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CLASSIFICATION OF ALGEBRAIC SURFACES
WITH SECTIONAL GENUS
LESS THAN OR EQUAL TO SIX.
II: RULED SURFACES WITH dim ¢ g (X) = 2

ELVIRA LAURA LIVORNI

Introduction. _

In this paper we have considered the problem of -classifying
biholomorphically smooth, connected, projective, ruled, non rational
surfaces X with smooth hyperplane section C such that the genus g = g(C)
is less than or equal to six and dim @z(X) =2, where ¢r is the map
associated to L=K;® L. L. Roth in [12] had given a birational
classification of such surfaces.

Let L =[C] for some hyperplane section C. From the adjunction
formula, see [5], we have that

2¢—2=L-(Ky+L)

where by Ky we denote the canonical line bundle on X. If g = 0 or 1, then
X has been classified, see [10]. If g = 2 # h*'°(X), by [14, Lemma (2.2.2)]
it follows that X is a rational surface. Thus we can assume g = 3.
Since X is ruled, h*°(X) = 0 and
(*) L L pox)<8t!
8 2

see [4] and [14, p. 390]. Moreover by the classification of surfaces in P?
and P3, it follows that h°(L) = 5. Our classification is essentially based on
the adjunction process which has been introduced by the Italian school and
which has been particularly studied by A.J. Sommese [14]. Let ¢, =7 s
be the Remmert—Stein factorization of ¢;,. When dimep(X) =2,
Sommese, in [14, p. 392], has proved that there exists a pair (X, L) such
that:

(2) X is obtained by blowing up a finite set F of pointson X, n: X — X.
(b) Every smooth hyperplane section C € | L| is the proper transform of a
hyperplane section C € | LI.
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10 ELVIRA LAURA LIVORNI

(c) L is ample and spanned off F.

(d) L is very ample if H'(X,L) = 0.

(e) If h*°(X)=0, then s is an embedding unless there is a smooth
hyperelliptic C € |L|. This can happen only in the cases (2.5.1) and
(2.5.2) of [14, p. 394].

Let L=Ky®L and ¢, =¢k,gs Then ¢p=s We call X the
minimal model of X relative to L. It has the property that there is no
irreducible curve 2 « X suchthat #- 2 = —1 and L -2 = 1. Wecall
(X, L) the minimal pair.

Moreover by the construction of X in [14] it follows that C is smooth.
Our main goal is to classify the pairs (X, L).

We shall mention that our classification has a slight overlap with the
classification that P. Ionescu [6] has given for projective surfaces of
~ sectional genus less than or equal to four. We have summarized our results
in Table 1, where e is, by [5], the invariant which characterizes 2 (E). We
wish to thank Andrew J. Sommese for suggesting the problem and Alan
Howard for helpful discussions about ruled surfaces.

0. Background material.

We have already fixed the meaning of X, L, C, X, L, C, L and L.. We
would like to fix now the following notations.

Weletd=L-L, g=g(C)=g(L), d=L-L,d=L"-L, g=g(),
=Ky Ky, =Ky Ky.

(0.1) PropOSITION. Let L be a line bundle on a smooth, connected,
projective surface X. Then:

(1) d=g+g-2,
(2) dd' < 4(g-1),
(3) d+d = ci+4(@g-1).

The proof follows using the adjunction formula [5, p. 361].

(0.2) ProPosiTION. Let X be a smooth, connected, projective surface
embedded by a very ample line bundle l into P*. Then

1-1( - 1—5)—10(g() — 1) + 123 (0x) = 2¢2.

Proor. See [5, p. 434].
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(0.3) ProposiTioN. (Castelnuovo’s inequality [2, p. 234 ff];[4].) If C is
anirreducible curve embedded in P~ and C belongs to no linear hyperplane
P2, then with d the degree of C and g the genus:

os|i= (- [=)(50)
where [ -] is the least integer function.
(0.4) ProposITION. Let X be any projective, smooth surface and let
0-E->F->G-0
be the short exact sequence obtained by tensoring the sequence
0-[C] "> 0x>0:—0
with a line bundle F, where C is a curve in X. Suppose that:

(a) G is a very ample line bundle on C,
(b) E is very ample,
(c) ker(H°(G)— H'(E)) gives an embedding of C.

