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MULTI-VALUED NAMIOKA THEOREMS
IWO LABUDA

Abstract.

The paper has partially a survey character. The existing “point-valued”
and “multi-valued Namioka theorems” on separate and joint continuity
are reviewed and it is shown that, in most cases, the multi-valued ones can
be deduced from their point-valued counterparts. This gives a unification
and also some mild improvements of previous results of Christensen and
Christensen—Kenderov.

1. Minimal usco maps.
In this paper the word “map” will be reserved for “set-valued map”.
Let X, Y be the Hausdorff spaces and F: X - Y a map (i.e., F is a
function from X into the power set of Y). Such an F is said to be upper
semi-continuous at x (usc at x), if, for every open set V containing F(x),
there exists a neighbourhood U of x such that

FU):= U{F(x):x € U} cV;

F is upper semi-continuous (usc), if it is usc at x for every x in X. We will
say, shortly, that F is usco, if it is usc and, for every x in X, F (x) is compact
and non-empty. We denote Gr (F) the graph of F:

Gr(F)=\J {{x} x F(x):x € X}.

Let G: X —» Y be another map. Then G is said to be contained in F
(G = F), if, for every x in X, G(x) = F(x). Of course, the relation = is a
Partial order relation in the family of maps, and we may consider minimal
elements with respect to this relation. Thus a map F is minimal usco, if it is
usco and does not contain properly any other usco map.

The proof of the following lemma is easy and may be found e.g. in [4].
e ———
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LeMMA 1. Let F be a usco map, and suppose that G is a map such that
G < F and G(x) # & for every x in X. Then G is usco iff Gr(G) is a closed
setin X X Y.

2. Topological games.

Around 1930, S. Mazur invented what is now called the Banach—Mazur
game (see Oxtoby [14, p. 26]) between players o and f8 on the real line. This
game, call it G, when transferred onto a general Hausdorff space X (see
Choquet [1]), can be described as follows. Player f, who begins the game,
plays at his nth move an open non-empty set U,. Player a answers by
choosing an open non-empty set V, contained in U,, then § chooses U,
in V, etc.... We say that a wins whenever

1) ﬁn¢z

The following remarkable result, due to Krom ([12, Theorem 1], see also
[9]), characterises Baire spaces in terms of the game G.

LeEMMA 2. A Hausdorff space x is Baire iff it is f-unfavourable in the game
G.

Thus, X is Baire iff whatever a strategy (i.e., a function s from finite
sequences of open non-empty sets of X such that U,=s(U,,V;,...
U,-1, V,-1), an open non-empty set, is contained in ¥, _,) of §, the player «
can choose his moves in such a way that he wins.

Let now & be a class of subsets of X and define a more restrictive game
G, as follows. Player f, who begins the game, plays at his nth move an
open non-empty set U,. The player a answers by choosing an open set V,
and a set A, € o/. The choice, as in G, must be such that ..U, >V,
> U,4+1... but now a wins whenever

s

A, #* &.

1

@) (%0

Itis clear that a space X which is f-unfavourable for G, is so for G as well,
i.e., is a Baire space by Lemma 2. Furthermore, if X is Baire and contains a
dense set A from sf, then X is B-unfavourable for the game G ,, since then the
condition (2) reduces to (1).
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The following classes ¢ have been considered so far:

& = the class of singletons in X ; then G, is denoted G, (Christensen
[2], Saint-Raymond [16]).

& = the class of compact subsets in X ; then G, is denoted G (Deville
[7], Talagrand [18]).

& = theclass of K-analytic [see 15] subsetsin X ; then G, is denoted G ,
(Deville, loc. cit., Debs [6]).

3. Namioka theorems.

Let X, Z be Hausdorff spaces, and f:X xZ —[0,1] a separately
continuous function, i.e., f is continuous when one variable is fixed. The
problem of finding conditions on X, Z ensuring that X X Z has a “large”
subset of points (x,z) at which f is jointly continuous (i.e., continuous at
(x,z) in the usual sense as a function of two variables) is classic. A
breakthrough in this area of research is the 1974 paper of Namioka [13] (in
which the information on the “pre-Namioka era” can be found).

