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REGULAR h-RANGES AND
WEAKLY PLEASANT h-BASES

CHRISTOPH KIRFEL AND ERNST S. SELMER

1. Introduction.
For the definition of the ordinary h-range n,(4,) and the regular
h-range g,(A,), we refer to Selmer [7]. There we introduce

ho = b = min {h € NI ny(4,) 2 &},

as the smallest h for which A; is “admissible”. For regular h-ranges, we
shall similarly denote the smallest admissible h by hy = AP = . In [7],
we also define the important ““stabilization” bound h = h; = hy, — 1, as the
minimal 4 for which

(1.1) Myt 1(Ax) = ny(Ay) +ax, h = hy.

A basis A, is called pleasant if one “minimal” representation always
coincides with the unique regular representation. It is clear that

A, pleasant = n,(A,) = gn(4,), Vhe N.
This implication cannot be reversed. A basis 4, such that
(1.2) ny(Ay) = gu(4s), Vhe N,
will be called weakly pleasant.
Any basis A, = {1,a,} is pleasant. For A, ={1,a,,a;}, we put
as =qa, —s,.0 < s <a,. Itis known that 4, is pleasant if and only if

(1.3) q>s.

For non-pleasant A;, we have n,(4;) > g,(4;) for h = hy = h§) = F
=a, +[as/a,] —2, so a weakly pleasant basis A; is automatically

pleasant.
It was proved by Zéllner [9] that

1.4) k=4, A, pleasant = {1,a,,a,} pleasant.

Received June 25, 1985.



REGULAR h-RANGES AND WEAKLY PLEASANT h-BASES 31

Several years ago, Selmer was able to weaken the condition to *“A4, weakly
pleasant”, by showing that

(1.5) {1,02,‘13} non-pleasant = n,(4,) > g,(4;), h = K.

Since this result is superseded by Theorem 3 below, we shall not give
Selmer’s original proof, which has appeared in [8].
Later, Zollner [10] generalized (1.4) to

1.6) k=4, A, pleasant = {1,a,,q;} pleasant, 3 <i<k.

He pointed out that this cannot be reversed: {1,2,4} and {1,2,5} are
pleasant, {1,2,4,5} not. The basis element a, is essential: {1,2,3,4} is
pleasant, {1, 3,4} not.

One main object of the present paper is again to weaken the condition of
(1.6) to “4, weakly pleasant”. This problem is solved in Section 4, due to
Kirfel. His results are based on Theorem 1, established by Selmer several
years ago. Section 3 on weakly pleasant bases is also due to Selmer.

2. The regular h-range.

By regular representations, we first use the largest basis element g, as
often as possible, then a,_; as often as possible, etc. This implies that
g;o(Ak) contains just one addend a,, which is removed in gj _,(4;). In
general, it is clear that

2.1) gne1(A) =g A) +a, h2ho—1=hy.

This should be compared with (1.1) for ordinary h-ranges.

The first explicit determination of g,(4,) was given by Hofmeister
[1, Satz 1]. His proof was extremely short and almost impossible
to understand. Readable but less accessible versions appeared in [3], [4],
[5].

We shall give an alternative formulation, which is easier to use and
perhaps simpler to prove. In addition, we get an explicit expression for Ro.

We perform the divisions

as = fya; +r,, 0sr,<a,
as+r; =fiaz+r;, 0=r;<a;
(22) ai+1+r,~-1 =ﬁai+ri, O,—__<-ri<al'

..............................................

G +Ty—z = fi-1Gk—1+Tk-1, O0ST-1 <1
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Since a; = 1, we can also formally put f; = a,, r, =0.

THEOREM 1.
(2.3) Bo=kP =a,+fo+fs+...+fioi—k+1,

gr,d) =@, -2)+(f2—Daz+...+ (fi-1 — Va1 +1 - g

2.4
@4) =24, — (re—y +2).

Proor. From (2.1), we get
(2.5) gn(4y) = (h—ho)ay +g5 (Ar), h2 ho — 1.
By induction, it follows immediately from (2.2) that
2.6) (@—-2)+(f,—-Vay+...+(fi—Da;=a;+1—(ri+2)<a;;+,

for i =1,2,...,k—1. This shows that the representation (2.4) is regular,
and also proves the last equality of (2.4). In particular,

n=(a,—1)+(fr,—1a+...+(fi-1—Da-1 < @

is a regular representation whose coefficient sum equals the %, of (2.3).
Since n < a,, this h, is consequently a lower bound for A®.

