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A COMPARISON BETWEEN
THE CLOSED MODULAR IDEALS IN /I*(w) AND L!(w)

HAKAN HEDENMALM

Abstract.

The Beurling algebras ' (w) and I!(w) are defined as generalizations of
I'(N) and I}(R.), respectively, using a submultiplicative weight won R ..
For non-radical weights w one can find a one-to-one correspondence
between the closed ideals in /' (w) with hulls not containing a specified line
and the closed modular (regular) ideals in I} (w) with hulls contained in a
specified strip. The corresponding quotient Banach algebras are proved
isomorphic, and consequently their dual spaces, that is, the annihilators of
the respective ideals, are isomorphic Banach spaces.

This is used to show that the problems of determining the closed modular
ideals in I'(w) and L!(w) are equivalent.

0. Introduction.

An algebra is a Banach algebra if a norm is defined on it such that itis a
Banach space and the multiplication is jointly continuous. We will only
deal with algebras over the complex field C, and as far as we are concerned,
all algebras, and in particular all Banach algebras, are assumed
commutative. For standard results in the elementary theory of Banach
algebras, we refer to [11], [12], and [15].

This introduction has the following structure. First we introduce quite a
few notions; after that we mention some results that are known previously
In the literature before we finally sketch our main theorem.

Suppose w: [0,00) - (0,00) is a continuous submultiplicative (weight)
function:

w(x +y) £ wx)w(y) for x,y € [0,00).

Let M(w)= M (w,R,) be the space of regular Borel measures p on
Ry = [0,c0) which are absolutely continuous (with respect to the
Lebesgue measure) on R, \ N (N = {0,1,2,...}) and satisfy
\
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nmlw=rw(x)|dul () < 0.

0

Equipped with the norm |l - I, M(w)is a Banach space.
All measures in M (w) are tacitly assumed extended to R such that

lul((=0,0)) =0 for ue M(w).

By the submultiplicativity of w, M(w) is a Banach algebra under
convolution, which we denote by *:

[>o]

(u*v)(E) = J‘ U(E — x)dv(x) for u,v e M(w).

- a0

The unit in M (w) is the Dirac measure d, at 0.
It is well known that the limit

a= lim x~'logw(x)
x=*+ o

existsin [ —00,00). If & = — 00, M (w) contains only one maximal ideal. We
are interested in non-radical weights, that is, weights w for which & > — o0.

By replacing w by x —e™**w(x), x € R,, we can suppose that o = 0.
Then w(x) =1 for x € R,.

Let IT_ denote the closed lower half plane {ze€ C:Imz <0}. The
Fourier transform

A(z) = J e "dut), zell_,

0

defines a continuous injective homomorphism from M (w) into A(I1_), the
algebra of bounded holomorphic functions in II° which extend
continuously to the boundary, supplied with the uniform norm.

Every measure in M (w) is the sum of an absolutely continuous measure
and a singular measure with support on N.

The absolutely continuous measures in M (w) form a closed ideal and will
be identified in an obvious way with I!(w) = I}(w,R.), the space of
(equivalence classes of ) locally integrable functions f on R, for which

Irll, = r | £ ) w(x)dx < o0.

0

The convolution of measures in I!(w) is then ordinary convolution. of
functions. It is well known that we can identify the Gelfand (or carrier)
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space of L' (w) with IT_, so that the Gelfand transform on I! (w) coincides
with the Fourier transform

) = f " fOemd, zell.
. 0

The Fourier transform maps L! (w) into the closed ideal A,(I1_) in A(I1_)
consisting of those functions f(z) in A(I1_) which tend to 0 as |zl -0
within I7_.

Since L' (w) is a closed ideal in M (w), IT_ will be regarded as an open
subset of the maximal ideal space .#,, of M(w) (Proposition 1.6). The
Fourier transform of a measure u in M (w) is then the restriction to IT_ of
the Gelfand transform of p.

The singular measuresin M (w), which are supported on N, form a closed
unital subalgebra, which we will identify with I*(w) = I'(w, N), the space
of complex-valued sequences (a,)§ such that

i la,l w(n) < oo.
n=0

The choice of the norm is obvious, and the multiplication is sequence
convolution. We will alternatively regard I' (w) as an algebra of sequences
and an algebra of singular measures supported on N.

The reader may have anticipated that M (w) was introduced to give us a
convenient setting for I!(w) and I* (w).

We wish to point out the following useful observation.

If (v,)3 is any submultiplicative sequence of positive numbers, there
exists a continuous submultiplicative weight v: R, — (0,00) such that

v(n)=v,, n=0,1,2,....

v is obtained by interpolating logv, linearly on each component of
R+ \N:

v(n+t)=0v"*v,, forneN and te[0,1].
We leave the necessary verifications to the interested reader.
It should be observed that two continuous submultiplicative weights

Wi Wy [0,0) — (0,00) which have the same values on N give rise to
€quivalent norms if the sequence

{wim)w, (n +1)}§ = {w2(n)/w2(n +1)}§
is bounded.
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The maximal ideal space of I*(w) is topologically the closed unit disc D.
For our purposes, however, it will be more suitable to use a somewhat
different set.

Let L = ({n} X i(—0,0]) U {0} be a compactified half-line, and let 2
denote the compactified half-strip ((—=,n] % i(—00,0]) U {o0}. The
function ¢@(z) =e™* extended to be 0 at co, which maps 2 \ L
conformally onto D \ [ —1,0], is a bijection 2 — D. Let the topology on
9 be defined by saying that ¢ is a homeomorphism. Clearly, we can use 9
as the maximal ideal space of I'(w), with the Gelfand transform on I*(w)
identified with the Fourier transform restricted to 2 \ {0} and extended
continuously to co.

