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AN INTEGRAL REPRESENTATION
FOR THE HELLINGER DISTANCE

ESKO VALKEILA AND LJUDMILLA VOSTRIKOVA

Summary.

We give an integral representation for the Hellinger distance between
two probability measures on a stochastic basis. This representation uses the
Hellinger process, which depends on the measures involved and of the
filtration of the basis. We give bounds for the Hellinger distance in terms of
the Hellinger process. These results can be applied to the strong
convergence of stochastic processes.

1. Introduction.

Suppose that there is a stochastic basis (Q, #, F), i.e. ameasurable space
(Q,#) with a filtration F = (¥,),», an increasing right-continuous
family of sub-g-fields of #, and # = V, (%,

Given two probability measures P and P on (Q, #) we denote by P, and
P, their restrictions on &%, P,=P|#, and P,=P|#, Define a
probability measure Q by Q = (P + P)/2 and denote by @, the restriction of _
Q on #,. We suppose that %, contains all the sets of # with Q-measure
zero.

Let D be the space of the right-continuous functions with left-hand
limits. Denote by ¢ = ({,, #)»o and by {= ({,, #),», the Randon—
Nikodym derivatives of the measures P, and P, with respect to Q,. We can
take versions of { and , which have paths in D, and for an arbitrary
stopping time T

dPr > dPy
(1) CT-dQ—T and CT:d—Q-;’

for this we refer to [4, § 3, Lemma 2, p. 649].

DEerNiTION 1. Let T be a stopping time. The Hellinger distance p(Py, Pr)
between the measures Py and Py is defined by the formula

p*(Pr, Pr) = Eo(/Tr — VTr
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where E, is expectation with respect to Q.

In particular when T = oo we have

p*(P,P) = Eo(/Ts — /T
where {, = lim {,, {, = lim [,

To formulate the main results we introduce the notion of Hellinger
process associated with P, P, and F.

Let Y be a process with paths in D. Then we denote by Y¢ and Y“ the
continuous and discontinuous part of the process Y, i.e.

Y=Y +Y¥, Y= ¥ AY, and 4Y,=Y,~Y,_.
0<sgt
We denote by uy the jump measure of Y and by vy 4 the compensator (dual
predictable projection) of uy with respect to (F, Q).

Let M be a square integrable local martingale. Denote by (M°®) the
quadratic characteristic of M¢, i.e. the increasing predictable process such
that (M€)? — {M®) is local martingale (for details see [1] or [12]).

For t >0 and x € R let

@) AWx) =(1+xE-)®) VO, Z(x)=01-xE-)9 vo,
() B = ()% + ()9
where for —c0 £ a < ©
0 if a=0,
a®=Yda' ifa=0,lal # o0,

0 if lal = 0.

DEeFINITION 2. (Compare with [9, § 1, Definition 2, p. 388] and also [2]).
Predictable process H = (H,, #,), ¢, Where

“4) H, = :’fﬁoﬂﬂsd@‘)ﬁ ﬁo ] f]o [(\/ls(x) = V/4s(x))? v o(ds, dx)

is the Hellinger process.

Hellinger process characterizes the strong convergence between two
sequences of probability measures. For this we refer to [9].

We give the connection between Hellinger distance and Hellinger
process in the first theorem. When the Hellinger process is deterministic
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then we can give an explicit expression for the Hellinger distance in terms of
the Hellinger process. In Theorems 2 and 3 we give upper and lower bounds
for the Hellinger distance in terms of the Hellinger process.

TueOREM 1. Let T be a stopping time and let p(Py, Py) be the Hellinger
distance between two probability measures Py and P,. Then we have the
following integral representation

T

(5) pz(PT’ﬁT)=p2(POaFO)+EQJ‘ Cs-— s— st
0

In particular when T = o0 we get

PZ(P,F) = pz(P09F0)+EQJ vV Cs—- Zs— st
0

Denote by E (respectively E) the expectation with respect to P
(respectively P).

