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SPECTRAL PROPERTIES OF VAGUELY ELLIPTIC
PSEUDO DIFFERENTIAL OPERATORS
WITH MOMENTUM DEPENDENT LONG RANGE
POTENTIALS USING TIME DEPENDENT
SCATTERING THEORY - 1II

PL. MUTHURAMALINGAM

Abstract. .

Enss’ method is developed for hy(P) + Wy + W,(Q,P) on I?(R"), where
(1) hois a smooth real valued function (ii) Wjis a short range perturbation
and (iii) W.(Q,P) is a smooth long range perturbation. Asymptotic
completeness is proved, when hy(c0) = oo and the closure of the set of
critical values is countable.

1. Introduction.

The method of Enss [4] was extended to include vaguely elliptic
operators with short range potentials in [19]. In [10] we tried to extend the
results of [19] to include long range perturbations using the techniques of
[5]. We could prove in [10] asymptotic completeness for the pair (Ho, H)
with Hy = ho(P), H = H, + W,(Q,P) + W,(Q,P), if

(i) W, W, are short and long range perturbations,

(i) hois a C* function of at most polynomial growth such that hy(c0)
=00,

(iii) C = {¢: hy(&) =0 or det k(&) = 0} is a set of measure 0 and,

(iv) the closure of {ho(£): ¢ € C} is countable.

While condition (iv) is satisfied when ho(&,,&,) = (E2+E3Y, r>0 or
ho(§1,¢5) = &4 + &4 +a(E3+¢&), a>0 or ho(,&)=¢1+85+
a(¢} + ¢2), a > 0 it is not satisfied for the elliptic case ho (&, &,) = &} + 3.
The main aim of this article is to overcome this highly unsatisfactory
state of affairs. For a subsidiary aim see next section.

Recently in [6] a stationary theory has been developed for simply
characteristic operators with short range potentials. In [14], [11] Enss’
e ————
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method is developed for simply characteristic operators with short range
potentials. In [13] Enss’ theory is developed for parabolic and hyperbolic
operators of order 2 with long range potentials. While for the pair
(P,P,,P,P,+ W) [on I?(R%*)], [6], [11] could prove asymptotic
completeness, for the pair (P2 P3,(P, P, + Ws)?) both [6] and [11] remain
silent. But the “philosophy” [2] of invariance principle [18], [1], [7] in
scattering theory demands some result for the pair ((P? P3,(P, P, + Ws)?).
The subsidiary aim of this article is to prove some results for the pair
(ho(P), ho(P) + Ws + Wy)) with hy, as general as possible. In particular we
have

(i) therange of Q, is contained in the space of scattering states of H and,
(ii) a characterization of the orthogonal complement of Range Q. in the
space of scattering states.

For details cf. Theorem 2.3 (v), (vi), (vii). For related works on Enss’
method see [16], [9] and references therein.

Finally we sketch the contents. In section 2 we state the assumptions on
the Hamiltonians and the main results. In section 3 we prove the existence
of the wave operator. In section 4 we construct, by the method of iterations,
a position — momentum dependent evolution to be used in section 5. In
section 5, the evolution of section 4 approximates the total evolution. In
section 6, RangeQ, is characterized and, in the vaguely elliptic case,
asymptotic completeness proved. '

The ideas of [13] are freely used in this article.

2. Statement of the result.

Let & = #(R") denote the Schwartz space of all rapidly decreasing
smooth functions on R" and C§(R") denote the space of all smooth
functions with compact support. On & we define the Fourier transform &

by
(F1)(€) = F(&) = @r)~"[dx exp [ —ix¢] f ().

F can be extended, by the Plancheral Theorem, to a unitary map on I#(R")
and this extension shall also be denoted by the same letter £

Let Q = (Q4,...,Q,), P =(Py,...,P,) be the position and momentum
operators on I?(R") given by (Q,f)(x) = x;f(x), P,= —iD;, D; = 0/0x;.
We denote by F(M) the indicator function of the set M.

For any self adjoint operator A on I?(R") we define the spaces of
scattering states M(1,+o0,4), M(2,4+00,4) cf. [1], [16], [9]- Let
A, = exp[ —itA]. Put
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M(1,+00,4) = {fe (R"): lirin IF(lQl <r4,fll=0

for each r > 0}

M@, +0,4) = {f € BRY: lim }ng"dz IF(Ql < r)d,fll =0

for each r > 0}.

The linear spaces M (1, + 00, A), M(2,+ 00, A) are easily seen to be closed.

For A as above we denote by H,(4), H.(4), H,.(4) the closed linear span
of eigenvectors of A, the continuous space of A and the absolutely
continuous space of A4, respectively; E,(4), E.(4), E,.(4) stand for the
orthogonal projections onto H,(4), H.(4), and H,.(4), respectively.

We put <(Q> = (1+0Q?%)?} and (t) = (1+1¢?)! for real t. All generic
constants will be denoted by the same letter K.

Now we state our assumptions Al,...,A8. Theorem 2.3 is valid under
Al,...,Ad. Theorem 2.3 is about

(1) the existence of the wave operators and
(ii) the relation between the ranges of the wave operators and the
scattering states.

For Theorem 2.4 on completeness we need, in addition the assumptions AS,
A7, AS.

Al (Condition on the free Hamiltonian). hy: R" > R is a C* function
such that h, and all its derivatives are of at most polynomial growth.
The free Hamiltonian Hy is Hy = ho(P) with its maximal domain.

