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PROPER HOLOMORPHIC MAPPINGS

JOHN E. FORNASSY AND ERIK L@W

The original theorem of Fefferman [5] states that a biholomorphic map
between strictly pseudoconvex domains with C® boundaries extends to a
C* diffeomorphism of the closures. This result has been generalized to
proper maps and also to more general domains in a series of papers (see for
example [2], [3]). Furthermore, it has been simplified and partly localized
(see [6], [7]). This paper is a contribution to this simplification and
localization process and all our methods are elementary, in the sense that
purely one variable techniques are used. We are only considering strictly
pseudoconvex domains with C* boundaries.

Central to our approach is the paper of Webster—Nirenberg-Yang [7],
where it is proved that a biholomorphic map between local open pieces of
strictly pseudoconvex boundaries which is bicontinuous up to the
boundary will be C* up to the boundary if it satisfies an additional
condition, which they call Condition A. Their proof of this is completely
elementary and uses their version of the reflection method. After ﬁrst
proving that a locally proper holomorphic map will extend Holder %
continuously up to the boundary in Theorem 1, we provein Theorem 2 that
condition A is automatically satisfied in the situation of their result, but
only on a dense open subset. Finally, in Theorem 3, we modify a technique
of Alexander [1] to show that a global proper holomorphic map f between
strictly pseudoconvex domains is locally biholomorphic on a dense open
subset of the boundary, thus obtaining C® extendability of f to a dense
Open subset of the boundary.

Let Q c= C" be a domain with C® boundary I' and let n, be the
unit outward vector field to I' at p. Then, for small J, the functlon
?s(p) = p — dn, is a C* diffeomorphism of I' onto

= {z € Q; the distance from z to I' is J}.
\
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We denote this distance by d(z). Also, let n, = n, if @,(p) = z for some é.
If Q" cc C" are domains with C*®-smooth strictly pseudoconvex
boundaries I,[" and f: Q2 — Q' is proper and holomorphic, then the
Henkin-Vormor theorem states that f'is boundary distance preserving, i.e.

Cid(z) 2 d'(2') £ C,d(2)

for some constants C; and C,, with z’ = f(z). From this and properties of
the Kobayashi metric on strictly pseudoconvex domains, it follows easily
that f extends to a Holder 4 continuous function on Q. We first prove a
local version of the Henkin—Vormor theorem.

THEOREM 1. Let 2,2 << C" be strictly pseudoconvex domains, p € 09,
U an open neighbourhood of p and suppose f: U N Q — Q' is holomorphic
such that f (z,) > I'' whenever z,— I. Then there is an open neighbourhood
V of p such that f is boundary distance preservingin V N Q and f extendstoa

Hoélder 3-continuous functionon VN Q.

Proor. Shrinking U if necessary, we may assume the fibers are discreet,
since f ~!(w) is a variety, which will meet I" unless it is discreet, by strict
pseudoconvexity.

It follows that f is open and for every z € U and neighbourhood N of
z, there is an open neighbourhood D = N of z such that f: D — f(D)
is proper, hence a branched covering. (See 15.1 of Rudin [8].)

Let V <= U be a sufficiently small open neighbourhood of p and let p
be a C*® plurisubharmonic function in a neighbourhood of Q such that
-1Z<p<0on®, p=0in VNI and p=—1 on @\ U. Now define
on£2':

von _ fmax{p(z); f(2) =2} if 2 e f(U)
ple) = { -1 otherwise.
Now —1 < p’ <0 in'. Weclaim that p’ is plurisubharmonic. It is easy to
see that p’ is continuous. Clearly p’ has the subaveraging property for all
Z ¢ f(U). If 2 € f(U), choose ze€ U with f(z) =z and p'(z) = p(2),
and a neighbourhood D of z such that f: D — f(D) is proper. Then the
critical set of fp,