Now Theorem 1 is trivially correct for k = 2, and we may prove it by
induction, assuming it to be correct for 4,_;. To prove (2.3), we must then
show that

W =h"Y+(fi-1-1)

equals Ai¥. Combining (2.5) and (2.4), both with A, replaced by 4;_;, we
get

2.7) gylAx-1)=(a:=2)+(fa—Daz+...+ (fi-2—Dax_2 + fi-10k-1-

From (2.6) for i = k —1, it follows that
gyldi-1)=ar+a_ 1 — (-1 +2) 2 a,—1,

showing that &’ is also an upper bound for A®. This completes the proof
of (2.3).

Substituting ' = ko = A® > h¢-D in (2.7), and again using (2.5) for
A4, We get

8hy—1Ax-1) = (@2 = 2)+ (- 1az +... + (fr-1 —1)ar-1.
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Then using (2.5) for 4, with h = hy — 1, we finally get (2.4), and Theorem 1
is proved.

It is also easily seen that our result and the original formulation of
Hofmeister are equivalent.

3. Weakly pleasant bases.

These are defined by (1.2). It is of course particularly interesting to
determine those bases which are weakly pleasant without being pleasant.
The first such example, 45 = {1,2, 5, 7,10}, was discovered by E. Deinert
and reproduced in Hofmeister’s lecture notes [3]. In a later set of notes [4],
Hofmeister put the name ‘“‘schwach angenehm” to the bases satisfying
(1.2). So far, no theoretical study of such bases has appeared.

The weakly pleasant bases (including the pleasant ones) are characterized
by the following

THeOREM 2. The basis A, is weakly pleasant if and only if the following
three conditions are satisfied:

(3.1) Y = h® = ho, (say)
(3.2) nho_l(Ak—l) = gho-l(Ak—l),
(33) hl = ho'—l.

Proor. The necessity of (3.1) is clear, since
(3.4) AP > Hp =hy = n, (4y) 2 a > g, (Ay)-

The condition (3.2) is part of (1.2), since n, _,(4;) = ny,-1(Ae-1) and
&ho—1(A1) = g, _1(Ak-1)-

We know by (2.1) that g,(4,) is stabilized from h=hP -1 =h,—1,
and will thus “keep pace” with n,(4,) for h = hy—1 if and only if (3.3)is
satisfied, cf. (1.1).

The proof of Theorem 2 will then be complete if we can show that
n,(Ay) = g,(A4,) for h < hy— 1. And this follows from (3.2) and the general
result

3.5) Mt 1 (Ax) = gh+ 1 (Ai) = mu(Ar) —84(A4r), h2Z 1.
To prove this, we first note that the alternative to = in (1.1) is >, since
(3.6) My 1(Ay) 2 my(A) +a, hZho—1.

If then h 2 A —1 (= h¥ —1), the correctness of (3.5) is an immediate
consequence of (2.1) and (3.6).
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Let next h<h®P—1. We may assume h=hY =h{P, since
always n,(4,) = g,(4;). Then 7Y’ < h¥ —1, and we can find an i with
3 <i <k such that

R —1<h<hg+v—1,
Then h+1 < A¢* ", hence by (2.1):
Eh+ 1(Ai) = gr+1(4) = 84(4)) + a; = gn(4)) + a;.

As before, h = HY — 1. It is even possible that h = h{’ —1 with j > i, but
in any case (3.6) gives

Ny 1 (Ay) 2 ny(Ai) + a;,

and we are through.

To show that the three conditions (3.1-3.3) are independent, we list the
following bases 4, which fail to satisfy just one of the conditions (in turn),
and which are not weakly pleasant:

{1 3,4, 7} 2 3 1 n(43) =g1(43) =1, "2(A4) =8 > g,(4y) =5
{1,3,4,10} 3 3 2 ny(4;)=8>g,(43) =
{1,2,4,5} 2 2 2 ni(43)=g:(435)=2, nz(A4) =10 > gz(A4) =

If the partial basis A,_; is pleasant, the conditions (3.1-3.2)
are automatically satisfied, and we are left with the condition (3.3),
P = h$ —1, for weak pleasantness of A4,. In particular, this is the
situation for k = 4, since then 4,_; = A; must be pleasant by (1.5). It is
shown in [8] that A, is weakly pleasant but not pleasant if and only if the
following conditions are satisfied (cf. (2.2)):

a,=aaz+b, 1£b<r;<a,<a+b
a+b—r,+1 £, +1)bD@+b—-1)—a,—r,+2.