A2 (Condition on the long range perturbation). W, : R"x R"—> R isa C*
function such that there is some & in (0,1] so that for any bounded
subset B of R" we have

sup | D DLW, (x,0) < K(B,, )1 +1xl)-18-2

for all multi indices a,B. Here K(B,a,f) is a constant. The pseudo
differential operator W, (Q,P) is given by

(W2, P)f1(g) = (2m)~*"§ag Wi(g,6) /() expigl].

We assume that W, maps & into I?(R"). (This may impose some
condition on the growth of & in W (x,£).) '

A3 (Condition on the short range perturbation). Dom W 2 % and there
exists some ¢, > 0 such that Wsp(P){Q)!*% is a bounded operator
for each ¢ in C2 (R").
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A4 (Condition on the total Hamiltonian). The operator H = H, + W
+ W.(Q,P) defined on & is symmetric and has a self adjoint extension
denoted by the same letter H.

A5 (Compact perturbation). The operator (H +i)"! — (Hy+i)"! is
compact.

A6 (Quasi divergent condition [3]). There exists an integer M > 0 such
that

Z ID*ho(€)l =00 and

|§|—>oo

p a
|ﬁ|=ZM+1|D ho ()l §K{1+|a’§M|D ho(E)l}

for a suitable constant K.

A7 (Vaguely elliptic condition). lim|_, o, | ho(£)l =

A8 (Condition on the critical values). If C, = {ho(é) ho(é) 0} is the set
of critical values for h,, then C,, the closure of C,, is a countable set.

With the above assumptions we develop the theory now. For example
where Al,...,AS, A7, A8 are satisfied cf. [19], [10], [20], [21].
With h, as in the assumption Al let us put

2.1) G =.{¢: Hy(¢) # 0},

THEOREM 2.1. Let Al hold. Then
() H,(Ho) ={fe Z(R":supp fc G} = F ' (G),
(ii) Hac(HO) g— M(l) i o, HO) g M(29 i 0, HO)‘
THEOREM 2.2. Let Al,...,AS and A6 or A7 hold. Then

() F(Ql Zr)(H +i)~* is compact for each r > 0.
(i) H,(H) S M(1, + o0, H) S H,(H) S M(2,+ o, H).

THEOREM 2.3. Let Al,...,Ad hold. Define the free and total evolutions U,
V, by U, = exp[ —itH,], V, = exp[ —itH]. Then we can find a C* function
X : Rx R"— R such that the following hold:

() Q4 =slim, ., V*exp[—iX(t,P)]E,(Ho) exists.
(i) Q1Q. = E,(H,),

(iii) (intertwining relations) V,Q, = Q. U, for all t,
(iv) RangeQ, € H, (H)E H (H),

(v) RangeQ, & M(1,+00,H)E M(2,+00,H),
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(vi) M(1,+00,H)© Range Q.
={feM(1,+o0,H): lim s ly(P)V.f] =0
for eachy in C¥ (G)},

(vii) M(2, £ 00, H)©ORange Q,
={f e M(2,+ 00, H): limy_., (1/T) {7 dt ly(P)V,f = 0
for eachy in C¥(G)}.

THEOREM 2.4. Let Al,... A5, A7, A8 hold. Then
(i) RangeQ, = H,(H)=M(,+o00,H)=H/(H)=M(Q2,+,H).
(i) Any eigenvalue of H not in C, is of finite multiplicity. All such
eigenvalues can accumulate only at the points of C,,.

REMARK 2.5. Using the assumption AS and Stone—Weierstrass Theorem
one can easily show that the operator ¢(H) — ¢(H,) is compact for each
continuous function ¢ on R with ¢ (4 00) = 0. For details we refer to [16].

3. Proof of Theorem 2.1., 2.2., 2.3. (i)... (V).

Proor oF THEOREM 2.1. For (i) we refer to Theorem 1 of [20]. For (ii)
note that we have clearly M (1,4 00,A4) & M(2,+ o0, A) for any self adjoint
A. Since M (1,4 o0, Hy) is closed it suffices to show that the dense subspace
D of H,.(H,) given by

D={fe¥:feCyG)

IS M(1,+00,Hy). For any f in D choose ¢ € CP(G) such that
@(P)f = f. The result follows by noting that F(IQ| < r)¢(P) is compact
for each r > 0.

PrOOF OF THEOREM 2.2 (i). By the compactness condition A5 it suffices
to show the compactness of F(1Q| < r)(H, +i)~*. If case A7 holds, this is
clear. If A6 holds then apply Theorems A1 and 9 of [3] to get the result.

(i) By (i) it is clear that H,(H)E M(1,+o0,H). By RAGE Theo-
rem [see 18] we get H.(H)S M(2,+o,H). It remains to show
M(1,+ 0, H) S H_(H). For this define the space of bound states by

M(@0,+,H) = {f: lim sup IF(Ql =r)V,fIl =0}.
r—+ow t2
Then using the techniques of the proof of Propositions 7.1, 7.2, of [1], we

see that H,(H)S M(0,+,H), M(0,+,H) L M(1,+,H), and finally
M1, + 0, H) € H,(H).
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Following [8], [12] we cut down the long range potential W, in a time
dependent manner in the position variable. In section 4 we shall further
restrict the momentum variable.