Then F is very ample.
Since the proof is standard we will omit it.

(0.5) RuLep Surraces. Let X be a smooth, connected, projective,
geometrically ruled surface, i.e. a fibration n: X — C, over a curve C
whose fibres are P!. Then there exists a rank two vector bundle E (not
unique) over C and an isomorphism X = P(E), where P(E) denotes the
associated projective bundle of E. Let g be the genus of C. Let o be a
minimal section of 7, there is a line bundle £ on C and an extension E of E

by O
0.5.1) 05 0r~E->2-0
such that X = P(E) and
£ =0*0pg (1) = Oy (k)
where { is the tautological line bundle.
=—{g- {g=—degl

is an invariant of the surface X. If E is decomposable, then e = 0 and all
the values of e are possible. If E is indecomposable, then

(0.5.2) —g<es2%-2.
See [5, p. 376 and 384] and [11, p. 191].
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Let f be a fiber of n: X > C. Then every line bundle L on X is
numerically equivalent to {§ ® #*, thatis L = {2 ® £ for some integers
a,band &£ = 04(f), so

deggla(C) = 1,

L-L=—a?e+2ab and

0.5.2) 28(L)—2 = —a%e +ae + 2ab — 2b — 2a + 2ag.

The canonical line bundle Ky of X is Ky = (52 ® ¥ -2-¢) Given a line
bundle A on C we will denote its lift 7* A on X again by U. We have the
following propositions:

(0.5.4) ProrosiTION. Let X be a geometrically ruled surface over a curve
C, with invariant e = 0.
@) If Y=alg+b¥ is an irreducible curve, Y # {z, &, then a> 0,
b=a-e.
(ii) A divisor D = alz+ b isampleifand onlyif a> 0, b>a - e.

Proor. See [5, p. 382].

(0.5.5) ProposITION. Let X be a geometrically ruled surface over a curve
C, of genus g and invariant e < 0.
(@) If Y = alg+ b2 is anirreducible curve, Y % (g, &, then either a =1,
b=0oraz=2, b=3iae.
(i) A divisor D = al+ b is ample if and only if a > 0, b > }ae.

Proor. See [5, p. 382].

The determination of the very ample divisors on a ruled surface with
g 2 1, is more difficult than in the case of a rational ruled surface, i.e. a
Hirzebruch surface. There is moreover the following result which is stated
as an exercise in [5, p. 385] and it is not too difficult to prove.

(0.5.6) PROPOSITION. Let X be a geometrically ruled surface with invariant
e over an elliptic curve . Let L = {; ® . Then
() L is spannedifand onlyif b > e+2.
(ii) L is very ample if and only if b 2 e+ 3’

(0.5.7) THEOREM. Let X = P(E) be a geometrically ruled surface
over an elliptic curve &. Then L = (3 ® £° is very ample if az 1 and
b 2 max, ;, ., {3 +ke}.

Proor. See [8, Theorem (1.6)].
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(0.5.8) PROPOSITION. Let X be a geometrically ruled surface over a curve C
with g = g(C) and invariant e. Let L = {4 & %" be a line bundle on X with
a> —2. Then:
ae+2g—2+e ifez0

ST
@) h'(L) 0f0rb>{%ae+2§—2 if e <0

(i) BO(L)—h'(L) = @+ 1)(b + 1 — F — ae/2).

The proofis a direct application of the Kodaira Vanishing Theorem and
the Riemann—Roch Theorem.

By a ruled surface we mean a surface birational to a geometrically ruled
surface.

(0.6) ProrosITION. Let X be a smooth, connected surface and L an ample
line bundle on it. Suppose that h*°(X) + 0 and L-L = 2g—2. Then Ky is
trivial.

Proor. Use [14, p. 382].

(0.7) ProrosITION. Let X and L be as above. Supposethat L - L = 2g —2
and h°(L|c) = g, where C e |LI.
Then Ky is trivial.

Proor. Use [14, p. 382].
(0.8) PrOPOSITION. Let L be an ample and spanned line bundle on a smooth,

connected, projective surface X. Assume h°(L)24, L-L=5. Then
Ky ® L is spanned.