Summing up, M (w) is the direct sum in the Banach space sense of its two
closed subalgebras L!(w) and I*(w).

Anideal I in an arbitrary algebra is called modular (regular)if A/I hasa
unit. If A itself has a unit, all ideals are modular.

It is well known and easy to show that a closed subspace of L' (w) is an
ideal if and only if it is invariant under all right translations, since I*(w)
contains approximate identities.

The dual space of L'(w) is identified with I*(w), the space of
(equivalence classes of ) functions g on R, such that g/w e L*(R,). The
norm of g € L*(w) is of course llg/wll;-. In bracket notation,

fg)= J f(t)g()dt for f e L'(w)
0

and g € L°(w).
For g € [*(w) and f € L!(w), the function

gxfx)= rg(x +t)f(t)dt, x =0,

0

belongs to L*(w) and satisfies
Chxf,g) = (h,g*f) forall he L}(w).

Thus the mapping (g,f) — g*f determines I°(w) as a module over
L(w). g*f =0 is equivalent to saying that g anmhllates the closed ideal
generated by f.

A weak * closed subspace of L (w) is the annihilator of a closed ideal, o1,
equivalently, a closed right translation invariant subspace, if and only if it is
invariant under all left translations.
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These observations have their obvious analogues for I*(w). For the sake
of completeness, we shall write them down.

We identify the dual space of I'(w) with I®(w), the Banach space of
complex-valued sequences (g,)§ such that (g,/w(n))§ € I*(N); the norm
is obvious. In bracket notation,

L8> = 3. fts

for f = (f)§ € I'(w) and g = (g,)7" € I”(w).
For arbitrary elements f = (f,)¥ € I'(w) and g = (g,)¥ € [®(w), the
sequence defined by

gxf(n)= kZOgn+kﬁ, neN,

belongs to 1 (w); as is the case for I!(w), the mapping (g,f) —>g*
determines /®(w) as a module over !'(w). The condition g# f =0 is
equivalent to saying that g annihilates the closed ideal generated by f.

The Dirac measure J; at 1 generates [*(w). Hence a closed subspace of
I'(w) is an ideal if and only if it is invariant under right translations, that is,
convolution by J;. It follows that a weak * closed subspace 4 of I*(w) is
the annihilator of a closed ideal if and only if it is invariant under all left
translations, that is,

g*xd,cA if ge A

For an arbitrary family &# of measures in M (w), let

hy(F) = qu {m € My: ji(m) = 0}’

where .#,, is the maximal ideal space of M (w) and /i denotes the Gelfand
transform of u. We call hy (%) the hull of # in M (w). If # is an ideal in
M (w), its hull is empty if and only if & = M(w).

For an arbitrary ideal I in I*(w), its hull h (I) is the set of maximal
modular ideals containing I, or, explicitly,

hL(I) = hM(I) ﬂ H__.
The hull hy(I) of an arbitrary ideal I in I* (w) is the set

h(t) = ]z € 2: /) =0}
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where the Fourier transform restricted to 2 \ {0} is extended
continuously to co. In this case, too, the hull () can be interpreted as the
set of maximal ideals in /! (w) which contain I.

A closed ideal in I* (w), the hull of which is a single point in 9, is called
primary. For the case ' (w), we say that a closed modular ideal / is primary
at zg € I_ if hy(I) = {zo}. Of course, this terminology can be extended to
M (w), too.

For z, € II2, we define the closed ideals

I(zo) ={ne M(w): i% (z9) =0 for k=0,1,...,n}

in M(w) for n=0,1,2,.... It is well known that all primary ideals at
zo € IT°. in I'(w) are of the form I,(z,) N I!(w), and that in [*(w),
all primary ideals at z, e 2° \ {0} are of the form I,(z,) NI*(w)
(see [7, Theorem 3]). Likewise, the primary ideals at oo in [*(w) are well
known, since o € 2°: The ideals I,(00) = {u e I*(w):|ul[0,n] =0},
n=0,1,..., are primary ideals at oo, and every primary ideal at co in [* (w)
coincides with one of them.

Since the mapping which maps f € ! (w) onto e* f(t), which belongs to
L} (w), is an isometric automorphism of I! (w) for y € R, and the Fourier
transform of the function t — e f(t), t 20, is z+—> f(z—y), ze IT_, we
can always assume that for any primary ideal at z, € dII_ = R, z, is
chosen to be 0. The same argument for I* (w) shows that a primary ideal at
some point on the boundary 02 = 2 N R can be assumed to be primary
at 0.

The structure of the primary ideals at 0 in ! (w) and I* (w) is much more
complicated than for interior points. If w grows faster than polynomially,
we get the ideals

CI1,00)={pe Mw): g% (0) for k=0,1,...,n}
for n=0,1,..., which are primary ideals at 0 in M (w), and I, (0) N L' (w)
and 1,(0) N I*(w) are primary ideals at 0 in ! (w) and I* (w), respectively.
Yngve Domar [7] has shown that if w is monotonically increasing and the
function x—w(x)(1+Ix1)7% x>0, is bounded away from 0 and

submultiplicative for all ¢ € N, then each primary ideal at 0 in L (w) either
coincides with one of 1,(0) N I} (w), n =0,1,..., or is contained in

rL 1,(0) N I*(w).

The corresponding results hold for I* (w).