Take x, in C*(R") so that

(3.1) 0<y0=<1, xo=1 forlxl =2, 0 forlxl <1.
Set for p in (0,1] and real ¢
(3.2) Wip,t,x,&) = xo(px)xo(x1og {t3/<tH)WL(x,8)

where, we recall, (¢t> = (1 + 2} and (x> = (1 + x?)%. Then it is easy to
see, by the long range assumption A2, as in [8] that, with §, = §/3,

(3.3) 3up | DEDEW (p, 1, )| < K (B,a, f)p* ey~ =%

for each bounded subset B of R". Here K(B,a, ) is independent of p,t.
For future use in section 5 we note that

(34)  sup IDEDEW (p,t,%, &)] < K(B,a, )p™<t) ™% ey =02

for any bounded set B of R".
Without loss of generality we can assume, decreasing J, if necessary,
that 8, ¢ {1,4,4,...}. Choose the positive integer m, such that

(3.5) mg 60 < 1 < (mo + 1)50.
Now define Y (m,p,t,&) for m =1,...m, by
Y(0,p,t,8) =0

(3.6) t

Y(m,p,t,¢) = j dsW(p,s,sho(&) + Yi(m—1,p,s,8),&)
Put Y
(3.7 X(p,t,&) = tho(§) + Y(mo,p,t,8).

Now we have

LeEMMA 3.1. Let A1, A2 hold and X, Y be asin (3.6), (3.7). Let f € & be
such that f € C3(G) [cf. (2.1)]. Then

() 1<@)~cexp[—iX(p,t, Pfll < K(o,p,f)<t>° for each ¢ = 0,

@) §2,.dtI[W.(Q,P)— W(p,1,Q,P)]exp[ —iX (p,t,P)] f <0,

(i) §° dtI[W(p,t,Q,P)— Y (mo,p,t,P)/0t] exp[ —iX (p,t,P)] fIl < o0,
(iv) lim,., o Y(mg,p,t+5,&)— Y(mq,p,s,&) = 0 for each & and real t.
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ProoF. (i) and (ii) are easy consequences of the method of stationary
phase [5]. For (iii), cf. [12]. For (iv) also one can refer to [12].

We are now ready to prove Theorem 2.3 (i)... (v).

PrOOF OF THEOREM 2.3. (i)...(v). (i) For f asin Lemma 3.1. it is easy to

see that
o0
j dt
- 00

where X (t,P) = X(1,t, P). Now the result follows by density arguments
using Theorem 2.1. (i).

(ii) is clear. (iii) follows from Lemma 3.1 (iv) for p=1. (iv) is a
consequence of (iii).

(v) With f as in Lemma 3.1. we get

4 V*exp[—iX (¢t,P)]f

< 0
dt ’

(3.8) lim 1V,Q, f —exp[—iX(,P)]fIl =0

t—+t o
and, by Lemma 3.1 (i),

(39) lim IF(Ql £r)exp[—iX(t,P)]fl =0 foreach r > 0.

t—+ o0

Now by (3.8) and (3.9), Q4 f € M(1, + o0, H), Now the result follows by
density arguments.

4. Iterations for the solution of a Hamilton Jacobi equation.
For each real valued ¢ in CF(G) define W(p,p,t,x,&),

Y(m,0,p,t,x,¢), X(@,p,t,x,&) by

W(,p,t,x,&) = W(p,t,x,&)e(S)

@.1)
Y(0,9,p,t,x,8) =0,

t

Y(m,@,p,t,x,&) = [ dsW(p,p,s,x +s(@ho) (§)+

0

@.2)
+Y(m—1,0,p,5,x,6),8) for m=1,...m,,

@3)  X(@,p,t,x,) = x- &+ t(@ho) (&) + Y(mo, @, p,1, X, &).
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Note that by (3.3) and (3.4), we have

@4 suplDIDLW(@,p,1,%,8)l < K(p,a,f)p* ey~
and

(@5) supIDEDEW (9., .9 < K(p,, )p™ (1) ~1= ()=,

The aim of this section is to prove decay estimates for X. These estimates
will be used in the next section.

LEMMA 4.1.
() sup,:ID2Y(m,e,p,t,x,E) < K(m,@,a)p’ ()%,
(ii) sup,,./DiDLY(m,@,p,t,x, &) < K(m,o,a,B)p% if B +0,

(111) SUpy,¢ IDE Dg[Y(m’ @,p,t,x, é) - Y(m - 1, ®,p,1, X, é)]l
< K(m,p,a,p)p™<t)! ™™ for 1< m < my,

(IV) Supx,{lDE Dg{W((p’p’t,X,{((PapJ’xaé)aé) - W((p9p9t’x + t(hO (P),(é) +
+ Y (mo—1,0,p,1,%,8), &)} < K(@, 0, B)pPo(t) = ot 1),

PRroOF. (i) By induction on m. For m = 0 itis trivial. Assume the result to
be true for m — 1. For m the result is obvious by (4.4), when a = 0. So we
can assume |al > 1. Put

Z = Z(m—l,(l),p,s,x’f)

4.6) ,
=X +S(ho(P) (é) + Y,é(m -1, ‘P,P’S’x,é)-

By the induction hypothesis we see that

4.7) sugalDéZl < K@) {s) for a# 0.
Now
t
4.8) Y(m,,p,t,x,) = I dsW(e,p,s,Z,¢).
0

By induction on lal (1) it is easy to see that DH{W(g,p,s,Z,¢)}
is a finite linear combination of terms of the form
W, j(@,p,s,Z,,)DP Z... D} Z, where
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(@) W, @,p,s,x,£) = DID; W(9p,p,s,x, ),

o) 1li+jl glal,

(c) the product Df Z ... D Z may or may not appear. If it appears, then,

d 1=kl

) 1<layl,...lal £ lal.

