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ON INFINITE PERIODIC RINGS

EFRAIM P. ARMENDARIZ

A ring R is said to be periodic if for each x in R the set of powers
{x'l i=1,2,3,...} isafinite set. By a trivial subring (ideal) of R we mean a
subring (ideal) S of R with $? = 0. Further a ring R is orthogonally finite if
R has no infinite set of mutually orthogonal idempotents. In examining the
structure of infinite periodic rings, T. J. Laffey has established

THEOREM 1 [2, Theorem]. Let R be an infinite periodic ring which is
orthogonally finite and with all trivial subrings finite. Then R has a
commutative ideal I such that R/I is finite.

Now the existence of a cofinite commutative ideal in an infinite periodic
ring does not preclude the existence of infinite trivial subrings and does not
force the ring to be orthogonally finite. As an example we can consider the
commutative ring R = B @ N, where Bis an infinite Boolean ring and N is
any infinite Abelian group with trivial multiplication.

A second example of a ring with unit can be obtained by letting B be an
infinite Boolean ring with unit and letting R be the set of all matrices

a b
{(0 a) abe B}.

Then R is commutative with unit,
0 b

is an infinite trivial subring which is not a direct summand of R. Further R
is not orthogonally finite since
aeB}

{2

is isomorphic to B.
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Thus we are led to seek a characterization of the rings considered by
Laffey. We provide a complete description of these rings.

THEOREM 2. A ring R is an orthogonally finite periodic ring with no infinite
trivial subring if and only if R = F @ S, where F is a finite ring and S is a
finite direct sum of periodic fields.

Proovr. It is clear that any ring which decomposes as stated is periodic,
orthogonally finite, and has no infinite trivial subrings. For the other
implication we proceed by making use of Laffey’s methods. Thus let

H = {x € Rl RxR s finite} and I = {ae Rl aH = Ha = 0}.

Then H is a finite ideal, R/H is reduced and commutative and R/I is a finite
ring; see [2; Lemmas 3,4 and Theorem 1]. Let A =1 N H; then A is a finite
trivial ideal of R. Note thatif 4 = I then I & H, hence [ is finite and so R
is finite. We have

I/A=I/INH)~ (I+H)YH

and so I/A is a commutative reduced ring. Since I/A is periodic and reduced
each nonzero ideal contains a nonzero idempotent. If x e I with
x—x%>€ A, then x(x—x?)=0 so that x*=x®>=x2 Thus e=x?
is an idempotent in I with e — x € A, so idempotents lift from I/4 to I. If
x and y are both idempotent modulo A and orthogonal modulo A, then
x2y? =0 since xy € A. Hence x? and y? are orthogonal idempotents
in I. It follows that an infinite set of orthogonal idempotents in I/4 lifts
to an infinite set of orthogonal idempotents in I. By assumption no
such set exists and it follows that I/4 is a finite product of periodic
fields; see, e.g., [1, p. 74]. We now have that I/4 has a unit element and
so I/A is a ring direct summand of R/A4, say R/4 = I/A @ K/A, where K
is an ideal of R. Also K/A ~ R/I is a finite ring. Next decompose I/A4 as
I/A =T/A ® G/A, where G/A is the sum of the finite periodic fields
occurring in the desomposition of I/4 as a direct sum of fields. This gives
R/A =T/A @ F/A, where F/A is finite and T/A is a finite sum of infinite
periodic fields. Since 4?2 =0 we may consider 4 as a left and right
T/A-module. But T/A has no finite factors; hence T/A acts trivially
on A; ie., TA=AT=0. There exists an idempotent e e T with
e+ A =identity of T/A. Then for all xeT, x—exe A, so
0 = (x —ex)e = xe —exe. Thus ex = exe; similarly, exe = xe, hence
ex = exe = xe forall xe T. Because T = Te @ T(1 —e) we have

A=T(1—-e)={x—xel xe T}.
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Finally,
R=T+F=(Te®A)+F=Te+(A+F)=Te+F,

since ASF. Now TeNFE TNF =A, hence xe TeNF implies
x=xee€ Ae=0. Letting S=Te we get R=S@F, the desired
decomposition.

The class of periodic rings is part of the larger class of strongly n-regular
rings: a ring R is strongly n-regular if for each x in R there exists y € R and
a positive integer n = 1 such that x" =x"*! y = yx"*!, Algebraic algebras
over a field are examples of strongly n-regular rings which are not
necessarily periodic. From [2; Lemma 3] we see that if R is a strongly n-
regular ring with no infinite trivial subring then R/H is a reduced strongly
n-regular ring and hence is an Abelian regular ring. With this in mind we
can give the appropriate analogue of Theorem 2 for strongly m-regular
rings.

THEOREM 3. A ring R is an orthogonally finite strongly n-regular ring with
no infinite trivial subring ifand only if R = F @ S, where F is finiteand S isa
finite product of division rings. :

Proor. The proof'is essentially the same for Theorem 2 and so will not be
included.

These results suggest the possibility of characterizing orthogonally finite
rings with no infinite trivial subrings and this we do next. Recall that a ring
is connected if its only idempotents are 0 and 1.

THEOREM 4. A ring R is an orthogonally finite ring with no infinite trivial
subring if and only if
(i) N, the nil radical of R, is finite; and
(i) R/N = F @ A ® B, where F is finite, A and B are reduced rings having
no nonzero finite ideals, A is a ring with unit which is a finite direct sum of
connected rings, and B is a ring with no nonzero idempotents.

PRrooF. Suppose R has the structure in (i) and (ii). If Wis a trivial subring
of R, then (W + N)/N € F by (ii). Hence W + N is finite by (i), so Wis
finite. Also an orthogonal set of idempotents in R gives an orthogonal set of
idempotents modulo N. Because A is reduced all its idempotents are central.
Thus R/N has only a finite set of idempotents; hence so must R. For the
converse we again consider Laffey’s ideal H. We have H finite and R/H
reduced. Thus N € H, so N is a finite ideal of R. By passing to R/N we
assume that N =0. The ideal H is a semisimple finite ring, so that
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R = H @ K. Further no nonzero ideal of K is finite, since H N K = 0,
and K =~ R/H is reduced. In K all idempotents are central. If K has no
nonzero idempotents, we are done. Otherwise let e, # 0 be an idem-
potent in K and write K = Ke, @ K(1—e,). If K(1 —e,) has no nonzero
idempotents we let B = K(1 —e,). Otherwise select e, 3 0 an idempotent
in K(1—e;). Then

K(l -“el) = Kez (&) K[61 +e;,—ey ez)].
Continuing, orthogonal finiteness implies that for some n 2> 1,
K =(Ke; @@ Ke,) ® B,

where B has no nonzero idempotents. Finally, each Ke; splits into a finite
sum of connected rings, completing the proof.

We conclude with an example which shows that no further splitting can
be expected in Theorem 4. Consider Z, as a Z-bimodule and let R be the set

of all matrices
a x
0 a

with ordinary matrix addition and multiplication although a product a - x
with a e Z, x € Z, isthe module action of Zon Z,. Itis easily checked that
R is indecomposable with unit, orthogonally finite with no infinite trivial

subring,
0 x
N = {(0 0) X € 22}

is not a summand of R and R/N ~ Z.
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