A COMPARISON BETWEEN THE CLOSED MODULAR IDEALS... 281

There is a chain of primary ideals which comes from A4(I1). A closed
idealin A (I1_)1s primary at 0 if it is contained in the maximal ideal at 0 but
in no other maximal ideal. The Beurling-Rudin theorem (see [13])
describes the closed ideals in the disc algebra A (D). Applying this to 4, (I1-)
and using [7, Theorem 1], we find that

J,={feA(Il.): f(0)=0 and lim ggpylog|f(—iy)|§—oc}, a=0,
y'—b

are the primary ideals at 0 in A(I1_). Therefore
J.(M)={neMw): jiel,)
is a closed ideal in M (w). Put
Jo(L) = J(M) N L(w) and J,(l) = J,(M) N1 (w),

which consequently are closed ideals in I} (w) and I* (w), respectively.

For the algebra I'(w), the knowledge about the primary ideals at 0
appears to be very limited. In the case w = 1, Feldman [8] proved that all
primary ideals at 0 in [* (w) are of the form J, (I) for some a = 0. For weights
w of polynomial growth, Colin Bennett and John Gilbert [2] described the
primary ideals at 0; J,(I) is a primary ideal at 0 for a > 0. Feldman [8]
also showed that the annihilator of the primary ideal J,(I) consists of those
sequences (g(n))¢ in I° (w) which are restrictions to N of entire functions of
order 4 and type . An entire function g is said to be of order  and type a if

ll/Z

lg(z)l < C,e@+9#"* forall ¢ > 0.

We are better off in the case I (w). V. P. Gurari¥ has written a series of
Papers on the subject; most of the results can be found in [9]. We mention
two of his results. Under some slight regularity conditions on the weight w,
Jo(L) is a primary ideal at 0 if

1

0.1) j x~ ¥ logw(x)dx < 0;

otherwise J,(L) = {0}. If (0.1) holds, the annihilator of J,(L) consists of
those functions in I (w) which are restrictions to R . of entire functions of
order § and type a.
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In Section 4, we will show that there is a natural one-to-one
correspondence between the closed ideals I in I' (w) for which

0.2) hI)ce 2\ L
and those closed modular ideals J in ! (w) which satisfy
0.3) h(J)= 2 \ L.

We also indicate why (0.2—0.3) can be assumed without loss of generality if
we want to study closed modular ideals. Further, it will be shown that the
corresponding quotient algebras /' (w)/I and L} (w)/J are isomorphic.

It follows in particular that we can apply Guraril’s investigations
concerning the primary ideals in L' (w) to the algebra /! (w), too.

It should be stressed that no special regularity or growth condition need
be imposed on the weight in order to obtain our results.

1. Preliminaries.

We shall need a few basic results about Banach spaces and Banach
algebras. For any Banach space A, 4* denotesits dual, that is, the space of
continuous linear functionals on 4; for a subspace E of A, E+ denotes its
annihilator.

In the following two propositions, Bis a Banach space, and A4 is a Banach
subspace of B, which means that A is a subspace of B having a norm which
is stronger than the norm of B and makes 4 into a Banach space. By the
closed graph theorem, a subspace can have (within equivalence) at most
one Banach subspace norm.

PrOPOSITION 1.1. Let F be a closed subspace of B, and let E be a closed
subspace of A which s contained in F N A. Then the following two conditions
are equivalent :

(@) F*|, is weak * dense in E* (< A*).
b) E=FNA.

PRrOOF. Since A is a Banach subspace of B, the restrictions of functionals
in B* to A are in A*.

First we show that F!|, is weak * dense in (FNA)! (= 4*). If
L(F+|,) denotes the annihilator in A of F*|,, this amounts to showing
that

L(F|)=FNA.
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Now
HFH)={xeA:{(x,y) =0 forall ye F'}
={xeB:{x,y>=0 forall ye F:} N4
=FNA,

which proves the assertion.
Thus (b)= (a). Assume (a) holds. By the above argument,

E' c (FnA)-.

But since E is a closed subspace of F N A4, equality must hold, and we
conclude that

E=FnA4,
which is (b).

PROPOSITION 1.2. Let E and F be two closed subspaces of B such that E is
contained in F and ENA=F NA. Then the following conditions are
equivalent :

(@) Every functionalin (E N A)* (< A*) has a unique extension in B* which
annihilates E.

(b) E =F, and the mapping x + EN A - x + E, x € A, defines a Banach
Space isomorphism between A/ENA and B/E; consequently,
B=A+E.

ProoF. First we show the implication (b)= (a), which is a rather easy
task. Assume (b) holds, and denote by  the Banach space isomorphism
A/ENA - BJE defined by x+ ENA +— x+E, xe A. By elementary
functional analysis, the dual spaces of the quotient spaces B/E and 4/E N A
can be identified with the annihilators EX and (ENA)L (cA¥),
respectively.

Since y is a Banach space isomorphism, its adjoint mapping
Y*: E*—> (EN A)* (< A*), which maps every functional in F* onto its
restriction to A, is a Banach space isomorphism. This proves (a).

The less trivial part is the implication (a)= (b). So, assume (a) holds.
Let ¢:A4/ENA—-B/E denote the continuous linear mapping
X+ENA > x+E, xe A. Then (a) asserts that the adjoint mapping
@*: EX - (EN A)* (< A*), which restricts the functionals in E* to 4, is
bijective. Since @* is continuous, an application of the open mapping
theorem shows that @* is a Banach space isomorphism. By elementary
duality theory, which can be found in [14, Corollary 4.12, Theorem 4.15],
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¢ is a Banach space isomorphism A/ENA— B/E. Hence B= A+ E.
We will now show that F = E. Let x be an arbitrary element in F. Since
B = A + E, there exists a y € A such that

x—yekE.
Hence, ye (F+E)NA =FNA=ENA. Weconclude that F = E.