Proor. See [15, Theorem (0.8)].
(0.9) THEOREM, Let X be a smooth, connected, ruled surface and L be an

ample and spanned line bundle on it. Let C elLl, g =g(C)=g(L)=2.
Suppose that h''°(X) # 2 and that Ky ® L is spanned. Then X is rational.

ProOF. By the first Lefschetz Theorem, see [1] or [3], AV°(X) <2
Thus h':°(X) = 0 or 1. Consider the long cohomology sequence associated
to the short exact sequence

(1.1.1) 0—)Kx—’Kx®L-’KC"’O.
The Kodaira Vanishing Theorem, [5], implies h!(Ky® L)=0. By
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definition h°(K¢) = g = 2. Since Ky ® L is spanned, by restriction, K is
also spanned. Therefore

H°(Kx ® L) %> H(K¢) — 0

is exact; otherwise the image of a would have only one section and this
would contradict the fact that K is spanned. Then by (1.1.1)t follows that
h'°(X) = 0 and hence X is rational.

1. The case of dim ¢ (X) =2 and h':°(X) = 2.

Since h"°(X) =2, X is a ruled surface over a curve of genus two. By
Theorem (0.9), g = 3. Let g =3 and consider the long cohomology
sequence of

0-Ky—>KyQ@L—->K:—0.

By the facts that

(@) h*°(X) =0, since X is a ruled surface,

(b) °(K¢) =g = 3,

(c) h*(Kx® L) = 0 by Kodaira Vanishing Theorem,

(d) h*°(X) = 2 by hypothesis,

it follows that h°(Ky ® L) = 1 which contradicts the fact that K, ® L is
spanned by [14, p. 3?7]. Therefore g > 4.

Now consider (X,L). If g =4, by (*) it follows that d <4 which
_contradicts h°(L)=5 and Castelnuovo’s inequality. Therefore g = 5,6.
Again by (%) if g =5 and d = 2g—1, then h*°(X)<1. Thusif g =5,
d =7 or8and h°(L) = 5. If d = 7 then, by degree consideration X = X,
L=L, d=d=7, and h°(L)=h°(L)=5. Therefore by Proposition
(0.2) we have c? = —16. Now applying Proposition (0.1) it follows that
d’ = —7 which gives a contradiction. Now suppose that d = 8. If X = X,
then h°(L) = h°(L) = 5 and by Proposition (0.2), ¢ = —14 which con-
tradicts Proposition (0.1). If X is made by blowing up one point we get
again a contradiction in the same way. Hence g = 6. Using the fact
that d'>g—h'"°(X)—2 and & < —8 we obtain that d <10. So
7<d <10. By Castelnuovo’s inequality if d=7,8, then h°(L)=>5.
Let d=7. Then X=X, L=1, h°(L)=5, d=d=1. By Proposi-
tion (0.2), ¢2 = —24 which contradicts Proposition (0.1). If d =8, we
get contradictions in the same way in both the cases in which X =X
and X is made by blowing up one point. Therefore

d=09,10, h°L)=5.
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Using the fact that ¢2 < —8 and Proposition (0.1), we get contradictions.
Thus we can state the following theorem:

(1.1) THEOREM. There is no smooth, connected, projective, ruled surface
such that h**°(X) =2, dimz(X)=2 and g < 6.

2. The case of dim¢r(X) =2 and A1°(X) = 1.
We would like to remind that h°(L) > h°(L) = 5 and g = 3,...,6. By
the long cohomology sequence of

(2.0.1) 0-Ky—»Ky®L->K:—0,
it follows that g = 4,5,6 and by Castelnuovo’s inequality:
g=4=d2=6,

g=56=d=17.

(2.1) LEMMA. Let X be a smooth, connected, projective surface such that
h°(X) =1, h*°(X) = 0. Let L be an ample line bundle on it. Suppose that
Kx® L is ample, spanned and g = g(Kxy® L) = 1. Then c¢? = 0.

Proor. [15, Corollary (3.4.2)], [16, Theorem (1.3)] or [7, Corollary
2.4)].