B ={z'; 2/ = f(z) for some z € D with Jf(z) = 0}

is a zero-variety in f(D) and f: D\ f ! (B) - f(D)\ B isan unbranched
covering. Hence

p”(w) =max {p(z); w = f(z) for some z € D}
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is plurisubharmonic in f(D)\ B, hence in f(D) by the removable
singularity theorem and p”(z') = p’(z'), so p’ has the subaveraging
property atz’, since p’ = p”, By the Hopflemma, thereis a constant C > 0
such that p’(z’) < — Cd'(z’). Now, for z sufficiently close to p, z' = f(z).

d(z)= -p(2) 2 —p'(z) 2 Cd'(2)

so f is boundary distance decreasing (=~ means that the quotient is
hounded above and below). The rest follows by the usual localization of the
Kobayashi metric argument, (see for example [4]).

In [7], Nirenberg, Webster, and Yang proved the following theorem by
means of the reflection method.

THEOREM. Let Q2,2 == C" be domains with strictly pseudoconvex C*®
boundaries I',I"" relatively open subsets of the boundaries and V,V' open
subsets of C" such that VNoQ =T and V'NoQ' =T". Let f:VNQ
- V'NQ be biholomorphic and suppose f extends bicontinuously to
(VN Q) UT, taking I into I'. Furthermore, suppose f satisfies

ConpirioN A. The normal component of f. ' n, is bounded away from
zero;i.e.

filnpny 2C
for some positive constant C.

Then f is C®-smoothin (V NQ)UT.

They then obtain an elementary proof of Fefferman’s theorem by
proving Condition A in case f: 2 — ' is biholomorphic. The proof of
Contidion A is lengthy and tricky however. We shall now give a simple
proof that Condition A holds on a dense open subset of the boundary.

Let Q, Q, I, I, V and V' be as above and f: VNR->V' N’
biholomorphic such that z,— I' if and only if z, —» I'". Then by Theorem
1, fextends bicontinuously to (V' N Q) U T, taking I into I'. Furthermore,

THEOREM 2. There is an open dense subset Iy = I' such that f is C*-
Smoothon (VNQ)U ;.

Proor. It is sufficient to prove that for each p € I' and neighbourhood N
of p in T there are (relatively) open sets W = N and U < C” such that
UNOQ =W and f satisfies Condition A in U N. The situation is
synllmetric in f and f 1, so we may verify the condition for f rather than

-
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According to ([5, Lemma 2, p. 17]) each p’ € 4’ has local coordinates
¢, such that ¢ ,(022’) has third order contact with a fixed ball Bat p'. It is
convenient to assume that B is the ball with center at the origin and radius
\/ﬁ and ¢,(p') =p" = (1,1,...,1). Alocal defining function is then

pp’(z//) = Iz//|2 —n+ 0('20 __p//|4)

and the unit normal vector field n,. to ¢ (082') is obtained locally on the
boundary from Vp ., so

=

(*) ne =y =22 +0(2 —p'P).
.

For inside points
z//
' — 3
2=z —dn,=12"— dl_rz” +0(lz” = pI?)

we have

_ Z”+0(IZ”—p”l3) '_ zm+ O(IZ"l—p”|3)
- lZ//+ O(IZ”“"p”Is)I - ]Zm+0(lzm_p”|3)’

nw =N,

so () is also valid there. The map ¢, depends smoothly on p’ and is
uniformly Lipschitzian and uniformly boundary distance preserving, i.€.
with constants independent of p'. Also, the normal component of ¢ ,,(,)
is uniformly bounded below. If we consider the family of functions
=0 2°f perl and p’ = f(p), then f, is uniformly Hoélder } continuous
and boundary distance preserving. Furthermore, it is sufficient to prove
that for each p e I' and neighbourhood N of p in I' there is a nonempty
open set W = N such that the normal component of f_,(n,) is uniformly
bounded below whenever q € W and zis on the normal line to /R at g, with
lg — zI < r: From the estimates on the K obayashi metric, it follows that the
tangential component of £, (n,) is O (d ~%) and this contributes O (d?) to the
normal component of f,(n,). We shall actually prove a uniform lower
bound valid for all p € I' on the normal line with |p — z| < r(p). We can
only prove, however, that r(p) is bounded below on small open sets
arbitrarily close to any given point. Thisis the reason why the conclusion of
the theorem is only that f extends smoothly to a dense open set of I