REMARK 1.3. If 4 and B are Banach algebras such that the injection
mapping A — B is a homomorphism and if moreover, E and F are closed
ideals, the isomorphism in (b) of the previous proposition is a Banach
algebra isomorphism.

DEFINITION 1.4, If B is a Banach algebra with Gelfand space .#, and I is
an ideal in B, the hull of I is the set

hg(I)= () {me A : %(m) = 0},

xel
which is closed in the Gelfand topology.

REMARK 1.5. This generalizes the definitions of hullsin M (w), L! (w), and
I'(w) in the introduction.

ProPOSITION 1.6. Let I be a closed ideal in the Banach algebra B with
Gelfand space M. Then:

(@) The Gelfand space of I is homeomorphic to M \ hg(I).

(b) The Gelfand transform in I of x € I is the restriction of the Gelfand
transform X in B to M \ hg(I).

(c) The Gelfand space of the quotient algebra B/I is homeomorphic to hg(I).

(d) The Gelfand transform of x + I € B/I is the restriction of X to hg(I).

This is Theorem 7.3.1 in [11].

ProposiTioN 1.7. Let A be a closed ideal in a Banach algebra B. Then
I—IN A defines a bijection from the set of closed modular B-ideals I,
satisfying

hg(I) N hp(4) = &,
onto the set of closed modular A-ideals. The inverse mapping is given by
J—{beB:bdclJ}

For every I in the family above, the mapping x + IN A - x + I, xe A, isa
Banach algebra isomorphism of A/I N A onto B/I; hence every functional in
A* which annihilates 1 N A has a unique extension in B* which annihilates I.
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ProoF. This follows from Theorems 1 and 2 in [7], combined with
Proposition 1.2.

We wish to describe the space ., of (non-trivial) complex
homomorphisms on M (w). Clearly, they are determined by their behaviour
on I!(w) and I'(w).

ProposITION 1.8. If m is a non-trivial complex homomorphism on M (w),
then either

(@) meIl_, that is i(m)=m(u) = i(z) = {5 e""“du(t), pe M(w), for
some z € I1_, or
(b) fi(m) =m(u) =Y., 2" u({n}) for some z in the closed unit disc D.

Proor. Observe that (a) and (b) do indeed define complex homomor-
phisms. The restriction of m to L'(w) is of course a complex
homomorphism. If the restriction is non-trivial, m must have the form (a),
by Proposition 1.6 (or Proposition 1.7). If m vanishes on L! (w), it has to be
non-trivial on I*(w), so it is of the form (b).

2. Closed modular ideals in L (w).
Let a be the function

aj(x) =ie”!, t20,
which clearly belongs to I (w). The Fourier transform of a is
a(z)=(z—i)"1, zell.

If I is a closed modular ideal in I}(w), its hull h.(I) is a compact
nonempty subset of I1_, by Proposition 1.6. We denote by 1 the unit in the
Quotient Banach algebra I!(w)/I, and the multiplication in L'(w)/I is
denoted by juxtaposition.

An entire function g is said to be of finite exponential type if

(2.1) lgz) s cet”, zecC,

for some constants C and A. The infimum of all admissible 4 in (2.1) is
called the type of g.

For a definition of the indicator diagram of a function of finite
€Xponential type we refer to Boas [4, Chapter 5]. The conjugate indicator
diagram is the image of the indicator diagram under complex conjugation.
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THEOREM 2.1. Let I be a closed modular ideal in ! (w), and suppose
g € L*(w) annihilates I. Then

2.2) 2+ (FmIE+D™) o8 e C
is an entire function of finite exponential type, and
(23) g(t) - <et(1—i(a+1)_’),g>

almost everywhere on R.. By (2.3), it is consistent to denote the entire
Sfunction in (2.2) by g, too. The conjugate indicator diagram of g is contained
in the closed convex hull of —ih(I).

Proor. Since I is modular, h;(I) is a compact subset of IT_, and the
expression (a + I)~ ! is a well-defined element in I! (w)/I. We first show that
(2.3) holds.

A simple calculation shows that

-1 ©
(2.4) <a—z—1:—i+1> =i—z—i(z—-i)2j eis =i+ ™D gy

0

for z € C \ (IL- U {i}). The integral on the right hand side of (2.4) is well
defined, since

let@=i@+D™) || < C(e)e® for every € > 0

by the spectral radius formula.
Let J be the closed M (w)-ideal

J={peMw): uxL(w)c<I}.

By Proposition 1.7, g has a unique extension in (M (w))* which
annihilates J. Call this extension h. Since the canonical mapping L' (w)/I
— M(w)/J is a Banach algebra isomorphism,

<50’h> = <1’g>,

where J, is the Dirac measure at 0, thus the unit in M (w).
Taking Fourier transforms, it is easy to see that

(i—2)0p—i(z—i)c,
is the inverse of (a — &o/(z —i)), where c, is the I! (w) function
C,(t) = eitz’ t2 0,

for ze C \ (I1- U {i}); consequently,
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o
((a=32)
= (l—Z) <50’h> —'l(Z— l)z <cz9g>

= (i—2){b¢,h) —i(z —i)? JZ(t)e"’ dt

0

(2.5)

0

= (i-2){1,g> —ilz—i) J‘g(t)e"’z dt

0

for ze C\ (II- U {i}).
Clearly,

(am22) oy =¢(a-20) o)
= <<a— :+I)_1,g>

2.6)

for ze C\ (II- U {i}).
Applying g to (2.4) and observing that (any) g € L*(w) is uniquely
determined by the function

Y(z) = I gt)e*dt, ze C\ I,
0

we find that by (2.5-2.6)
g(t) = <et(l—i(a+l)_')’g>
almost everywhere on R, . Since
lez0~ie+D™| < exp(lzl - 11 —i@+I)"*ll) for z€C,

g is an entire function of finite exponential type.