CoROLLARY 1. The integral representation (5) can be written in terms of P
or P:

T

©) p*(Pr, Pr) = 2E(1 - \/20) + EJ e dH,
0

or
T

) p(Pr, Py) = 2B(1 — /) + E j JEdH,
0

Where z, = {/(; and 2z, = { /T, (assume that 0/0 = 0).

Let 4 and B be functions with bounded variation and paths in D. Denote
by &% (4) the unique solution of the equation

dZ, = Z,_dA,+dB,
[1, Theorem 6.8, p. 192].

CoroLLARY 2. Suppose that F, = {&,Q} and that the Hellinger process
H is deterministic. Then for fixed t 2 0 we have

® p*(R, B) = 67 (— 3H).
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REMARK 1. Define the processes B = (B,, #,), 5 and B = (B,, %)),

Bi=3%| B+ f j (1 =4/ Y(x,9))*v, p(ds,dx)
10,1

1011 10.1]
and

Bi=%| Ba{,+ f f (1 = /¥x,5)) 2 plds, dx),
10,1) 10,t] J10,0(
where Y(x,s) = (1 +x(z,-)®) VO, ¥(x,s) =(1+x(-)9 vo.

In general the Hellinger process H is not P-equivalent to B as stated in
[9] (see [9, §1, Remark 2, p. 389]). But when P ¥ P (respectively P'¥ P)
the Hellinger process H and the process B (respectively B ) are P-
(respectively P-equivalent) and we may replace H in (6) (respectively (7)) by
B (respectively B).

Using Theorem 1 and Corollary 1 we obtain upper and lower bounds for
p*(Pr, Py) with respect to the measures Q and P.

THEOREM 2. For every stopping time T and every ¢ > 0 we have
) p*(Pr, Pp) < p*(Po, Py) + £+ 2Q(Hy 2 8),
(10) Q(Hr 2 ¢) < 2 + (1 +2/¢*)p(Pp, Py).

THEOREM 3. For every stopping time T and every ¢ > 0 we get

1) p*(Pr, Pr) < 46+ 2P(11 — /20l 2 &) +2PV*(Hy 2 ¢),
(12)  P(1-/zl Z &)+ P(Hr 2 &) <&+ (1 +2/e*)p(Pr, Py).
REMARK 2. Bécause of the symmetry of the Hellinger distance and the

Hellinger process we can write formulas (11) and (12) with P and 7, instead
of P and z,.

ReMARk 3. The inequalities in Theorems 2 and 3 are useful in the case
when p?(Py, P;) is near to zero.

REMARK 4. In the discrete time when #, = { &, 2} and P ¥ P the upper
bound for the Hellinger distance may be improved by

p*(Pr,Pr) £ 26+ 2P(Hr 2 ¢);

we refer to [13] for details.
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RemMaARk 5. F. Liese [7] has obtained a similar bound to (12) between
the variation distance of P and P corresponding point processes, and
Ju. Kabanov [3] obtained this bound in the general case.

From Theorem 3 we obtain necessary and sufficient conditions for
convergence of probability measures in variation.

Let the measurable space, filtration and the measures depend on the
parameter n>1, that is, (Q, #,F)= (Q"%"F"), P=P" P=pP"
Denote by || P" — P"|| the variation distance between the measures P" and
P ie.

I P — Bl = sup | P"(4)— B"(4)l.
AeF"

According to Kraft’s inequality [9]
(13) p2(P", Py < 2l P"— Pl < 2p(P", P).

From Theorem 3 and (13) we have the following result of R. Liptser and
A. Shiryayev [9] and Ju. Kabanov [3].

CoroLLARY 3. Condition
lim P"((,/z3 —1)* + H% 2¢) =0, Ve >0,

is necessary and sufficient for | P* — Pl - 0 as n - 0.
REMARK 6. Corollary 3 was proved in discrete time in [14, Theorem 2].

After finishing the first draft of this work we learned that similar work
has been made by Kabanov, Liptser, and Shiryayev [5] and also by Memin
and Shiryayev [10]. The interested reader should also see the paper by
Jacod [2].