Now, let p € I" and p’ = f(p). We are now working in local coordinates
@, and we use the notations, f, z, p’ instead of f,, 2, p’, so

p2)=1Z1P—n+0(z—pl*) and n,= 22 +0(lz — p'1?).
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Consider for small r the closed disc 4, with center at p —rn, and radius rn,,.
We denote the boundary points of this disc by re®®, p corresponding to
0 = 0. Then d(re®®) = r62 Also,let p'(0) = f(re®®). Since |p — re?®l = 0(r6)
and fis Holder 4, |p’ — p’(0)l = O(r*6%) and since f is boundary distance
preserving

r0*> = d(re®) = d'(p'(0)) = — pi(p'(0)) = n — Ip'(0)1* + 0(r* 62).
Hence
1) Ip'(0)1* = n+ 0(r6?).

Notice also that since — p',(p'(0)) 2 Crf? wehave [p'(0)1> < n— Cro* for
small ». (We use C to denote some strictly positive constant, possibly
different in different expressions.) Thus f maps 4, into B. Scaling, we
may assume r =1. We identify A, with the closed unit disc 4 = C.
If f=(f,,...,f,) we may also assume that for some uniform constant
C>0,

@) lfie™ <1-C.

Also 4, is chosen so small that the components of f are uniformly bounded
away from zero on 4,. Let z €  be the point corresponding to the point
1—-6 € 4, 6 small and positive and let z’ = f(z). Then

<f=|: nzanz> = (f* n,, ﬁz’) = <f* n,, 27+ 0(‘2, _p1|3)>
= {fyn22 + 063> = { fym, 22> +0(9)

- i 1112 +00),

since the derivative mapping f = 0(67%). We will therefore study the
right-hand side of this equation. For any continuous function ¥ on
T =04, let J denote the harmonic extension of ¥ to 4; that is { is the
Poisson integral of y. At the point 1 — & the Poisson kernel is given by

2-6) 0
2(1-96)(1 —cosh) ~ =i
We shall use the kernel Q (the Poisson kernel for the upper half plane)

instead of P. For simplicity, assume at first that n = 2, so f = (f1,/2) and
define k() by

P,0) = pzam =:0(5,9).

| £1(®))? = 1+ k(0).
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Since f is Holder 4 continuous, k() = 0(6%. By (1)
| f2(e")* = 1—k(6) —y(8)

with () = 0(*) and ¥ = 0 since f maps 4 into B. Since log| f;|? are
harmonic functions, we have in 4:

log|f1|2 = (log(l + k))~ = E—%(kz)N + (O(t‘ﬁ))~
loglf,1? = (log(1 —k— W)~ = —K—4(k%)~ + (0(6h)".

At the points 1 — 6 € 4 we have

| =

+ f 50-%d0] = 0(8}).
I

0l >6

|l€1§cllr ?%le(e)ldolgcz[ﬁl
-n 0l<d

Similarly, (k?)~ = O(6logd) and (O(6%)~ = O(5). Hence

| £,12 = exp ((log(1 +k))~)=1+k—4(k>)~ +0(5)
| 1,12 = exp((log(1 —k —¥))~) =1 —k —3(k*)~ + 0(5)
L2 +1 15,12 =2— (k)™ +005).