Clearly, ¢ is holomorphicin C \ II_, and (2.4) defines a Banach algebra
valued holomorphic function in C \ (h,(I) U{i}); consequently, ¥
extends to a holomorphic function in C \ h.(I) by (2.4-2.6). Now

z—9(iz), ze C\ (=i, )

is the Borel transform of g, and hence, the conjugate indicator diagram of g
is contained in the closed convex hull of — ihy,(I). The proof is finished.
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REMARK 2.2. Keep the notation from Theorem 2.1 and assume that
hy(I)c 9 \ L.

It is then well known that the conclusion of Theorem 2.1 implies that there
exist an ¢ > 0 and a constant C = C(g) such that

lgz)l < Cem=97 for 7 € iR.

An application of the Banach-Steinhaus theorem now shows that there
exists a constant K = K(I) such that

[ 2-ia+D™ | < K or—olzl 'z € iR.

We will now make some interesting observations which will not be used
in any later context. The reader only interested in the main result can move
on to Proposition 2.3.

Let g and I be as described in Theorem 2.1. Then

lg(2)l < ller@=i@+D™D] . |lgll,
Since the functions
z »—_>cos/1\/5, zeC,
which are entire functions of exponential type 0 for A€ C, are all bounded
by 1 on R, for real 4, but

lcos Ay/zl -0 as A+

for fixed z € C \\ R, they cannot all belong to I+ (4 real).
Let g(1—i(a+1)"') denote the functional in I+ determined by the
relation -

S+Lg—i@+ D™y = (f+D(1—ila+ DY),
for f € L' (w), which satisfies
lgl—i@+D) Yl < ligh - l1—i(@+ 111
Differentiating (2.2) with respect to z, we find that
g@) =((L-ila+D)~1)et =1, )
—_ <ez(1—i(a+1)"‘)’g(1 _ i(a+I)_1)>

for ze C, which means that g’ € I* and g =g(l—i(@+I)"") 2
functionals in I+.
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This shows that I! is invariant under differentiation, a result which
should be compared with Theorem 3.34 in Domar’s thesis [6] for regular
algebras. On the other hand, if we have a weak * closed subspace E of
L[*(w) such that differentiation is a bounded operator on E, E is the
annihilator of a closed ideal in L' (w). Observe that this follows if we can
show that E is left translation invariant. By assumption, there exists a
constant C such that

lg'll <cClgll forall geE.

By Taylor’s formula and a simple estimate of the remainder, we see that g

can be extended to an entire function of exponential type < C, and hence
o] xn

) mg(")

n=0

defines a translation by x units of g. Therefore E is translation invariant,
and the assertion follows. It is worth mentioning that one can show that the
corresponding closed ideal is modular.

Differentiating (2.2) iteratively, we obtain the formula

g"(@) = ((1—ifa+1)7 )yt gy, zeC,

forn=0,1,....
If hy (I) = I1_ \ {0}, the above formula has a natural extension (among
many), which defines fractional differentiation of g € I+ :

g(a)(z) = ¢in® ((i(a +I).—1 _ l)aez(l—i(a+l)“)’g>, zeC,

for « € C. Here the power is defined using the principal branch of the
logarithm. It is worth noting that

o s;)g‘“’ (z), a€C,
is an entire function of finite exponential type.

ProposiTiON 2.3. Let I be a closed modular ideal in L' (w), and suppose
& € L®(w) annihilates 1. Proposition 1.7 gives a unique extension of g in
(M(w))* which annihilates the closed ideal

J={ueMw): uxL(w)<=1}.
If we denote this extension by h, we have

(B by = (e"0=1@+D™) o5 — g(n) for n=0,1,....
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ProoF. Let {e,}§ be a sequence of approximate identities in L' (w) with
support shrinking to {0}. Then e, *, € L' (w) and

{ex* by, 8 ;)g(n) as k —o0.

Evidently, {e,+ I} is a sequence of approximate identities i L' (w)/I.
Since I is modular, e, + I tends to the unit in L!(w)/I as k— oo, and
consequently

ex+J = 6o+J as k-
in the norm of M (w)/J. Therefore
{ex*0,,8> = ey *d,,hy > (6,,hy as k—o0.
which proves the proposition.

3. Closed ideals in I* (w).

Let I be a closed non-zero ideal in I (w). Then h,(I) N 2° consists of
isolated points, and h(I) N 02 is a closed subset of 02 = 2 N R with
linear measure zero. The easiest way of seeing this is to observe that the
function

jtilogz) = 3 u(n})z", zeDN\[-1,0],

extends continuously to a function in the disc algebra 4 (D). Here log is the
principal branch of the logarithm.

Since oo € 2°, an application of Silov’s idempotence theorem (see [7])
shows that we can assume without loss of generality that

h() <= 2\ {o}.