(2.2) PrOPOSITION. Let X be a smooth, connected, projective, ruled sur:fafe
such that h°(X) =1, dimer(X) =2, and d =2g—2. Then if (X,L)
exists it has to satisfy the following invariants,

g=6 d=10, d =9, g=5, &=-1, K°L)=6.
PRrOOF. Since d = 2g —2 using Clifford’s Theorem, Riemann—Roch’s
Theorem, Proposition (0.7) and the long cohomology sequence of
00y —>L—Lle—0,
we have that h°(L) < g. Therefore, using the fact that h°(L) = 5 we have

that g = 5 or 6. Assume that g = 5. Then h°(L) = 5. By Propositions
(0.1), (2.1) and Theorem (0.9), we obtain the following invariants:

d=6, g=3 &=-2
d=1 g=4, &=-1,
d=8, g=5 &=0.

Since h°(L)= 5, by Castelnuovo’s inequality d = 7. Suppose that
X=X, that is L=L and d=d=8. Then by Proposition (02),
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c? = — 8 which gives a contradiction. Now suppose that X is obtained by
blowing up one point on X. Then h°(L) =5 and d = 7. By Proposition
(0.2) we have that ¢} = —13 which contradicts the values that we have
obtained for ¢2. Therefore g # 5. It remains to examine the case in which
g = 6. As we have seen h°(L) = 5 or 6. Exactly as in the case g = 5 we
obtain the following set of invariants:

d=17 g=3, é&=-3,

d=8 g=4 &=-2

d=9, g=5 &=-1,

d=10, g=6 &=0.
Asin the casein which g = 5 wesee that h°(L) # 5. Thus h°(L) = 6. Now
consider the first set of invariants.

(Kx+L) (Kx+L)=-2,

which contradicts the fact that Ky @ L is spanned by Proposition (0.8).
Also in the last case we obtain a contradiction using the formula

2.2.1) t(2hO(X) = 2) + E%ld =22,

which is obtained for ruled surfaces which are minimal models using the
adjunction formula and the Hurwitz formula, see [5].

Now consider the second set of invariants. By the long cohomology
sequence of

2.2.2) 0-Kyp—>Ky®L—Ke—0,
we have that h°(Ky ® L) = 3. Moreover
(Ky+ L) (Kg+L)=2.

Since @ g, cannot be an embedding, it follows that it gives a 2:1
branched cover of P2. Thus we have a contradiction since 2:1 branched
covers of P? have first Betti numbers zero.

(2.3) THEOREM. Let (X,L) be a minimal pair of a smooth, connected,
projective, ruled surface. Suppose that (X, L) satisfy the invariants:

g=6, d=10, d=9, g=5
&=-1, KlL)y=6 h°X)=1
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Then, if (X,L) exists, it has to be made by blowing up one point on a
geometrically ruled surface over an elliptic curve such that either e = 0 and

L='Q@#°Q[#]™!° or e=—1 and L={}Q 7' Q[2] 3,

where @ is the irreducible line on X that we obtain, when we blow up a point on
a minimal model.

ProOF. Since ¢? = —1, the surface has to be made by blowing up one
point over a minimal model. Hence

L=0:® 2'Q [2].

Since the surface is a minimal model relativeto Land & - 2 = — 1 we have
that L - # > 2, thatis

2L (@g+bZ+rP)P = —r.
Since dim ¢ (X) = 2 we have that L - f=3. Hence
. 35 @g+bL +r?P) f =a.
Since ¢ is an elliptic curve and L is ample
L-lg=@le+bP +rP) {x=—ae+b=1.
Moreover Ky =(72® £7¢Q® [#], so
Ky®@L=02Q £ Q@ [2T .
Therefore we have the following system:

r<-2, az3.
(i) ae—-b<-1,
(i) d=—a%e+2ab—r2,
(iii) 2g-2=d+ae—2b—r,
(iv) d = —a’e+2ae+2ab—4b—r* —2r -1,
v) 26 -2=d +ae—2b—-r-—1.
Using (i) and (iii) it follows that
2.4.1) bg—-1~-r.

Again by (i)
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By (2.4.1)

2.4.2) e<

Now we write (ii) as
10 +r? = —a’e + 2ab = a(—ae + 2b).
By (iii) the above equality becomes
—ar =10 +r?,
which implies

10 +r?