Since f is boundary distance preserving, | ;12 +1£,12 = 2 — C§, hence
(k2)~ = 0(5). But

@@= K w21 K 0
m )07 +0 21 I

SO

T k2
g=f rd0 =0(1)

and since k(n) £ — C by (2), we have

. (3) I,=1.
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Now,
d%lflz = (‘—id—(log(l+k)) )(1 +k+00))
(;ﬂ%ﬂ k— m))u—ﬁ+ow»
) =(1- E+0(5))[ 5l —k—y)~ + ‘fs(log(1+k))]
+ 2K & (log (1 + k)"

=(14+0(/9)) ad— (log(l —k*—9)~ + ZE%(log(l + k)™

with ¢ = (1 +k)¥, so ¢ = 0(6%) and ¢ = 0.
Let P; denote the derivative of P(8,6) with respect to 8. Then

5 (2—2cos0)(1 - 0 +46%) -6

Fo= (6* + (1 —6)(2—2ces 0))*

It is easy to see that P > — 2/6% and that there is a constant C > 0 such
that P, > C/62 when |6 = 26 and 6 is small. (The constant C = 4§ works
for 6 <4 for instance.) Hence

d n
75 log (1 — k2 — )~ =f log(1-k*—@)P

gcf log(1 — k—(p) f log(1 - k—¢)—zr
l6l 2 2 lol < 25

(5)
< —Cj (k2+(p)§17+2C"[ (k? +<p)
16l = 26 lol <26

k? , k?
lol = 26 1ol < 25

Where we have used the inequality —C'x <logl—x £ —x, valid for
small positive x.
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Now, choose some ¢ > 0 such that SI ol <e k%/6? = 0(1), i.e. some small
number. Then for § c= ¢ we have by the Cauchy—Schwarz inequality

1 1
L= (L) s
lol <6 16l <6 lol <o

and
2 |f e (L, o) (L)
< +C< :
7| = ivi = v rivi
J;elgae 6§|0|§50 5§|0|§59 6§|0|§59
+C=0(1)d"+C=0(1)s7%
Hence
T Sk 1 |kl 1
Ilagj ok §—J |k|+af L
—1:9 +9 0 ol < 6 Ielgae
and

4 f_nlog(1+k)ﬂ <c Lm P,

< c(J %k; +c”I %’}') =o0(1)6~%
ol <6 )

So |k(d/ds)(log(1 + k))~| = o(1). Now (3), (4), and (5) give

' i(log(l + k)~ ‘ =

d 2
%lfl < C for small 8,

which is the inequality we wanted to prove. We do not know, however, that
¢ can be chosen so that §, _ k?/6*> = o(1) uniformly, i.e. independent
of peT, even locally. Now, if p eI, choose a neighbourhood N of
pin I such that the functions k,(0), g € N are well defined and continuous
in (q,6). By (3),

% 2

Rq .
2’

n

M =sup{l, = ge N} <co.

If we pick go € N such that I, = M —o(1) and & > 0 such that

£0|§£

=o0(1),

LN
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then

k2
L 7 =M-o()
160l 2

and by continuity there is a neighbourhood W < N of g, such that

k2
J gt =M—o()
6l > ¢

kﬁ
J‘lel <e 0
by definition of M.

The general case is a straightforward generalization of the case n = 2.
We now have

for all g € W, hence

| £,(e°))1? =1+ k,(0) i<sn—1, k;=0(0

G2 =1-"F k@ -y ¥20, =00
i=1

hence at the points 1 —J € 4 we have
|£12 = exp (log(@ + k&)™) = 1+ (k)™ —3(k7)~ +009),
£l = exp((log(1 — Y ki —¥))") =1 - (k)™ —3(Qk:)*)~ +009),
112 =n—H(T kD)~ +(Tk)?)™)+06).

Letting k? := 4(3 k? + (3 k;)?), we have

T2
1,,=j g,do=1,

as before. Now
d
B =a +0(ﬁ))a%(1og[(1 —Yk) (L+ky)...(L+ky-1)” — @]

+2Y (k)™ Zd—a—(log(l + k)~

with ¢ = Y]] +k;),s0 ¢ =0 and ¢ = 0(6*). Thelast sum hereis o(1)

if 6 <& and
J K o(1)
= .
|9|§€0
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Now (1—-Yk)A+ky)...L+k,—1)=1—k>+0(k?), and we may as-
sume 4, is chosen small enough to guarantee that

1-2< A=Y k)[]A+k)<1-3k?
which yields (5). The rest of the proof is as before.