It is easy to check that the mapping which maps u € I'(w) onto the
measure v € [ (w) with
v({n}) =z u({n}) forneN

is an isometric automorphism of I'(w) for z, of modulus 1. Hence if
h(I) = 9 \ {0}, we can assume without loss of generality that

h(I)c 2 \ L.

We now state the following
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THEOREM 3.1. Let I be a closed ideal in I* (w) such that
h()c2 \ L.
Suppose
g =(g.)5 € 1”(w)

annihilates 1. Then there exists a unique entire function of finite exponent-
ial type, which we also denote by g, with indicator diagram contained in
—i(2 \\ L) such that

(3.1) g(n)=g, for neN.
The entire function is given by the formula
(3.2) g(2) = (6, +1,8), z€C,

where the power is defined, as usual, by the principal branch of the logarithm.

ProoF. The uniqueness follows from Carlson’s theorem [4, Theorem
9.2.1]. Clearly, (3.2) defines an entire function, and the estimate

|g(z)| < ”g” . d7 ||log(61+1)|l’ zeC,

shows that it is of finite type. It is trivially observed that (3.1) holds.

It remains to show that the indicator diagram of g is contained in
—i(2 \ L). After an elémentary calculation, we see that the Borel
transform of g is the function

9(z) = (z—1og (0, + 1))~ ', 8),
which is defined and holomorphic for z € C \ (—ih,(I)). By assumption,
h(I)= 2\ L,

and consequently, the conjugate indicator diagram is a compact subset of
_‘i@ \ L). After complex conjugation, we see that this holds for the
indicator diagram, too, and the theorem is established.

4. The main result.

To prepare ourselves, let us first make some remarks. Recall that by
Theorem 2.1 and Proposition 2.3, a functional g € M (w)* annihilating a
closed ideal J in M (w) such that

hy(J) < I1_

Can be identified with an entire function with specified growth whose
Testriction to R, belongs to L® (w). Moreover, the norm of g is the L*(w)
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norm of (the restriction to R, of ) the corresponding entire function.
Befo;e we can state our main result, we shall need the following lemma.

LEMMA 4.1. Let J be an arbitrary closed ideal in M (w) such that

and let g be any functional in M (w)* which annihilates J. Then there exists a
constant C = C(J) such that

lgle) < C gl ey

Proor. We argue by contradiction. So, assume that the conclusion of the
lemma is false. Then there exists a sequence {g,}§ of functionals in J*
such that

”g"”Lm(w) =1, n= 0,1,...,

and
||g,,|N ”l“’(w) - 0.
Since
4.1) lg.(2)l < @i+ for z e C,

the sequence {g,}& forms a normal family, by Arzela—Ascoli’s theorem.

The Bolzano—Weierstrass theorem combined with the equicontinuity of
{g.}& shows that it is sufficient to deal with the following two cases, which
are not necessarily mutually exclusive.

CasE 1. There exists a t, € R, such that

lg.(to)l/w(ty) = 1 as n—c0.

By normality, there exists a subsequence {g,,j}?," which converges
uniformly on compact sets to an entire function g, which cannot vanish
identically, since |g(to) = 1. By assumption

lgaln ey = 0 as n—>o0,

and consequently

g(k) = lim g,,,(k) =0 for ke N.
j= o

Evidently, g also has the bound (4.1), and consequently,
lgz)l < Ce™=9'4, zeiR,
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for some ¢ > 0 and some constant C, by Remark 2.2. Carlson’s theorem
(see [4, Theorem 9.2.1]) now implies that g must vanish identically, which
is a contradiction.

Cask 2. There exists a sequence {£,}§& of points in R, tending to +
such that

lgn(én)l/w(én) — 1 as n-oo.
For ne N, put

F,(z) = gu(Cn+ 2)/w(a), z€C.

A careful look at the statement of Theorem 2.1 reveals that
et@=i@+N™)| < w(t) for t e R,.

Consequently, we have the estimate
IE @) < | e(é"“)(l_"(/““)_l)”/W(fn)
@.2) < ezt =i@ DT . || e&lt =i+ D] py(g,)
< lefi=ia+D™)| for z € C,

which shows that {F,}§ forms a normal family. Hence there exists a
subsequence {F,}§ which converges, uniformly on compact sets, to an
entire function F. Since

IF(O)I = lim lgn,(énj)l/w(én,) =1,

F does not vanish identically.

Obviously, F also has the bound (4.2). Let ¢ be some cluster point of
the bounded sequence {¢n,— [£4,1}8. Here [x] denotes the largest integer
Sx. By taking a thinner subsequence, we can assume without loss of
generality that ¢ is the only cluster point.

Since the convergence of {F,}& is uniform on compact sets, and
the Cauchy estimates show that the same holds for the derivatives, our
assumption

“g,,lN ”I“’(w) -0 asn—oo

implies that

Fle=0) = tim g, ([&,1+lw((&,] + k) w((&,] +K)w(E,) =0 fork e Z,.
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Again Carlson’s theorem or perhaps more accurately, Theorem 9.3.4 [see
4] shows that F must vanish identically, which is our desired contradiction.
The proof of the lemma is now finished.

REMARK 4.2. In the proof of the lemma, we borrowed some arguments
from the proof of Theorem 3a in Shmuel Agmon’s paper [1].
Unfortunately, Agmon’s results do not seem to imply Lemma 4.1 since he
allows the constant C which appears in the formulation of our Lemma 4.1
to depend on the entire function g.

We now state our main result.

THEOREM 4.3. For any closed ideal I in I* (w) with hy(I)= 9 \ L, let J,
be the closed ideal in M (w) generated by 1.