-r

Substituting in (2.4.2) we get

=2-r (=2-=r)(=r1)
a 10+r*

e

liA

Since 72 < r?+10 and r £ —2 we have that

r2+2r <r?*+10,
which implies that ¢ < 1, thatis e = —1 or 0. Let e = 0. By (v)

2b=—r.
Substituting in (iv) we obtain
10=—r(@+r).

Therefore we have the following cases:
(A) a=7, r=-2, b=1,
(B) a=11, r=-10, b=S5,

that is, either
L=l ®[#] % or L={}'® £°® [2]*°.

Since by [14, p. 393], LICB has to be very ample we see that case (A) is not
possible. Now let e = —1. By (iii)

a=-—-2b-—r.
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Substituting in (iv)
br =5.
Since r £ —2, and, by (i), b = —2 we have that

a=7 b=-1, r=-5
thatis L={]1® £~ ' ® [#]"°.

(2.5) LEMMA. There is no geometrically ruled surface (X,L) over an
elliptic curve such that L is ample and d < 2g — 2.

Proor. Use (0.5.3) and Propositions (0.5.4) and (0.5.5).

Now we assume d < 2g — 3. We get the following proposition:

(2.6) PrROPOSITION. There is no smooth, connected, projective, ruled
surface such that h*°(X) =1, dimer(X)=2, d<2g-3, g=4,5. In
the case in which g = 6, (X, L) has to satisfy one of the following sets of
invariants:

(1) d=9, K(l)=6 d=9, g=5 &=-2
(2) d = 9’ hO(L) = 69 d, = 109 g, = 6a 6% =-—1.

ProoF. Since h°(L) > 5, by Castelnuovo’s inequality g # 4. If g = 5,
then d=7, h°(L)=5,1f g=6, then d=7,8, h°(L)=5, and d =9,
ho(L) = 5, 6. In the case in which g = 5, by degree considerations X = X.
Thus L is very ample and we have a contradiction using Propositions (0.2)
and (0.1). Now let g = 6. In the case in which d = 7 by Castelnuovo’s
inequality since h°(L) = 5 we have X = X and we get a contradiction as
before. If d = 8, then we can blow up at most one point. Thus d =7,
h°(L) = 5 and we get again a contradiction as before. If X = X, that is
d = 8, then L = L isvery ample, h°(L) = 5 and we get, in the same way, a
contradiction.

Now consider the case in which d =9 and h°(L)=35. Again by
Castelnuovo’s inequality, since h°(L) = 5, we can blow up at most two
points. If d = 7,8 we have contradictions as before. If X = X, that is
d = d = 9, then by Propositions (0.2) and (0.1) we have ¢? = -7, d' =4
and g’ = 0 which implies that X is rational. It remains to consider the case
in which d =9 and h°(L) = 6. By Propositions (0.1), (0.7) and Theorem
(0.9) we obtain the following sets of invariants:
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(A)  d=7, g=3, &=-4,
(B) d=8, g=4 &=-3,
© d=9, g=5 ¢&=-2
(D) d=10, g=6, ¢3=-1,
(E) d=11, g=17 &=0.

By Lemma (2.5), case (E) does not happen. By the long cohomology
sequence of

0-Ky—-»Ky®L->KyQL|c—0
obtained by tensoring with Ky the short exact sequence
O—-»(O)g—»lﬁ—#L’|Cr—+0,
where C' € ||, we have that, in case (B),
h°(Kx ® L) = 3.
Moreover
(Ky+L)- (Ky+L)y=¢1+4g —4—-d =1,

which implies that X = P2. Therefore case (B) can not happen either. In
case (A) we get a contradiction, since

(Kg+L) - (Ky+L)=-3.
Therefore (C) and (D) are the only possible cases.

Now consider the case in which é2 = —1, that is X is made by blowing
up one point on a geometrically ruled surface over an elliptic curve. Then
the system is:

r<-2, az3
i) ae—b<g -1,
(i) 9= —a%e+2ab—r?,
(iii) 10 =9 +ae —2b —r,
(iv) 10 = —g?e+2ae+2ab—4b—r*-2r—1,
(v) 10=10+age—2b—r—1.

By (i) and (iii) it follows
(2.6.1) bs—-r-2.
Again by (i)

o
|
—

o
IIA
1N}
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Thus, using (2.6.1)

—-r-3
<
(2.6.2) es—,
By (ii) and (iii) we obtain
o= r2+9
T —r-1
Substituting in (2.6.2) we get
r2+4r+3

<
R

By r2 <r?+9 and r £ —2 it follows that e < 1, thatis e = —1,0.