THEOREM 3. Let Q,Q << C" be strictly pseudoconvex with C* smooth
boundaries and f: Q — Q' holomorphic and proper. Then there is a dense
open subset U of 02 such that f extends smoothly to QU U.

Proor. The proof is essentially that of Alexander ([1]). We refer to the
presentation of this in Rudin ([8, Theorem 15.4.2]).

The map f is boundary distance preserving and extends Holder $
continuously to . We assume the multiplicity of fis m and let m(p) be the
number of pointsin f ~! f(p)). We will show that m(p) = m for almost all
p € 0Q. This will imply the theorem, because if E = {p € 0Q; m(p) = m},
then by Step 3 in Rudin, there is an open set W < 02 containing E such
that each p € W has an open neighbourhood such that the hypotheses in
Theorem 2 hold, hence f extends smoothly to a dense open subset U of W,
which is dense in 0.

To prove that m(p) = m for almost all p € 9Q, let z,(w),...,z,(w) be
the pointsin f ~!(w) for every regular value w and A a linear functional on
C" that separates these points for some w. Then

h(w) = l:[.(Azi(w) — Az;(w))**
i<j

is a nonzero bounded holomorphic function in '. Let F(z) = h(f(z)) and
let E, be the set of p € dQ at which the radial limit lim;_ F (p — dn,,) exists
and is nonzero. Then E, has full measure andif p € E,, therearer > 0 and
¢ > 0 such that | F(p — én,)| > ¢, when 6 < r. Hence, if z = p — n,, f(z)
is a regular value and there are points z, ..., z, € Q with f(z;) = f(z) and
lz;—z] > ¢, when i#j. Now, if N0 and Zigr-rrZmy are the
corresponding points, then there exists a subsequence and m distinct points
D1s--sPm € 082 such that lim,_,, z;, = p;, hence f(p;) = f(p).

To prove that m(p) < m for almost all p € 6Q, let p e 9Q, p’' =f(p)
and introduce local coordinates at p’ such that €' is locally contained in the
unit ball Bof C"and p' = e, = (1,0,...,0). Let z=p—4, and w = f(Z
Since d(z) =~ d’'(w) and since f is Holder % continuous, d’(w) ~1-lwh
and we may apply the Julia—Carathéodory theorem (which follows from
the Schwarz lemma, Rudin [8, Theorem 8.5.6]) to see that there is 2
constant L > 0 such that

1) w=(1— L5 +0(5), 0(6).
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Let ¢ be a countable collection of linear functionals A on C" such that every
finite subset of C" is separated by some A € ¢. For t € C and regular
values w € ' define

m m—1
0 ,(t,w) = ]=‘[1 (t — Az;(w)) = " + k‘j‘o graw)ek.

The functions g, , are the elementary symmetric polynomials in Az;(w)
and hence extend to bounded holomorphic functions in €. Let f, ,(z)
=g Af(2)) and let E, be the set of p € dQ at which the radial limit
limy o f; 4(p — On,) exists forallk and A. E, has full measure. Let p € E,.
We claim that m(p) < m. Inlocal coordinates around p’ as above it follows
that

‘ Xpp = ;112 gk,A(W(5))

exists for all A4 and k along the curve w(d)=f(p—on,)=(1—Ld
+0(0), 0(5’1)). Now, if g € 02 and f(q) = p’, then the image of the radius
at q is the curve

w(8) = f(q — on,) = (1 —kd + 0(5), 0(6Y)

and it follows that g, , has the same limit &, 4 along this curve. Now

0=0,((g—0n,), f(g—dn,))

m—1 m—1
= [A(g—on)]"+ 2 8raWO)[A(g=n,)]* 525> (Ag)"+ 2 walde)

Hence for each A, Aq is a root of the polynomial ™ + Y a, 4% so Aq
can have at most m different values. If we had m + 1 different points g such
that f(q) = p’, then some A € ¢ would separate these points, i.e. Aq would
have had m + 1 different values, which is impossible.
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