2. Integral representation for the Hellinger distance.
In this paragraph we prove Theorem 1, Corollary 1, and Corollary 2.
Proor oF THeorem 1. We consider the process U = (U,, %), >, Where
(14) U, =G -V0*
We define stopping times t, £, ¢ and 1,, %, o) for k = 1 by the formulas

T =inf{t=0:{, =0}, £=inf{t=0:{ =0},
(15) g =inf{t20:¢ <2/(k+1)}, T =inf{t20:{ <2/(k+1)},
o =1AT, op=1,NT

where inf {@} = 0.



244 ESKO VALKEILA AND LJUDMILLA VOSTRIKOVA

First of all we show that for every stopping time T

(16) p*(Pr,Pr) = EqUpp, = lim lim E,Ur, oAt

t—=w k-
Because for every t = 0

(17) L+&=2,
we get from (14) that

(18) Ui =2-2/0¢.

Since the point {0} is an absorbing state for regular martingales { and , the
point {2} is an absorbing state for the process U and by (15) and (18) we
have

o=inf{t20: U, =2}.
Hence, from (14) and Definition 1 we have

(19) p*(Pr,Pr) = EqUI(c 2 T)+ EqUrI(e < T)
—_—EQUTAUI(G'z T)+EQUGI(0< T)=EQUT/\0'

where I(-) is the indicator function. -
Because o, < o, lim;., 0, = o and since regular martingales { and (
have left-hand limits, we obtain from (15)

(20) ,1_1.12 11m CTA A= ={rne liﬂolo ,‘ll.m CTAa A= gTAa'
. According to (18), U, £ 2 for every t = 0. Therefore, from (14) and (20)
by the Lebesque theorem we get

(21) lim hmEQUT/\o‘/\t_EQUT/\a

t=+0 k—o

But (19) and (21) give (16).
Since ¢ and { are regular martingales with respect to Q, by the It6 formula
we havefor S, =T A g, At
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N S, >
k C- - k C—
Ug = Up— | [2=dfi—| - [=d
Sk 0 J‘O Cs_ Cs J; Cs—- Cs+
1 Sk Cs— Zc
“3, e
A j Z,o Se d(le, }
+ 2 d {5, IILE 1Y L
j (@O RNy L CF J ol
+ Y AU+ Y {/———%’Afs+ /L’S‘Acs}
0<s<S, 0<s<s, |V s {s-

where (7, (¢) is the mutual quadratic characteristic of * and ¢°.

In below we write the process U as U = U° + U*, where U* involves the
continuous martingales (¢, { and their mutual quadratic characteristic,
while U? involves the jumps of U and discontinuous martingale part of U.
From Lemma 2.3. in [9] we have for every s = 0

(23) s =K = =L
From (22), (23) and (3) we get

(22)

(24)

§,=Uy— J /gs dfc — J gs_dC‘+zf Vs G- Bd<L s

Because of (17) we have for every s = 0

deli=2-0-4

and hence,

(25) H+i= (¢ +48) =0,

<tss
ACS = —4C,.
According to (2), (18), and (25) we get for s < S,

AUs = 2(\/ Cs— gs— RV CsZs)
(26) =2./(s- Cs— (1 - ’q's(ACs) s(Aé’s))

= \/Cs— C;-—(\/Z(Ac.s) - \/As(ACs))Z - \/nggs - \/EEACS'
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From (22) and (26) we obtain

Sk
Ug, = - J‘ (\/Cs—/(s— dgsd + Cs—/Cs- dcg) +
0

+ J‘ \/gs— Cs— (\/ As(x) A/ j's(x))z ,uc(ds,dx).
10,5] J]0,00[

Since the martingale parts on the right-hand side of (24) and (27) have zero
expectation and from the properties of compensators [12, §4, p. 211] we
get

Sk
(28) EqUs =EyU + EQJ - G- dH,
0

@7

where H = (H,, #,); is the Hellinger process.
Because S; = T A a; A t, from (16), (28) after lim,., , lim,_, ,, we have

TAo

(29) p*(Pr, Pp) = EQU +EQJ \/Cs— {,- dH,.

0

But the point {0} is an absorbing state for regular martingales ¢ and 7, so
that we may replace ¢ by oo in (29). Moreover, according to (16), EqU,
= p*(P,, P,). Hence, from (29) it follows (5). Theorem 1 is proved.