(2.7) RemArk. If there exist smooth, connected, projective, ruled
surfaces (X,L) with g =6 and h'"°(X)=1 which satisfy the invariants:

d=9, d=10 g=6 &= -1.

then X is made by blowing up one point on a geometrically ruled surface
over an elliptic curve with invariant e = —1,0.

Now consider the case in which ¢? = —2. In this case X is made by
blowing up two points on a minimal model. Let #, and £, denote the
irreducible lines on X that we obtain, when we blow up two points on a
minimal model.

We have that either
PP, =Py Py = -1, PP, =0,
or
PPy = =2, Py Py, = -1, PP, = +1,

In the first case we have:

L =30 2'Q[#]'®[2]"
KX‘ECEZ®$"® [gl]® [92]

and

KX® f,E C%..z ® gb'¢® [gl]rﬁl@ [92]724'1.
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Thus:

(i) ae—bs-1,

(i) 9=—a’*e+2ab—r?—ri,

(i) 10=94+ae—-2b—ry—r,,

(iv) 9= —a’e+2ae+2ab—4b—r? —r—2r, —2r, -2,
v) 8=9+4ae—2b—ry—r,—2.

By (i) and (iii) it follows

(2.7.1) b é —rl _r2—2.
Again by (i) we have
e< ™ 1+ b.
a
Using (2.7.1) we get
2.7.2) e< "T1Tr273
a
By (ii) and (iii) we obtain
_ 9+ri+r3
-ry—r,— 1 )

Substituting in (2.7.2) we get

r1+r2+2r1r2+2r1 +2r,+7
r1+r2+9 ’

Since r; £ —2 for i = 1,2, again by Schwartz’s Lemma, it follows that

e<2- i +r5+ri+r,+7)
r1+r2+9

Hence e = —1,0, 1.
Again in the second case we get e = —1,0, 1.
We would like to state the following

(2.8) REMARK. If there exist smooth, connected, ruled surfaces X,L)
with g=6, dimer(X)=2, and h'°(X)=1, which satisfy the
invariants:

d=9, d=9, g=5, &=-2,
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then X is made by blowing up two points on a geometrically ruled sur-
over an elliptic curve with invariant e = —1,0, 1.

Finally we can assume d > 2g — 1. Let g = 6. By
(Kg+L) (Kg+L)2 g+hO(X)—h0(X) -2,
it follows that d < 17. By the long cohomology sequence of
00y —>L—Lje>0,

and by Riemann—Roch’s Theorem, h!(L) = 0 or 1 and h°(L) = 6. By the
long cohomology sequence of

05Ky Ky®L->Kp—0,
it follows that h°(Ky ® L) = 5. In the same way we have that:

if g=5 d<14, n(L)=0,1, O(L)=5 KKy L)=4,
if g=4, d<11, n(L)=0,1, WO(L)=5 K (Ky®L)=3.

Let g = 6. By Propositions (0.1), (2.1) and Theorem (0.9) we have that:

d=11, d=17, &=-2, g=3,
d=11, d=8, &=-1, g =4,
d=11, d=9, &=0, g =5,
d=12, d =17, &=-1, g =3,
d=12, d =8, &=0, g =4,
d=13, d=17, &=0, g=3.

Let g = 5. In the same way we have:

d=9, d=6 &=-1 g =3,

d=9, d=17 &=0, g=4,

d=10, d=6, =0, g =3,

d=12, d =4, &=0, g=1
Let g = 4. In the same way we have:

d=17, d=5 &=0, g=3,

d=9, d=3, &=0 g=1.
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Now consider the cases in which X is a minimal model, i.e. {2 = 0. We

have obtained the following cases:

g=6 d=11, d =9,
d=12, d' =38,
d=13, d =1,
d=15 d =5,
g=5, d=9, d=1,
d=10, d =6,
d=12, d =4,
g=4, d=17, d=5,
d=9, d =3,

Let g=6, d=11, d =9, g =5. By (0.5.3),

g =35,
g,— )
g =3,
gl =1,
g =4
g =3,
g=1,
g =3,
gl

By Propositions (0.5.4) and (0.5.5) we getthat e = — 1, a =11, b= —35.