By (4.7) and (4.4) we see, for any typical term
m,j((P’P,S,Z,f)D?Z---D?Z,

the estimate

@.9) |W,(0,0,5,Z,5)DE Z ... D} ZI S K(@,a4,..., 44,1, j)p> sy ™%

Now the result follows from (4.8) and (4.9).

(i) The proofis similar to that of (i) viz by induction on m. For m = 0 itis
clear. Assume the result to be true for m — 1. With Z asin (4.6) it is clear by
the induction hypothesis that

(4.10) ID:DtZ) < K(a,B) for B #0.

By induction on la+pl(=1) with f#0 it is easy to see that
DiDEW(o,p,s,Z,&) is a finite linear combination of terms of the form
W.i(p,p,s,Z,E)D$ D Z ... D§ DY Z, where

@) W, (@,p,s,x,£) = DD W(@,p,s,x,&),
) 1<li+jlgla+pl,
(c) the product D% D% Z ... D% D% Z always appears,
d1gkglil,
€) 1<la, +b4l,...la + bl < la+pl,
€) by +...+b) = 1.
Now the result follows as in (i) using (4.7), (4.8), and (4.10).
(iii) Again we use induction on m. For m =1 we refer to (i) and (ii).
Assume the result to be true for m — 1. Write

Y(m,0.p,t,x,8)— Y(m—1,0,p,t,x,&)
= §2d0 1 ds[(V, W)(@,p,5,x +5(ho@) (&) +0Ys(m—1,0,p,5,%,8) +
+1-0)Y{(m—2,0,p,s,x,£),8)]"
[Yim—1,0,p,5,x,&) = Yi(m—2,0,p,5,%,)].

Now the result follows as in (i) and (i).
(iv) Follows from (iii) by observing

W(@,p,t, X3(0,p,t,%,8), &) — W(@, p,t,x +t(ho) (£) +
+ Yg’(mo-— 1,(P,P, t,x, é)s é)
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= §od0[(Vs W)(@,p,t,x +t(hop) (&) +
+ BYC,(mO’ P, p, tax9 §)+ (1 - 0) Y::’(mo— 1’ ?,p, t’x’é)"f)] ’
) [Yfl(m09 ®,p, t’x5€)— Y:'(mo— L‘P,P,t,x, é)]

LEMMA 4.2,
(i) Let Y(m,p,t,E)beasin (3.6.). Ifthe real valued @ in C§ (G) is such that

@ =1 on an open set B, then
D;Y(m,p,t,¢) = D;Y(m,9,p,t,0,8)
for & in B, all o and m.

(i) Let X(p,t,&) be as in (3.7). Then lim,. . ,[X(1,t,8)— X (p,t,&)]
exists for £in G [of (2.1)].

(111) Sup,,x,¢ <X>_1 l Y'c(mo - 1’ P,p,t, X, f) - Y’g(mo - 19 ?,p,t, 0,6)' <.

PRrOOF. (i) By induction on m. For m = 0 itis clear. Assume the result to
be true for m — 1. Then

Y(m’ ¢’p’ t’O’ 6)
= S:) ds W(P,S,S(hofp)'(f) + Yl{(m - 15 ®,p,S, O’é), é)‘P(&)
= S'ods W(p,s,sho(&) + Yiim—1,0,p,s,0,¢),¢) for {in B

= fodsW(p,s,sho (&) + Ye(m—1,p,5,£),£)
for & in B by induction hypothesis

= Y(m,p,t,£) for & in B.

Now clearly D} Y (m,,p,t,0,&) = D; Y (m,p,t,£) for { in B.

(ii) (For the positive sign only.). Clearly it suffices to show that
lim,., , DF[Y(m,1,t,&) — Y(m, p,t,£)] exists for each o, m, and £ in a fixed
open set B such that Bis compact in G. The proof is, as usual, by induction
on m. For m = 0 it is clear. Assume the result to be true for m — 1. Now
put

a = inf {lhy(&)l: ¢ € B}

sothat a > 0. Nowlet ¢ in CF(G) besuchthat 0 < ¢ <1 and ¢ =1 on
B. Now

Ishy(E)+ Yim —1,1,s, &)l
2sa—1Yim—1,1,s¢)l for ¢in B
>sa—K(m—1,¢9,1)¢s) % by (i) and Lemma 4.1 (i)
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Choose t, = 0 large so that for s > t, we have
sa—Km—1,9,1){s) % >24+2p7 1,
Then we get with y, as in (3.1),

@.11) Xo(sho (&) + Ye(m —1,1,5,8)) = 1 = yo(p[sho(§) + Ye(m —1,1,5,£)])
for£in B, s >t, = 0.