Proor or CoroLLARY 1. To prove (6) we show that for k > 1 and
S,=TA o, ANt we have

sl Sk
(30) E, J VOG- C_dH,=E f Jz._ dH,,
0 0

(31) EqUy =2E(1 —/z,)

where E is expectation with respect to P.
Because { is a regular martingale with respect to Q we have for each
stopping time T

Eq/ CTZT = Eg\/ CTZTI(CT > 0)
= EQ(T\/ zrl({r > 0) = Eo{o/2r1(r > 0)
Hence, according to Theorem 15 in [11, Chapter VII, §2, p. 144] we get

Sk Sk
(32) EQJ‘ \V Cs— Zs-— st = EQ Cooj v Zs- st
0 0
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Because P < Q, for each non-negative #-measurable random variable y
we have

(33) Eglun = En.
Therefore, from (32) and (33) we obtain (30).
From (18)

EqUp=2-2E3/Lolo.
According to (33)
Eg\/0olo = Eg /00001 (o > 0) = Eqloy/zol (Lo > 0)
= Egln/201(lo > 0) = E\/2,I({o > 0) = E /2,

since P({, > 0) = 1.
From (16), (28), (30), and (31) after lim,., , lim,_,,, we get

TAo

(34) p*(Pr,Pr) =2E(l—\/20)+E| /2, dH,
0

Because the point {0} is an absorbing state for the process z = (z,, #);5 ¢
and z; = 0, we may substitute ¢ =t A 7 by 7in (34).
By definition
t=inf{t20:{, =0} =inf{t 20: z, = 0}.
According to Lemma 2.2 in [4]
P( sup z,=00)=0.
0<s<o

Hence, P(t <o0)=0 and we may replace in (34) 6 by oco. The
representation (6) is proved.

Because of the symmetry of the Hellinger distance and the Hellinger
process from (6) it follows (7). Corollary 1 is proved.

Proor oF CoroLLARY 2. We fix t > 0. Suppose also that F, = {&, 2}
and H is deterministic.
From (18) we have

(35) iV CtZt =1- ’IZUt-

Denote by Z, = p(P, P). Then we have from (5) and (35)
t t

(36) Z, = J\ EQ {s- (- dH, = H, - %J\ Z,_dH,,
0 0

because H is deterministic. But from (36) we get (8). Corollary 2 is proved.
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3. Upper and lower bounds for the Hellinger distance.
In this section we prove Theorem 2 and Theorem 3.

Proor oF THEOREM 2. Let T be a finite stopping time. To prove (9) we
show that for every finite stopping time S

(37) p*(Pr, Pr) < p*(Prp s, Pras) +20(S < T).

Really, since Uy < 2 for every stopping time T, from (14) and Definition 1
we have

p*(Pr, Py) = EqUr = EqUrI(T < 8) + EQUrI(S S T)

S EQUras+EQUrI(S £ T) < p?(Prag, Pras) +20(S < T).
Let stopping time 7, be defined by the formula
(38) 1, =inf{0<t<T:H,2¢}

where inf { @} = c0.

Because the Hellinger process H = (H,, #,), > is predictable, then the
stopping time 1, is predictable, too. According to [1, Proposition 1.9, p. 9]
there is a sequence of stopping times (z¥),., such that for every k > 1,
tt <k k<7, and -

lim =1, (Q—a.s.).
k—*
Using (37) with S = t* we have
(39) Pz(PToFT)éPZ(PTAr:,FTAT:)"FZQ(Tfé T).

Since by (17), {;_ ;- <1 forevery s > 0 and H , + < ¢, from Theorem
1 we get

TA

pz(PT/\ rg,ﬁTAr§)=P2(P0aF0)+EQ‘[ Cs-— Cs— st
0

(40)
é pz(POaFO) +é&.

Because the Hellinger process H is non-decreasing, from the equality

(41) N{tt< T} ={c, < T}
k
we have
lim Q(et < T) = Q(s, < T) = Q( sup_H, ;s)
k— 0<ssT
= Q(HT =¢)

(42)
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Hence, from (39), (40), and (42) after lim,_,, we get (9) for every finite
stopping time T.