Let g=6, d=12, d =8, g =4. By (0.5.3)

Asbeforeweget e=—1, a=6, b=—2. Let g =6, d =13. As before
we get a =12 which is a contradiction. Let g = 6, d = 15. Then:

e=0, a=3, b

e=1, a=3, b=4,
=2, a=3, b=%
e=—-1, a=3, b=1

Let g=5, d=09. Then

3, contradiction,
4

11 contradiction,
1

e=-1, a=9, b=-4

Let g =5, d = 10. Then

e=—1, a=5, b=—3, contradiction.
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Let g=S5, d =12. Then

e=0, a=3, b=2,
e=1, a=3, b=1% -contradiction,
e=-1, a=3, b=1%, -contradiction.

Let g=4, d =7. Then
e=—-1 a=7 b=-3.
Let g=4, d=09. Then
e=0, a=3, b=3, contradiction,
=-1, a=3, b=0.

Since by [14, p. 392], IZI(B has to be very ample, the cases g = 6, d = 15,
L= #*, e=1and g=5,d=12, L=(}® #2, e=0, cannot
happen. Since by Proposition (0.5.8) we can compute h°(L), we see that
in the case g =4, d=7 it follows that h°(L) =4 which contradicts
h°(L) = 5. Thus we can state the following proposition:

(2.9) PROPOSITION. Let X be a smooth, connected, projective, ruled surface
and L a very ample line bundle on it. Suppose that X is a minimal model,
h'°(X) =1, dimer(X) =2 and d = 2g — 1. Then (X, L) has to be one of
the following surfaces:

W e=-1, L={l'®@® %5 g=6, d=11, d =9, g =5,
(' ® 2% =6,

R e=-1, L={® %2 g=6, d=12, d' =8, g =4,
R £ 2)=1.

B)e=-1, L=3®%, g=6,d=15 d =5, g =1,
REE® £) = 10.

@ e=-1, L=03Q %4 g=5 d=9, d=1, g =4,
G ¥4 =S5.

S)e=-1, L=03, g=4, d=9, d=3, g=1,
h°(3) =6.

ReMARK. We do not know if those L. are very ample.

Now consider the case when X is made by blowing up one point over a
geometrically ruled surface over an elliptic curve, i.e. when ¢ = —1. We
have to examine the following cases:
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(A) g=6 d=11, d=8, g =4,
(B) g=6 d=12, d =17, g =3,
(C) g=59 d=9’ d= ) g’=3.

In case (C) as usual we compute that hi°(Ky ® L) = 2 and
(Kx+L)  (Kg+L)=1,

which gives a contradiction, since if dim ¢k ,g £(X) =1, then
(Ky+L) (Ky+L)=0.

Thus we have to examine the usual systems in cases (A) and (B).
r£-2, az3,

i) ae-bxg-1,

(i) d=—a’e+2ab—r?,

(iii) 2g—2=d +ae—2b—r,

(iv) d = —a*e+2ae+2ab—4b—r*> —2r—-1,

(v) 26 —2=d +ae—2b—-r—-1.

Asusual e = —1,0, 1. Consider case (A). By (v) we get

2.9.1) if e=0, 2b=—-r+1,
(2.9.2) if e=—-1, 2b=—a-r+1,
(2.9.3) if e=1, 2b=a—-r+1.

Substituting (2.9.1), (2.9.2), and (2.9.3) in (ii) or (iv) we get:
11 = —age+a—e?.

Consider case (B). By (v) we get

(2.9.4) if e=0, 2b=-r+2,
(2.9.5) if e=—1, 2b=—a—r+2,
(2.9.6) if e=1, 2b=a—r+2.

Substituting (2.9.4), (2.9.5), and (2.9.6) in (ii) we get:
12=—ar+2a-r%
We can state the following lemma.