(a) There exist two unique closed ideals J and K in M (w) such that

JO = J n K,
hy(J) = h(I),
hp(K) = hy(Jo) \ h(I).

This defines a mapping from the closed ideals I in I*(w) with
h(I) = @ \ L to the closed ideals J in M (w) with hy(J) = @ \ L.
(b) The mapping in (a) is injective, since J N 1*(w) = I.
(c) The mapping in (a) is onto, and by (b) it is a bijection.
(d) The mapping

@:p F*f 80t Ddu(r), pe Mw),
0

is a continuous homomorphism from M (w) onto I'(w)/I with kernel J.
Here log is the principal branch of the logarithm. On I*(w), ¢ is the
canonical quotient mapping 1*(w) — I' (w)/I.
(¢) The mapping p+1 v u+J, pel'(w), defines a Banach algebra
isomorphism of 1* (w)/I onto M (w)/J ; its inverse is the quotient mapping
Mw)/J = (w)/I
induced by ¢.

REMARK 4:4. The adjoint mapping
o*: It > (Mw))*
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extends the elements of I to functionals in (M (w))* that annihilate the
closed ideal J. A functional g € I+ is mapped onto

p*g(t) = (™t o5 te Ry,

which extends to an entire function of finite exponential type, by Theorem
3.1. It is clear in what way @* g is an element of (M (w))*:

{u0*g) = J *g(t)du(t) for pe M(w).
0

Proor oF THEOREM 4.3. We first prove (a). Proposition 1.8 tells us what
the complex homomorphisms on M (w) look like, and we have previously
mentioned that the closed lower half plane 1_ is an open subset of the
Gelfand space of M(w). It is now easy to see that

huyJo)NII_ = kUZ (h(I) + 2nk),

and since by assumption k;(I) = 2 \ L, h,(I) is an open and closed subset
of hy(J,). (a) now follows from a form of Silov’s idempotence theorem
which can be found in Domar’s paper [7, Theorem 2].

We proceed to prove (d). Since the estimate

letos6, D] < 16, + Iyl - llet-moi D]

IA

w(n) . ” e(t—n)log(51+l) ”

holds for n € N, we see that the continuous function
t |8 +D| -t e Ry,

belongs to I (w), by choosing n as the smallest integer > ¢. This shows that
¢ is a well-defined continuous linear mapping. A straightforward
calculation shows that ¢ is a homomorphism. To finish the proof of (d), it
remains to show that the kernel of ¢ is J.

Evidently, the restriction of ¢ to I' (w) is the canonical homomorphism
(w) - I (w)/I, and since ¢ is a continuous homomorphism, Ker¢ is a.
closed idealin M (w) which contains I, and consequently it contains J, t0o.
_ As a first step, we show that Ker ¢ o J. Denote by ¢ the continuous
1sSomorphism

Mw)/Kerp — I*(w)/I

?nduced by ¢. By the open mapping theorem, ¢ is a Banach algebra
1somorphism. Consequently, the adjoint mapping ¢@*: I+ —(M(w))*
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is a Banach space (module) isomorphism from I‘ onto its image
im ¢* = (Ker ¢)*.

Since the only complex homomorphisms in im¢* = (Ker¢)* cor-
respond to points in hy(J) = h(I), it follows that Ker @ > J. Our next
step is to show that Ker ¢ = J. Recall that the annihilator J* of J consists
of the restrictions to R, of some entire functions of finite exponential type
with conjugate indicator diagrams contained in the closed convex hull of
—ihy(J), by Theorem 2.1 and Proposition 2.3.

Since hy(J) = 2 \ L, Carlson’s theorem ([4, Theorem 9.2.1]) shows
that these entire functions are uniquely determined by their values on N.
" If westart with an arbitrary g € J 4, then its restriction to N (regarded as
an entire function) belongs to I* (w) and annihilates I. By Theorem 3.1, the
extension @*(g|y) of g|y is the restriction to R, of an entire function of
finite exponential type with indicator diagram contained in —i(2 \ L).
Since @*(g|y) and g have the same values on N, Carlson’s theorem ([4,
Theorem 9.2.1]) shows that

P*lN) = &
hence imo* o J*, and consequently Ker¢ < J. Since we previously
showed that Ker ¢ = J, this proves (d).

As we have remarked before, the restriction of ¢ to I* (w) is the canonical
homomorphism [!(w) — I*(w)/I, and consequently the inverse of the
Banach algebra isomorphism ¢ is the mapping p+1—>p+J, ue I*(w).
This proves (e).

Now is the time to show that (b) holds, that is, that J NIt(w)=1.
Evidently, J N I*(w) > I. Since the restriction of J+ to I'(w)is I+, an
application of Proposition 1.1 shows that J N I (w) = I, which is (b).

The only thing that remains for us to do is to show that (c) holds.

To this end, let J be an arbitrary closed ideal in M(w) such that
hy(J) = 2 \ L. Denote the closed I (w)-ideal J N [*(w) by I.

It will be sufficient to show that

It py = 1+

To see this, observe that then h,(I) = hy(J)= @2\ L, so that the
homomorphism ¢ is well-defined and that, by the uniqueness property of
the entire functions associated to the annihilators, ¢* is the inverse of the
restriction mapping. Then

im@* = (Kergp)! =J4,

and consequently, Ker ¢ = J, which does it.
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Let v: I*(w)/I > M(w)/J be the canonical homomorphism
u+lI r-;>,u+J, p e lt(w).