As usual, {x) denotes the smallest integer =x.
An important contribution to the establishment of the final inequality
was made by Hans-Georg Beuter.
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The first such bases 4, are given by

ho 4 5 6

a | 2 3|13 3|12 3 4 4
a; | 7 8|11 11| 9 11 11 15
a, |15 17123 24 |28 34 34 33

4. Non-pleasant partial bases {1, a,, a;}.

It was first observed by Beuter that the result (1.5) under certain
circumstances can be generalized to the case when a partial basis {1,4a,,4a;}
is non-pleasant for some i with 3 <i<k. We put a;=Qa,—S,
0 £ S < a,, wherenow Q < § by (1.3). Assume that a; really appears in the
regular representation (2.4) (always for i =k, otherwise if f; > 1). It is
then simple to see that ny (4) > gy (4), by transforming the following
three terms of gy (4,) +1:

(a;—1)+(f—Daz+a;=(a,—1-8)+(f2 —1+Q)a,.

Since Q < S, the coefficient sum is reduced with at least 1, meaning that
85,(4;) + 1 has a (non-regular) ho-representation by A,.

This argument fails if i < k and f; = 1. All the same, we can prove the
following generalization of (1.5):

THEOREM 3. If the partial basis {1,a,,a;} is non-pleasant for some i with
35igk, then

4.1) ny(Ai) > gn(4p), h = hg
4.2) ny(Ay) 2 gu(dy) +a;—1, hz= ﬁg)~
COROLLARY.

k = 4, A, weakly pleasant = {1,a,,a;} pleasant, 3 Sisk.

This is the promised strengthening of Zéllner’s result (1.6).
To prove Theorem 3, we use the following

LemMA. Every integer n such that
ap—l §n<ap’ 1<P§k’

can be written in the form
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(4.3) n = ap—tp..lap_l—'tp_zap_z— co.—ta—t;,

where the integer coefficients t; satisfy the conditions

() -1=4=f-1, 1<jsp-1; 0st;Sa—-1.
(ii) tl'—"—l = t1+1=t1+2=...=tL_1=0, tL>O, L_S_p—"l.
(iii) If m = min{u > 1l t, = —1}, then

t,,,_lam_l +tm_zam_2+...+t2a2+t1 > 0

Here the integers f; are taken from the algorithm (2.2). The statements
(ii) and (iii) may of course be empty.

For 1 <n<a,, hence n=a,— (a, —n), the above conditions are
satisfied. We may therefore use induction on n, assuming that the Lemma
holds for all n < N < a. If then a,_; £ N < a,, we first write

4.4) N=a,—e, 1a,_1—€, 28, ;—...—eya,—¢e,

where a,— N =) e;a; is the regular representation by A4,_;. Clearly
0<e; £a,—1, and further 0 < ¢; < f; for j > 1, since Zejaj is regular
and (f;+1)a; > a;+, by (2.2).

If already ¢; < f;—1 for all j > 1, we are finished. Otherwise, there
is a maximal index 1t £ p—1 such that e, =f. If t=p—1, we get
N=a,—fp-10,-1 =T, 1—Tp,-2<ap_q, 50 T<p-—1. If ¢=f—1
for all j > 7, we get the same contradiction

N=a,—(fp-1-Vap-y—..—(fs1— Va1 —fa =1,y ~1 1 < ayy.

There is consequently a minimal index T with 1 < T <p such that
er £ fr—2. We write

(4.5) N =ap—ep_lap._1—...—er+la1+1‘“(eT+1)aT+NI.

Since ) e;a; is regular, a comparison with (4.4) shows that N’ > 0. On the
other hand,

N' =ar—(fr-1—VDar-, "f---"(fz+1 -1a+,—fea,—e_1a,_3—...—€

=rp_1—Te—1—€_18;:—y—...—€ <ar-; 54, ,<N.

We can now use the induction hypothesis on N'. If a,,_; < N' < a,,
then

»

' ’ ’
N =a,~t,_ 10, 1—t, 28, ,—...—t2a,—t},
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with ¢; satisfying (i)~(iii). Substitution of N’ into (4.5) shows that we now
have an expression (4.3) for N if we put

0t =¢=fi—1, ji=T+1,...,p—-1
O<tr=er+1=fr—1
0=t; < f;—1, j=w+1,...,T-1 (fw<T-1)
t,=—1
t; =t ji=1,...,w—1.

This completes the proof of the Lemma.

We can now prove Theorem 3. Here (4.1) is trivial if A > h{ (replace
k by i in (3.4) and use (3.5)). It therefore suffices to prove (4.2) with
h=Hh) = H (say). There is then a largest x, i<k <k, such that
H = kY, with

4.6) gu(Ay) = gp(Ay) = (@, - 2) + (2~ Day+... +
' +(fi-1—Da;_, +1-a,.