(2.10) LemMA. Let (X, L) be a minimal pair of a smooth, connected,
Projective, ruled surface such that X is made by blowing up one point over a
geometrically ruled surface over an elliptic curve with invariant e. Suppose
that d > 2g—1. Then g = 6 and (X, L) has to be one of the following:
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(1) €= - 17 09 19 d = 11, d = 8, g, = 4,
(2) e = _19 Os 1, d = 12, d, = 7, g’ =3,
Now consider the case in which X is made by blowing up two points over

a geometrically ruled surface over an elliptic curve, thatis ¢ = —2. We
have that

As in the previous case we have that
P(Ky®L)=2and (Ky+L) (Ky+L)=-1

which gives a contradiction, since Ky ® L is spanned by Proposition
(0.8). We can finally state the following theorem.

g=06, J:ll, d=1 g =3.

(2.11) TueoreM. Let (X, L) be a minimal pair of a smooth, c?nnected,
projective, ruled surface such that d > 2g —1. Then the pair (X,L), if it

exists, has to satisfy one of the following sets of invariants:

g=6 d=11, d =8, g=4, &

where e is the invariant of the minimal model.

@)
@

Moreover if X
B) g=6, e
4 g=6, e
5) g=6, e
6) g=35, e
(7)) g=4, e

=1,

e=-1,0,1,

g=6, d=12, d =17, g=3, &=-1, e=-1,0,1,

is a minimal model then it has to be one of the following:
=9,

-1,

= -1,

-1,

= -1,

-1,

L='®y 3,
L=8Qy2
Lci}i®ey,
L=y,
L=¢g,
REFERENCES

d =11,
d =12,
d = 15,
d=09,
d=09,

g._

1. A.Andreotti and T. Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math.
69 (1959), 713-717.
2. H. F. Baker, Principles of geometry, V; Analytical principles of the theory of curves,
Cambridge University Press, Cambridge, 1933.
3. R. Bott, On a theorem of Lefschetz, Michigan Math. J. 6 (1959), 211-216.

4. P. A. Griffiths and J. Harris, Principles of algebraic geometry, J. Wiley and Sons, New

York, 1978.

5. R. Hartshorne, Algebraic geometry (Grad. Texts in Math. 52), Springer-Verlag, Berlin -
Heidelberg - New York, 1977.
6. P.Ionescu, An enumeration of all smooth protective varieties of degree 5 and 6, Preprint

Series in Mathematics NR 74, Increst Bucarest, 1981.

7. A.Lanteri and M. Palleschi, About the adjunction process for polarized algebraic surfaces,
J. Reine Angew. Math. 352 (1984), 15-23.

it I Y]

-

-

-

-



CLASSIFICATION OF ALGEBRAIC SURFACES ... 29

8. E. L. Livorni, Classification of algebraic surfaces with sectional genus less than or equal to
six II: Ruled surfaces with dim@g, @ (X)=1, Canad. J. Math. 38 (1986).

9. M. Maruyama, On classification of ruled surfaces (Lectures in Math., Kyoto Univ. 3),
Kinokuniya Book-Store Co. Ltd., Tokyo, 1970.

10. M. Nagata, On rational surfaces, 1, Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 32 (1960),
351-370,

11. M. Nagata, On self-intersection number of a section on a ruled surface, Nagoya Math. J. 37
(1970), 191-196.

12. L. Roth, On the projective classification of surfaces, Proc. London Math. Soc. (2) 42
(1937), 142-170.

13. L R. Safarevit, Algebraic surfaces, Trudy Mat. Inst. Steklov 75 (1965), pp. 1-215 (in
Russian). (Proc. Steklov Inst. Math. 75 (1965), translation by American Mathematical
Society, R. 1., 1967.)

14. A. J. Sommese, Hyperplane sections of projective surfaces, 1: The adjunction mapping,
Duke Math. J. Vol. 46 (1979), 377-401.

15. A. J. Sommese, The birational theory of hyperplane sections of projective threefolds,
Preprint, University of Notre Dame, 1981.

16. A. J. Sommese, Ample divisors on normal Gorestein surfaces, Abh. Math. Sem. Univ.
Hamburg 55 (1985), 151-170.

17. A. Van de Ven, On the 2-connectedness of very ample divisors on a surface, Duke Math. J.
46 (1979), 403-407.

UNIVERSITA DEGLI STUDI DELL’ AQUILA DEGLI ABRUZZI
ISTITUTO DI MATEMATICA

VIA ROMA 33

67100 AQUILA

ITALY