Its adjoint mapping v*: J' — I+ restricts the functionals in J* to I*(w).
By Theorem 4.14 [see 14], imv* = J 4|, is weak  closed if and only if it
is norm closed. ‘

Let g € J* be arbitrary, and denote its extension (see Theorem 2.1 and
Proposition 2.3) to an entire function of finite exponential type with
indicator diagram contained in —i(2 \ L) by g, too. By Lemma 4.1, there
exists a constant C not depending on the chosen g € J* such that

“g”L‘”(w) = C “g|N le(w)-

Hence J* |, is norm-closed, and therefore weak * closed, too.
By Proposition 1.1, J*|u,) = I+, which completes the proof of the
theorem.

REMARK 4.5. Combining Theorem 4.3 with Proposition 1.7, we have a
Banach algebra isomorphism from I* (w)/I onto L'(w)/J N L* (w). Another
consequence is that the set of closed modular ideals in L' (w) with hulls in
2 \ L and the set of closed ideals in I*(w) with hulls in 2 \ L can be
identified.

In Section 3, we mentioned that when trying to describe the closed ideals
in I'(w) one can without loss of generality restrict one’s attention to closed
ideals with hulls in 2 \ L. Similarly, if J is a closed modular ideal in
L' (w), we can without loss of generality restrict our attention to ideals
with hy(J)c 2 \ L. To  see  this, remember  that
hy(J)\ II° consists of isolated points and that h;(J) NIl = hy(J) N R
is a closed subset of R with linear measure zero, and apply Silov’s
idempotence theorem in the form found in [7, Theorem 2]. The last step is
to remember that the automorphism mentioned in the introduction
translates the Fourier transforms. There is a different argument which is
less special, since it does not use any special information about the hulls,

but we have to sacrifice somethin g: we have to change our weight function.
Let

w,(x) = w(tx), xe€ R,, fort>0.

Then the function w, is submultiplicative, making M (w,) a Banach algebra.

The mapping T, which takes a function x ~ f(x), x € R, onto the
function x v ¢ f(tx), x € R, is an isometric Banach algebra isomorphism
of L'(w) onto I (w,).
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By choosing t small enough one can assume that
h(T,(J)) = 2 \ L.

Theorem 4.3 then states that there is a closed ideal in I*(w,) which
corresponds to J.

5. Final remarks.

A Theorem 4.3 could also be obtained for the corresponding Beurling
algebras on the additive groups R and Z; one then assumes the weight to be
submultiplicative on the whole real axis. We will denote these algebras by
L'(w,R) and I'(w,Z), respectively. One usually separates between the
analytic case when the Gelfand space of L' (w, R) is a strip with width and
the Gelfand space of I*(w, Z) is an annulus, and the non-analytic case when
the Gelfand space of L' (w, R) is a line and that of I*(w,Z) is a circle.

In the analytic case, the situation concerning the hulls of ideals is almost
exactly the same as in the case of algebras on the additive semigroups R,
and N, and the technique involving Silov’s idempotence theorem to shrink
the hulls can be applied.

In the non-analytic case, we can assume, without loss of generality, that

lim 1 logw(x) = 0.

| x| =00

Following Arne Beurling, one speaks of the non-quasianalytic case when
* logw(x)
<
f_ T S

and the quasianalytic case when this integral diverges. In the quasianalytic
case, the hull of a modular ideal in I} (w, R) is a compact subset of the real
axis which does not contain any interval, according to Beurling [3]. Again,
the technique using Silov’s idempotence theorem works.

In the non-quasianalytic case, however, one can only use the weight
modification described at the end of the last section, since L! (w, R) will then
contain functions having Fourier transforms with arbitrarily small
compact support.

The closed subspace of I!(w,R.) consisting of those functions which
vanish (almost everywhere) on the interval [0,a] for some fixed « = 0153
so-called primary ideal at infinity, which means that it is a closed ideal
which is not contained in any maximal modular ideal. This shows that there
are plenty of non-modular ideals in I!(w,R,). Some attention has been
given to the problem of describing all primary ideals at infinity. Under



A COMPARISON BETWEEN THE CLOSED MODULAR IDEALS... 299

some slight growth and regularity restrictions on the weight w, GurariY [9]
has shown that all primary ideals at infinity are of the above-mentioned
type for some « € [0,00). The author [10] has recently studied the
corresponding problem for the group algebra I'(w,R) under the
assumption that the weight w is of analytic type.

We will now describe the relation between quasianalytic Beurling
algebras and the familiar notion of quasianalytic classes. Assume that we
have a quasianalytic weight w. Call L' (w, R) quasianalytic in the sense of
Carleman if

f®©0)=0 for n=0,1,..., forany f € I!(w,R)

implies that f = 0, and extend this terminology to I'(w) in the obvious
fashion. It then follows from our results that L' (w,R) and [*(w,Z) are
quasianalytic in the sense of Carleman simultaneously.

In a paper from 1951, Lennart Carleson [5] shows that Bernstein’s
approximation problem has a solution for the weight wif w is even, log w is
convex in logx, and

* logw(x) , _
f_m T2 9=+

this result can be used to show that for such weights w, L*(w,R) is
quasianalytic in the sense of Carleman.

It should also be mentioned here that there are generalizations of
Theorem 4.3 to weighted algebras on R% and N" for n > 1. However, in
this case, the hull of a general ideal in I* (w, N"), which can be regarded as a
compact subset of C", can be rather twisted, and there may not be any way
to shrink it with Silov’s idempotence theorem.
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