Also note that for x, y,£ in R"and s = 0 we get

W(,s,x,8) = W(p,s,y,¢)
=W(Q,5x,8)—Wip,s,x,8)+ Wip,s,x,8) — Wip,s,y,¢)
= [Xo(x) — xo(px)] %0 (x log{s>/{sH) Wy(x, &) +
+ o d0(V W) (p,s,0x+ (1 —0)y,&) - (x—y).
Now let t = t, and ¢ be in B. Then by (4.11) and (4.12) we get

Y(m,1,t,&)— Y(m,p,t,&)
= {ds[W(1,s,shp(E) + Yiem —1,1,5,8),¢) —
- Wi(p,s,sho(&) + Yi(m—1,1,5,8),8)] +
+ (o ds §o dO[(V. W)(p,s,sho(£) +0Ye(m—1,1,5,8) +
+1-0)Yi(m—1,p,5¢),8)]
- [Yim—1,1,5,8) — Yi(m—1,p,s,&)].

Now the result follows by (4.13) and the induction hypothesis.
(iii) Follows from Lemma 4.1 (ii) by noting

(4.12)

4.13)

|Yimo —1,0,p,t,%,&) — Yi(mo —1,0,p,1,0,8)l
=§5d0x - [V, Y:](mo—1,0,p,t,0x,E)l.

S. Phase space decomposition and approximate propagators.

This section closely follows the ideas from [8]. In this section we shall not
distinguish between an integral operator and the kernel of the integral
operator, i.e. I will denote the kernel I(q,x) as well the operator given by

(I f)(q) = §axI(g,x)f (x)-
Choose 7 in C*(R") so that
(5.1) 0<n<1, n=1 for Ixl =22, Oforlxl <1.

Choose and fix o, in (0, 1). For this g, choose ¥, in C*[ —1,1] so that
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Oél//i_s.la W++‘/’—=1

+=1o0n[0y,1], Oon[—1,—0,].
Choose any real valued y in C§(G) and fix it throughout this section. For
r 21 define g, (r,.,.) by

(5.3) 8+ (r,%,8) = n(x/r)y )W+ (x - Ko (€)/[IxI | Ko (£)]]).

For the given y choose a real valued ¢ in C§ (G) such that ¢ =1 in an open
neighbourhood of suppy. This forces

(5:4) e (©)y(&) = ().
For this ¢ choose p, in (0,1] so that, by Lemma 4.1 (ii),

(5.2)

1
(5.5) sup[ Y IDIDLY (mo, 0. po.t,x, c)IZ]’ <i
658 | ol <18l =1 2

For r 21, +t in [0,00) define an operator T, (r,t) on & by
(5.6) [T:(r.t)f](q) = §d&dxf (x)g s (r,x,&) exp(i[q - & — X (@, po,t,X,£)].
Now we have

Lemma 5.1.
i T:r,)¥ s,
(i) sup,gl,,zoﬂ Ty (r,t)l <oo,
(iii) T, (r,0)+ T-(r,0) = 2n)" y(P)n(Q/r),
(iv) I Ty (r,0)— T¥(,0)ll < Kr~1.

Proor. For (ii), (iii) and (iv), the proof is similar to the proof of Lemma
7.1 of [13]. For (i) note that for fin & we get

[Te () fT (€)= @n)~ D" fdx f (x)g.+ (r,x,&) exp[—iX (@, po, , X, £)]-
Note that [Ty (r,t)f] € C&(G).

LemMMA 5.2.

(i) Let e CP(R") be such that 0<0<1, 6=1, for Ix| <4, 0 for
Ix| = 1. Then there exists b > 0 and r, > 0 (depending on ¢) such that
forrzrg

lo(@/[b@ +1th]) Ty @, 0)ll < K(ey=24(ry=22-4
for each A in [0,1]. Here K is independent of A.
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From now on we choose r = ry always and A € [0,1].

@) 16@/[be+1tH]DW(Q,P)o(P)Te(r,t)ll < K(t)~24p=21-2,
(i) 1W(Q,P)@(P) Ty (r,t)ll < Kty =—20(r)y =2,

@) K@Y 2 Ty (r,t)ll < K<ey=24(ry =214,

v) 1K@> T (r,t) < K(t)™7*(ry =24~ for each o in [0,2],
(vi) 1<Q> 2 WL(Q,P)p(P) Ty (r,t)ll < K<ty ™24 (r) =200,

(vii) lim, o, {3 ® dt | W Ty (r, t) |l = 0,

(viii)lim, , , {5 ° dt | [WL(Q,P) — W (¢, po,t,Q, P)] Ty (r,t)ll = 0.
(ix) Let I, (r,t) be the operator with the kernel

[Ii(rst)](q’x) = Sdf exp(l[q : é"‘X((P,po,t,X,f)])gi(r,X,ﬁ)
[W((p1 pOat:Xé((pa Po,t,x,f); é) - W(‘Pa Po:t,x + t(hofp)'(f)
+ Yfg(mo - 1, ®,Po> t,X, é)a é)]

Then

+ o
lim J a1, (o)l = 0.

r— oo 0

(x) Define J, (r,t) by

[Ji(r’t)] (q,x) = Sd‘f eXP(l[q,f —X(‘Ps Po,t,X,f)]g;t (r’xaé)

[W((p’ Po> t9q9é) - W((pap09t,X’é(qoapO»taxsé):é)]-

Then
sup | J, (r,t)ll < K(ry =02
t20

xi) 1J. @0l < K¢e)=12%,
(xii) lim,_, , {¥*dtllJ . (r,t)l =0.

PrROOF. We prove all the results for the positive sign only.
(i) The proof is similar to that of Lemma 7.2 (i) of [13].
(i) Similar to (i).
(iii) Note that <Q)¥° W,(Q,P)¢(P) is a bounded operator. Write
W.(Q,P)
(5.7) = {[1-0(Q/[br + )])IKQ> ~*}<QY** WL(Q,P)p(P) +
+06(Q/[b(r + )] WL(Q,P)p(P).