To prove (9) for an arbitrary stopping time T we consider a finite
stopping time T A t. From above we have

pz(PT/\ pﬁTA t) é pZ(POaFO)+8+2Q(HT/\ t g 8)
< p*(Po, B)+e+20(Hr 2 ¢)
because the Hellinger process is non-decreasing. From this after lim,_, , we
get (9).

Here we will not prove (10), since this inequality directly follows from
(12) and from the analog of (12) with P and z, substituted by P and %,.

Proor or THEOREM 3. We prove inequality (11). Let T be a finite
stopping time. First of all we show that for every finite stopping time S

43) p*(Pr, Pr) S p*(Prp 5, Prp5) +2PV2(S S T).
Really, by (14) and Definition 1
(44) pz(PTaFT)=p2(PTAS:ﬁT/\S)+EQ(UT—UTI\S)'

According to (18) we have
(45) EqUr—Uras) =2Eo(/Craslras—/irlr).

Since { and { are regular martingale with respect to Q and
P(infyc <o (> 0)=1,
we get from (33)
sy Eov/Trlr = Eo/Trlrl(Cr > 0) = Eglry/zr1r > 0)
= Eglo/2r1(lr > 0) = E\/z71({r > 0) = E{/z7.

In the same way we have

“7) EQ\/CTASZTAS=E\/ZTAS'

By Lemma 2.2 in [9], Ez; 5 s <1 and then from (45), (46), and (47) it
follows that
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Eo(Ur — Ugns) = 2E(\/z7as — \/27)
=2E(\/zmns —/2r) IS = T)
(48) <2E /210 5I(S < T)
< 2(Ezppg)'? PY2(S < T)
<2P2(SLT).
But (44) and (48) give (43).
Let stopping time 7, be defined by (38).
Since 1, is predictable stopping time, there is non-decreasing sequence
() z1 of stopping times such that ¥ < 7, and lim,_, , 7% = 7,.
Using (43) with S = t* we have

(49) pz(PTaﬁT) < p*(Pra s FT/\ r§)+2P1/2(T§ = T).
Since Hr 5 + < ¢, from Corollary 1 we get

TA

pz(PT/\tf’ﬁTArf):zE(l_\/ z,) +E v zs—-st

0

(50) §28+2P(|1—\/-z_0|gs)+E<0 sup \/ZHTAT,>

<s< oo

§2s+2P(|1—\/%|ge)+aE< sup zs).

0<s<w
By Lemma 2.2 in [9] we have for every a > 0 that

P( sup z, = a) < 1/a.
0<s<ow

Hence, E supy<; <« /zs < 2 and from (50) it follows that

(51) P2 (Pra s Pra ) < 46+ 2P(11 - /20l 2 6.

From (41) we get
lim P*<T)=P(r,£T)= P< sup H, 2> s)
(52) k= 0<s<T
= P(Hr 2 ¢)
since the Hellinger process is non-decreasing. .
But from (43), (51), and (52) after lim,_,,, we obtain (12) for a finite

stopping time T. To prove (12) for an arbitrary stopping time T it is enough
to consider a finite stopping time T A t and make lim,_, .
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We prove the inequality (12), i.e. the lower bound for the Hellinger
distance. Because Ezy < 1.

(53) 2E(1—/z0) 2 E(L— /zo).

Hence, according to Corollary 1 we have

(54) (P, Pr) 2 E(1 - \/2,)* +E<0 inf /2, HT).

By the Chebyshev inequality we get for every ¢ > 0

(55) E(l~{/z0) 26 P(11=/z| 2 ¢)
: 2 : 2
(56) E<0§‘E§ T\/z—sflr> 2 e P(oénsl; NaHrze )

For arbitrary positive random variables X and Y and constants a > 0 and
b > 0 we have

P(XY2za)2 P(X za/b)-P(Y £b),

SO we get

(57) P( inf T\/ZHT > e2> > P(Hr > s)-—P( inf /z, < e).

