of G^c is isolated.

Consequently, $\beta(G^c) = n$, and the lemma is proved.

Let then $|W| \ge 1$. Let $u \in N(v)$ and $D = N(v) \cap N(u)$.

Clearly, $D \cup \{v\} \cup \{u\}$ is a dominating set of G^c , that is,

$$\beta(G^c) \leq 2 + |D|.$$

On the other hand, we have $W \cap N(u) = N(u) - (D \cup \{v\})$, that is,

$$(2) |W \cap N(u)| \leq \Delta - |D| - 1.$$

Hence, from (1) and (2), we obtain

$$|W \cap N(u)| \le \Delta + 1 - \beta(G^c), \text{ for each } u \in N(v).$$

Let $w \in W$ and $\tilde{D} = N(v) \cap N(w)$. Obviously, $\tilde{D} \cup \{v\} \cup \{w\}$ is a dominating set of G^c , that is,

(4)
$$\beta(G^c) - 2 \le |N(v) \cap N(w)| \text{ for each } w \in W.$$

From (4), it follows that

(5)
$$|W| [\beta(G^{c}) - 2] \leq \sum_{w \in W} N(v) \cap N(w).$$

But,

(6)
$$\sum_{w \in W} |N(v) \cup N(w)| = \sum_{u \in N(v)} |W \cap N(u)|.$$

Hence, from (3), (5), and (6), we obtain

$$|W| \lceil \beta(G^c) - 2 \rceil \leq \lceil \Delta + 1 - \beta(G^c) \rceil |N(v)|$$

or

$$(n-\delta-1)\lceil\beta(G^c)-2\rceil \leq \delta\lceil\Delta+1-\beta(G^c)\rceil$$

implying

$$\beta(G^c) \leq \delta(\Delta-1)/(n-1)+2$$
.

that is,

$$\beta(G^c) \leq \left| \delta(\Delta - 1)/(n - 1) \right| + 2.$$

THEOREM.

$$\beta(G) \leq \left[(n - \Delta - 1)(n - \delta - 2)/(n - 1) \right] + 2.$$

PROOF. The theorem follows from the lemma, since $(G^c)^c = G$.

Example. Let us consider the graph $G = K_1 + K_{1,4}$.

It is easy to see that $\beta(G) = 2$. For this graph, our upper bound gives the correct value, whereas Vizing's bound is larger.

ACKNOWLEDGEMENT. I wish to thank the referee for his helpful comments, kindness and interest concerning this paper.

REFERENCES

- 1. C. Berge, Graphes et hypergraphes, Dunod, Paris, 1970.
- J. A. Bondy and U. S. R. Murty, Graph theory with applications, Macmillan Press Ltd., London, 1976.
- 3. D. Marçu, A new upper bound for the domination number of a graph, Quart. J. Math. Oxford Ser. (2) 36 (1985), 221-223.
- 4. V. G. Vizing, An estimate of the external stability number of a graph, Dokl. Akad. Nauk. SSSR 164 (1965), 729-731.

FACULTY OF MATHEMATICS UNIVERSITY OF BUCHAREST ACADEMIEI 14 70109-BUCHAREST ROMANIA