267
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Clearly
ITL—0Q/[bE +0]DIKE> ¥l S K(r+1)~%e.

Now the result follows from (5.7) by using Lemma 5.1 (ii) and Lemma
5.2 (ii).

(iv) Follows from (i) and Lemma 5.1 (ii) by using the identity
1=1-60+86.

(v) Follows from (iv) and Lemma 5.1 (ii) by using interpolation [17].

(vi) Similar to (iv) by using (ii) instead of (i).

(vii) Since ¢@(P)y(P) = y(P) we see that

(5.8)  WsTi(r,0) = {Ws@(P)XQY' 0} {<K@> 1~ T, (r,1)}.

By the short range assumption A3, the operator Wsp(P){Q)!*% is
bounded. Now the result follows from (5.8) by using (v) and choosing
Ain (0,1) so that (1 +¢¢)4 > 1.

(viii) Let b be as in (i). Choose t, = 0 so that log<t,) = 4/b. Then using
@ (P)y(P) = y(P) we easily see that '

[WL(Q.P)— W(p,po,t,Q,P)] T, (r,t)
= (O>?[1 - x0(poQ)]IKQ> "2 WL(Q,P)p(P) T, (r,t) +
+ 20(PoQ)[1 — £0(Qlog (t)/<EN)]F (t < to) WL(Q,P)@(P) T, (r,1) +
+ 20(PoQ)[1 — %0(Qlog {t)/<tH)]F(t 2 to) -
- 0Q/[b(r+t))WL(Q,P)p(P) Ty (r,t).

The result will follow if we can show that each term on the R.H.S. has the
corresponding property. For the first term note that <Q»2[1 — xo(poQ)] is
bounded and apply (vi) with A in (},1). For the second term note that y, is
bounded, the t-integration is over a finite interval and apply (iii). For the
third term apply (ii) with A in (},1).

(ix) The proof is similar to the proof of Lemma 7.2 (v) of [13].
(x) Define L, (r,t) by

[L+ (ra t)] (‘I, X)
= [deexp(i[q - &~ X (@200t X, EN])E + (1%, E) W (@,p0,t, X3 (@, p0st,%:E): ¥
so that

(5.9) J+(:1) = %0(P0Q)xo(Q1og<tY/<tY)W(Q, P)p (P) T4 (1)) — Ly (1:1):
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As in the proof of Lemma 7.2 (vi) of [13] we get
(5.10) IL, (r,0) | < K (ry =902
Now the result follows from (5.9), (5.10) and (iii).

(xi) Similar to the proof of Lemma 7.2 (vii) of [13].
(xii) Follows from (x) and (xi) by the Lebesgue dominated convergence

theorem.
LeEmMA 5.3.
t o d
i) lim . ’ _
W r—oo jo i dt WETet) 0
(i) Q4(r) = s-lim V* T (r,t) exist for r = ro, ro as in Lemma 5.2 (i).
t—+ o
(i) lim sup ||V, Ty (r,0)— Ty (r,t)|| = O.
row t2
(iv) lim | Ty (r,0)— Q. (") | = 0.
(v) lim sup I T, 0)V* fll =0 for each f in I?(R").
r-o t2

(vi) lim sup 1Ty (r,0)V* £l =0 for each fin I?(R".

r-w t2

PROOF. Similar to the proof of Lemma 7.3 of [13]. One has to use
Lemma 5.1 (i) for (i).
LEMMA 5.4.

() @4(r) = s-lim exp[iX (1,t,P)] Ty (r,t) exist for r = rq.
t—+ o0

Here rq is as in Lemma 5.2 (i) and X (1,t,¢) as in (3.7).

i) Q.()=Q,wy(r)forr=ro, ro asin ().

(i) lim | (1 -0, @4)T. (,0)l =0,

() lim sup 11— Q4 01y (PI1(@/)V S| = 0 for fin E(R),
r-ew t
Jor each y in C3(G) and n as in (5.1).
Proor. (i) Since ¢(P) T, (r,t) = Ty (r,t), by Lemma 4.2 (i) it suffices to
show the existence of s-lim, , 4 , exp[iX (po,t,P)] T4 (r,1).
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Since ¢ = 1 on an open neighbourhood of y we easily see by Lemma 4.2
(i) that
exp[iX(pO’tsP)] Tj: (r,t) = exp[lX((P9 Po> t905P)] Ti (r’t)'

Now the proof is similar to that of Lemma 7.4 (i) of [13] by using Lemma
4.2 (iii).

(ii) Since ¢ (P)y(P) = y(P) we easily see that @(P)w 4 (r) = w4 (r). Now
the result follows by (i) and Theorem 2.3 (i).

(iii) The-proof is similar to the proof of Lemma 7.4 (iii) of [13]. By
Lemma 5.3 (iv) we get

0=lim Il Q% T, (r,0)— Q% Q. ()|

r—ao

= lim | Q% T, (r,0) — Eac(Ho)w+ () |

by (ii) and Theorem 2.3 (ii). Hence
0 = lim || Q, Q% T, (r,0) — Q4 E.c(Ho)w+ (r) |
(5.11) =1m Q. Q% T, (r,0)— Q2. (r)|

r—o

by Theorem 2.3 (i) and Lemma 5.4 (ii).
Now the result follows from (5.11) and Lemma 5.3 (iv).
(iv) follows from (iii), Lemma 5.3 (vi) and Lemma 5.1 (iii).