0<s< 0<s<T
From Lemma 2.2 in [9] it follows that

N _ ~ o~ . <
58) P( inf \/z_s§8>§”PT PT||+P(0§11512T\/Z—S=3>

0<s<T

_S_ ’IPT“FTll +82.
From Kraft’s inequality, (54), (55), (56), (57), and (58) we get
21 Pp— Bl 2 p?(Pp, Pp) 2 2 P(11 — /20l 2 &) +
+82P(HT g 8)_’82"PT_FT" —’84.

Again from Kraft’s inequality we get

P(11— /2l 2 &)+ P(Hy 2 &) < €2 + (1 + 2/e*) | Pp — Py
<&+ (1+2/e*)p(B, Pp),

i.e. the inequality (12). Theorem 3 is proved.
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4. Examples.
We give some examples of the Hellinger process. In these examples the
stopping time ¢ defined in (15) plays an essential role.

ExaMpLE 1. Let &= (&)»; and &= (&), be two sequences of
independent random variables and P, P, P,, B, be the distributions of ¢, Z,
&, & We set

‘gk = 0{61’ éZ:H' ék’ Ek}’ '? = 'g:uo'

Then the Hellinger process H = (Hy, %), >, is defined by
kAo

(59) Hy= 3 p*(P.F).

ExaMPLE 2. Let (Q, %) be the measurable space of piece-wise constant
right-continuous functions X = (X,),»¢ With X, =0, X, =X, +4X,
4X, € {0,1}. Let # be Borel g-algebra and &, = o{X,|s <t} for every
t=0.

Let X be counting process on (2,%) and P and P be probability
measures on (2, % ). Denote by A4, A and G the compensators of X with
respect to the measures P, P and Q = 4(P + P). Note that G = 3(4 + A).

According to [8] the Hellinger process H = (H,, #,), > is given by

(60)

tAao
H,=J P — /P G+ Y (J1-44,-/1—44,)
0<s=<tAg

0
where
ps = a4, and p; = a4,
*dGy 5 dGy
We suppose that the compensators 4 and B are deterministic and, for
simplicity, continuous. Then the Hellinger process (60) is continuous and
deterministic, too, and from (8) we have that

t

p*(R,F) = e_w'j ethdH, = 2 — 2~ HH,
0

when t = 0.

ExampLE 3. Let (2, #) be the measurable space of continuous functions
X =(X,);»0 Xo=0, # be Borel g-algebra and &, = o{X,|s <t} for
every t > 0.

Let P and P be unique probability measures on (€2, #) which correspond
to diffusion type processes satisfying the stochastic differential equations



AN INTEGRAL REPRESENTATION FOR THE HELLINGER DISTANCE 253

dX, = a(t,X)dt +dw, X, =0,
dX,=a@, X)dt +dw, X,=0.

Here w = (W), 1s Wiener process and a(t,X), d(t,X) are non-
anticipating functionals with

ftaz(s,X)ds < o0, J‘ @(s,X)ds <00 (Q—a.s.).

0 0

Then according to [8] the Hellinger process H = (H,, %#,), > is given by

(61) H =} j a(a(s,X) — (s, X))2ds

0

REMARK 7. It should be noted that in the case P ~ P we have ¢ = 0
Q —a.s. When ¢ # oo for practical purpose it is convenient instead of H
to consider the process H' which is defined by (53), (60), and (61)
accordingly with ¢ substituted by 0.

Because H, < H, for every t, the inequalities (10) and (11) of Theorems 2
and 3 remain true. Since for every stopping time T

P( inf cs=0>=0, ﬁ( inf CZ=0>=0,
0<s=<T 0<s<T

we have

PHp2e) 2 P<{HT zel N {O inf ¢.0,> 0})

v

0<s<sT

PHy = s)—P( inf (0 = o)
> PHy>¢)— | Pr—Ppll.

Hence, instead of (10) and (12) for the process H' we can write
Q(Hy 2 ¢) <&+ (2+2/e%)p(Pr, Py),
P(I1— /2ol 2 &)+ P(Hy Z &) < &% + (2 + 2/e%)p(Py, Pr).
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