We must show that for 1<4<aq;~1, there exists a (not necessarily
regular) representation of g5 (A4,)+ 4 by A, with at most H addends. For
this purpose, we apply (4.3) to n=a,—a;+ 4. Clearly 0<n<a,, and so
1<p<«k. Substitution of a,=n+a;— 4 into (4.6) gives

gH(A,‘)'*"A =(02—2—t1)+(fz"'l—tz)az""'...+

(4.7) +(fx—l—1_ x~l)ax—l +ai+ap

(where f;=1 for j>i, and t;=0 for j=p). This representation
has the coefficient sum H +1 — Z’l’"‘ t; < H, since it is easily seen that
Zt,- > 0: By (ii), every t; = —1 is compensated by a ¢, > 0, and by (iii),
there exists at least one t; > 0 for j < m.

It then remains to examine whether the representation (4.7) is “legal”,
hence has non-negative coefficients for the elements a;. By (i), this holds for
all j > 1, but we will get a constant term —1if t; = a, — 1. Only in this
case do we need to use the fact that {1,a,,qa;} is non-pleasant. As before,
we put a; = Qa,—S, 0<S <a,, and transform the following three
terms of (4.7):

—-1+(f;-1-t))a,+a;=(a;—1-8)+(f2—-2—t:+ Q)a,.
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The resulting representation of gy(A4,)+ 4 is legal and has a coefficient
sum H+Q —-S—-Z’z’_l t;< H by (i) and Q < S, which completes the
proof of Theorem 3.

In fact, it is easily seen that Q < S can be replaced by the weaker

condition
4.8) a=Y51bja;—S, b;20, b,>0, 08 <ay; Y5 b8

In connection with Theorem 3, we finally note that the bound (4.2) is
sharp. The simplest example is given by

k=i=3, A3={1,3,4}, ho=ho=2, ny(43) =8, g2(4;5)=S5.
We now turn to a similar result which involves the whole basis 4,, even if

i<k

THEOREM 4. Let the partial basis {1,a,, a;} be non-pleasant for some i with
3<i<k, and put :

a;,=Qa,—8, 0<S<a, (hence Q £8),
6=min{S—-Q, a,—1-S}.

Then .

(4.9) n(Ay) 2 gw(4)) +a;—1+68(a—1), h= Y.

Proor. By (3.5), it suffices to prove this for h = i) = H. If 6 = 0, the
result follows from (4.2). If 6 > 0, choose d with 1 < d < 0 and N with

gu(A)+ai+(d-1)a,—1) SN = gg(4di) +a;—1+d(a,—1).
We must show that N has a (not necessarily regular) representation by A
with at most H addends. We can write
N =gu(A)+a;—1+(d—-1)a,—1)+n, 0<n<a.
To this n, we can thus apply (4.3), and get
N = (az""Z""tl—d)+(fz_"l—tz)az+...+(ﬂ_1—1_tk_1)ak_1+
+ dak + a; + ap
(where t; = 0 for j = p). This representation has the coefficient sum

'H+1—Z’l"l t; < H, and is not legal only if @, —2 —t, —d < —1. Then
N may be written as
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=Q2a,-2-t;,—d-S)+(f,-2-t,+Qa, +... +
+(fi;_1—'1'—tk..1)ak_1+dak+ap.

This is a legal representation since t; <a,~1 and d+S<6+S
<ay—1. Further 2a,-2-t,—d—S=<u,—1-S, so the coeffi-
cient sum is at most (cf. (2.3))

a,—1-S+Q+Y5 =Y +d—k+2
=H-S+Q+d-Y:'t;SH-S+Q+d<H,

sinced <3< S-0Q.

This completes the proof of Theorem 4. Again, the condition Q £ §
(making & = 0) may be replaced by (4.8). At the same time, we must then
replace J by

&' =min{S'~ Y, ‘b, a,—1-8}.

Theorem 4 has an interesting application to extremal bases A; = A%,
which for given h have the largest possible h-range n,(3)=n,(A4%). These
bases were determined by Hofmeister [2], who in particular found that

{4.10) m(3) ~ ih3

(asymptotically, as h — o0).

Hofmeister also determined the extremal hy-bases A; (that is, bases
which are admissible for a given h = h,, but not for h = hy—1), and the
corresponding extremal ho-ranges I, (3), where

3
@4.11) 1, (3) ~ 33% K.

Quite surprisingly, the “simple” result (4.9), with i = k = 3, yields both
. results (4.10-4.11) as (asymptotically) lower bounds for n,(3) and I, (3).
Details are found in [6].
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