The rest of this section is not necessary for this article. However, it shall
be useful for improving the contents of [15].
More precisely, let

Y(,p,t,x,&) =0,
(5.12) Y(m,p,t,x,&) = {odsW(p,s,x + sho(£) +
+ Y;(m—1,p,s,x,£),l) form=1,...my,
(5.13) X(p,t,x,&) =x - &+ thy(&)+ Y(mg,p,t,x,&).

Then as in Lemma 4.2 (i) we can see that if a real valued ¢ in C§ (G)is 1 on
an open set B, for £ in B

(5.14) D;Y(m,@,p,t,x,&) = D;Y(m,p,t,x,&),
(5.15) X(p,p,t,x,8) = X(p,t,x,&).
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It is clear that when p,, of (5.5)is replaced by any p in (0, po] all the results
of this section are valid. Note that ¢ is chosen so that ¢ =1 on an open
neighbourhood of suppy. Thus we have proved the following theorem.

THEOREM 5.5. Let the assumptions Al and A2 hold. Choose a real valued y
in C¥(G),n, ¥4 asin (5.1), (5.2). Define S.(y,p,r,t) for r21, +t in
[0,00), p in (0,1] by

S:t(yap,r, t)(q’x)
= §dgyEn e/ 1 (x - Ko ©)/Ixl Tho (E)) explilq - & — X (p, 1, x,&)]).

Then there exists po > 0 (depending on y), so that for p in (0,p,] the
following hold.:

(1) S:t(y’p5r,t)yg y;

(11) Suprgl,t%O ”S:t(y9p’ra t) ” <o,

(i) S.(,p,7,0)+5_(,p,7,0) = 2n)"y(P)n(Q/r),

@) 1S+(p,0,7,0)— St (07,00l S K,r™ 1.

(v) With0asin Lemma 5.2 (i) there exists b, r, depending ony, p such that
forr=r,

10@/Ib( +1th DS+ (. p,r, )l S K(p)<ey~ <y =20 7
Jor each 4 in [0,1].

From now on r = ry and 4 € [0,1].

Vi) 1<@>28,(r, 0,7, ) < K(p)<ry =202 ()24,

+ o
(vii) lim J dt

r—o
0

.0
[HO + WL(Q,P)]Si(%PJ,t) "l‘é;si()’,P,r,t)' = Oa

Vi) w4 (y, p,r,£) = s-lim exp[i X (1,t, P)]S+(y,p,7,t) exists.
t—>+ oo

6. Proof of Theorems 2.3 (vi), (vii), 2.4.
Of Theorems 2.3 (vi), (vii) we prove only (vi) since the other one has a

similar proof. This also we do only for the positive sign. Thus we need to
prove



272 PL. MUTHURAMALINGAM

M(1,+o0,H)®© Range Q,
6.1) ={feM(l,+oo,H):}£rgNy(P)Kf|| =0
for each y in CJ(G)}.
Let f € L.H.S. of (6.1) and y € C§(G). Then with n asin (5.1)
lyP)V.fI? = <1 = 2. @) Iy (P)n(@M VLV +
+<[1=n@MIVSs, WP PS>

In the last equality use Lemma 5.4 (iv) for the first term of R.H.S. and
f e M(1,+ 0, H) to the second term to see that lim,_, lly(P)V,fIl = 0.
Thus L.H.S. & R.H.S. in (6.1).

Let f € R.H.S. of (6.1). Toshow f1 RangeQ. itisenough toshow, by
density arguments, that f 1 Q, g for each g in

D={gey:§eC§(G)}.

For gin D put h = 2, g and choose y in C3(G) so that y(P)g = g. Then
since

lim | V,h — exp[ —iX(1,t,P)]gl =0 and y(P)g=g¢g
t— o

we see that

6.2) lim | [1-y(P)]V,h Il =o0.
t— o0

Clearly

l(f,h>|=lim|<V,f,V,h>l

< lim I N[ =yP)]V; Rl + lim Iall lyP)v,fI

=0
by (6.2) and the condition on f. Thus R.H.S. S L.H.S. in (6.1). This
completes the proof.
PROOF OF THEOREM 2.4. (i). By Theorem 2.2 (ii) and Theorem 2.3 (iv) we
get that
RangeQ, € H,(H)S M(1,+0,H)S H.(H) € M(2, 4+ o0, H).
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So it suffices to show M (2,+ 0, H) S RangeQ, and this we do for the
positive sign only. We show that M (2, + co, H)© Range Q. = {0}.

Note that for ¢ e CP(R\ C,) if we put y(¢) = (ho(£)), then
7 € C§(G). Let f e M(2,+00,H)® Rangef, so that by Theorem 2.3
(vii) we get

T
63)  lim % J dtlo(Hy)V,fIl =0 for ¢in CZ(R\C,).

T—o 0

Since ¢(H) — ¢(H,) is compact for ¢ in C§(R \ C,) we get
(6.4) lim I [ (H) — ¢(H)]F(Ql =l = 0.
Since '€ M(2,+ o0, H) we see by (6.4) that

T
(6.5) lim lT J‘ dtll[@(H)— o (Ho)]V.fI =0 for ¢ in CZ(R\ C,).

