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AN UPPER BOUND
ON THE DOMINATION NUMBER
OF A GRAPH

DANUT MARCU

Introduction.

Graphs, considered here, are finite and simple (without loops or multiple
edges), and [1], [2] are followed for terminology and notation.

Let G = (V, E) be an undirected graph with V the set of vertices and E the
set of edges. A graph is said to be complete, if every two vertices of the graph
are joined by an edge. We shall denote by K, the complete graph on n
vertices. The complement G° of G is the graph with vertex set V, two vertices
being adjacent in G¢ if and only if they are not adjacent in G. For any vertex
v of G, the neighbour set of v is the set of all vertices adjacent to v; this set is
denoted by N (v). A vertex is said to be anisolated vertex, if its neighbour set
is empty. A set of vertices in a graph is said to be a dominating set, if every
vertex not in the set is adjacent to one or more vertices in the set. The
domination number B(G) of G is the size of the smallest dominating set. The
well known upper bound for B(G) is due to V. G. Vizing [1], [4] and is as

follows:
BG)En+1—/142m,

where n =|V| and m = |El. But, if §(G) > 2, this bound can be attained
only for graphs having at least an isolated vertex. In [3], we have suggested
an upper bound for §(G), which can be attained for graphs with no isolated
vertices and having B(G) > 2. More exactly, we have proved that for a
simple graph G = (V, E) without isolated vertices and for which B(G) > 2,
we have

BG) = [(n+1-05)2],
where

& = minIN@),

veV
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and [x] denotes the smallest integer greater than or equal to the real
number x. Our aim, in this note, is to suggest another upper bound for
B(G), when B(G) = 2.

The main result.
In the sequel, we shall denote

4 = max|N @),
veV

and for any real number x, | x| denotes the greatest integer less than or
equal to x.

LEMMA.
B(G) < |64 -1)/(n—1)] +2.

ProOF. Obviously, if G contains at least an isolated vertex, then é = 0,
B(G°) =1 and the lemma is proved. So, suppose that G does not contain
isolated vertices.

Let v € V be, such that IN(v)l = 6, and W =V — (N(v) U {v}). If Wiis
empty, then, by the choice of v, we must have |N(u)l =6 for each
u € N(v), thatis, G = K,. Thus, é = 4 = n—1, and every vertex of G°is
isolated.

Consequently, f(G°) = n, and the lemma is proved.

Let then |Wl = 1. Let u € N(v) and D = N(v) N N(u).

Clearly, D U {v} U {u} is a dominating set of G*, that is,

@) B(G) < 2+IDI.

On the other hand, we have WN N(u) = N(u) — (D U {v}), that is,
@) IWNN@u)l <4-IDl-1.

Hence, from (1) and (2), we obtain

3) IWNN@u)l £ 4+1-pB(G), foreach ue N(v).
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Let we W and D= N(v) N N(w). Obviously, DU {v} U {w} is a
dominating set of G, that is,

@) B(G)—2 <IN@) N N(w)| foreach we W.

From (4), it follows that

) IWI[B(G)—-2] < Z‘WN(v)nN(w)-
But,

6 IN Nw)l = )
(6) w;y (v) UN(w) ue;(v)|WﬂN(u)|

Hence, from (3), (5), and (6), we obtain

IWI[B(G)—2] < [4+1-BG)]INW)

or
(n—06-1)[B(G)—2] £ [4+1-B(G)]
implying
B(G)<6(4—-1)/(n—-1)+2,
that is,
B(G) <64 -1)/(n—1)] +2.
THEOREM.

BG) | m—4-1)m—-5-2)/n-1)]+2.

ProoF. The theorem follows from the lemma, since (G°) = G.

ExaMPLE. Let us consider the graph G = K; + K, 4.
Itis easy to see that B(G) = 2. For this graph, our upper bound gives the
correct value, whereas Vizing’s bound is larger.
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