T— o 0

By (6.3) and (6.5) we conclude ¢ (H) f = 0 foreach ¢ in C¥(R \\ C,). Since

C, 1s countable fe H,(H), So we get

(6.6) lim sup IFlQl = rV.fll =o0.
roo t2
Since fe M(Q2,+o,H), by (6.6) we get that f=0. Thus
M(2,+ 00, H)© Range 2, < {0} completing the proof.
(ii). By (i) we get E=E,(H)=1-Q,Q%. By Lemma 5.4 (iii) and
Lemma 5.1 (iii) we see that with # as in (5.1)

lim | Ep(Hy)n(Q/r)ll =0, for each ¢ in C(R\ C,).

Since @ (Ho)[1—n(Q/r)] is compact and ¢ (H)— ¢(H,) is compact for ¢
m CP(R\C,), we get the compactness of E@(H) for each ¢ in
CF(R\ C,). Now the result is clear.

ACKNOWLEDGEMENT. I wish to thank Professor L.Streit who gave me the
Opportunity to take part in the Research Project No. 2 in Mathematics and
Physics at the Center for interdisciplinary Research (ZIF), Bielefeld
University, Bielefeld, FRG, where this work was done.

Also it is a pleasure to thank Dr. M. Combescure for pointing out a
mistake in Lemma 4.1 (ii) in an earlier version.

Finally I sincerely thank the referee for his constructive criticism about
the presentation in an earlier version of the paper.



274 PL. MUTHURAMALINGAM

REFERENCES

1. W. O. Amrein, J. M. Jauch, and K. B. Sinha, Scattering theory in quantum mechanics
(Lecture Notes and Suppl. in Phys. 16), W. A. Benjamin, Inc., Reading, Mass., 1977.

2. E. B. Davies, Private discussions.

3. E. B. Davies and Pl. Muthuramalingam, Trace properties of some highly anisotropic
operators, J. London Math. Soc. (2) 31 (1985), 137-149.

4. V. Enss, Asymptotic completeness for quantum mechanical potential scattering, 1: Short
range potentials, Comm. Math. Phys. 61 (1978), 285-291.

S. L. Hormander, The existence of wave operators in scattering theory, Math. Z. 146 (1976),
69-91.

6. L. Hormander, The analysis of linear partial differential operators, Vol. 2: Differential
operators with constant coefficients, (Grundlehren Math. Wiss. 257). Springer-Verlag,
Berlin - Heidelberg - New York, 1983.

7. T. Kato, Perturbation theory for linear operators (Grundlehren Math. Wiss. 132),
Springer-Verlag, Berlin - Heidelberg - New York, 1966.

8. H. Kitada and K. Yajima, A4 scattering theory for time dependent long range potentials,
Duke Math. J. 49 (1982), 341-376.

9. Pl. Muthuramalingam, Lectures on “Spectral properties of the (two body) Schrédinger
operator — 34+ W(Q) on I>(R") using time dependent scattering theory in Quantum
Mechanics”, Indian Statistical Institute, New Delhi, India, June 1983.

10. Pl. Muthuramalingam, Spectral properties of vaguely elliptic pseudo differential operators
with momentum dependent long range potentials using time dependent scattering theory, J.
Math. Phys. 25 (1984), 1881-1899.

11. Pl. Muthuramalingam, A time dependent scattering theory for a class of simply
characteristic operators with short range local potentials, J. London Math. Soc. (2) 32
(1985), 259-264.

12. Pl. Muthuramalingam, Existence of wave operators in long range scattering: The case of
parabolic operators, J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 32 (1985), 443—455.

13. Pl. Muthuramalingam, Enss’ theory in long range scattering: Second order hyperbolic and
parabolic operators, Math. Nachr. 127 (1986).

14. Pl. Muthuramalingam, A note on time dependent scattering theory for P%—P}+
(1+1Ql)1"% and P, P,+ (1+1Ql)"1~¢ on I?(R?), Math. Z. 188 (1985), 339-348.

15. Pl. Muthuramalingam, Scattering theory by Enss’ method for operator valued matrices:
Dirac operator in an electric field, J. Math. Soc. Japan 37 (1985), 415-432.

16. P. A. Perry, Scattering theory by the Enss’ method, Mathematical Reports, Vol. 1, pp. 1-
347. Harwood Academic Publishers, Chur, 1983.

17. M. Reed and B. Simon, Methods of modern mathematical physics, Vol. 2: Fourier analysis,
self-adjointness, Academic Press, New York, 1975.

18. M. Reed and B. Simon, Methods of modern mathematical physics, Vol. 3: Scattering theory,
Academic Press, New York, 1979.

19. B. Simon: Phase space analysis of simple scattering systems: extensions of some work of
Enss, Duke Math. J. 46 (1979), 119-168.

20. T. Umeda, Scattering theory for pseudo differential operators, 1: The existence of wave
operators, Osaka J. Math. 18 (1981), 361-392.

21. T.Umeda, Scattering theory for pseudo-differential operators, 11: The completeness of wave
operators, Osaka J. Math. 19 (1982), 511-526.

ZENTRUM FUR INTERDISZIPLINARE PERMANENT ADDRESS:
FORSCHUNG DER UNIVERSITAT BIELEFELD INSTITUTE OF MATHEMATICAL SCIENCES
4800 BIELEFELD 1 MADRAS-600113

W. GERMANY INDIA