Let C(Z) be the familiar Banach space of bounded continuous functions
from Z into R with the sup norm, and denote C,(Z) the space C(Z) when
equipped with the topology of pointwise convergence. Before we proceed
further, note that the original problem may be given the following form:

Let a continuous function f: X — C,(Z) be given. Find conditions on X
and Z ensuring that X has a “large” subset of points at which f: X — C(Z)
is continuous (i.e., at which f is norm continuous).

Then the main result of Namioka (loc. cit., cf. also Christensen [2, Proof
of Theorem 1, Step 1]) asserts that, if X is countably Cech complete and Z is
a compact Hausdorff space, then (‘“large” means “a dense G;”,i.e.), X hasa
dense G; of points at which f is norm continuous.

The work by Namioka has triggered an extensive further research, and
by now the above mentioned result has been generalised in many ways (see
[2-7], [11], [16-19]). In order to discuss briefly the relevant results, it will
be convenient to place ourselves in a still more general framework.
Thinking of the space C(Z) with the topology of pointwise convergence
and the norm metric, of a Banach space Y with the weak topology and the
norm metric, or of a dual Banach space Y* with its weak* topology and the
norm metric, we shall consider the triple (Y,w,p) where Y = (Y,0) is a
Hausdorff space and p is a stronger metric on Y (i.e., p is such that the
identity i: (Y,p) — (Y,w) is continuous).

We shall say that (Y, w, p) is appropriate (for Namioka Theorem), if, for
every Baire space X and any continuous function f: X — (Y, w), the set of
all points at which f is p-continuous is dense.

We shall say that X is a Namioka space, if, for every compact Hausdorff
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space Z, and any continuous function f: X — C,(Z), the set of all points at
which f is norm continuous is dense.

Let f: X — Y be given. The p-oscillation o(f, x,) of f at x, is defined as
follows.

o(f,xo) = inf(p-diam f (U): U € #(x,))
where % (x,) is a base for the neighbourhoods of x, and
p-diam f (U) = sup(p(y,): y,y' € f(U)).

It can directly be verified that the oscillation is an upper semi-continuous
function, and therefore the set

Eo(f) = {x € X:0(f,x) = 0}

is always a G, set (possibly empty). Furthermore, it can easily be observed
that Z,(f) is precisely the set of all points in X at which f'is p-continuous.
Thus in the definitions above the denseness condition means automatically
that the set in question is a dense G, set. Another important observation is
that the definition of p-oscillation can be applied to any (set-valued) map
F: X — Yand then E,(F) is precisely the (G;) set of all those x in X at which
F admits a singleton in Y as its value and its p-upper semi-continuous (i.e.,
F:X — (Y,p)is usc at x).

THEOREM 1. Let X be a Baire space, (Y,w, p) an appropriate space, and
F: X - (Y,w) a minimal usco map. Then Z,(F) is dense.

In other words, appropriate spaces are also appropriate for minimal
usco maps. In view of this result, one would perhaps like, at first, to show
that Namioka spaces are “Namioka for minimal usco maps”. After a closer
look such a result seems highly improbable (although I have no counter-
example) since Namioka spaces are defined precisely as those for which
“point-valued” Namioka Theorem holds. However, we will see that all
Namioka spaces that we are able to recognize in topological terms are indeed
“Namioka for minimal usco maps”’.

J. P. R. Christensen was the first to realize [2], [3] that by using the
language of topological games more general statements than the original
Namioka Theorem (with range C(Z)) can be obtained. Then, it has been
shown that spaces which are f-unfavourable for G (Saint-Raymond [16]),
for G (Talagrand [18]), for G, (Debs [6]), are all Namioka. The result of
Debs seems to give the most general class of ‘“‘recognizable” Namioka
spaces known so far. On the other hand, Baire spaces cannot be reached, in
general, since Talagrand [18] gave an example of an a-favourable for G
(whence Baire) space X that is not a Namioka space.
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THEOREM 2. Let X be a Hausdorff space that is B-unfavourable for the
game G 4. Let Z be a compact Hausdorff space and F : X — C,(Z) a minimal
usco map. Then Ey(F) is dense in X .

4. The proofs.

Both Theorems rely, essentially, on the same argument, and therefore
both proofs will be carried out together.

Recall that a function p from a Hausdorff space X; onto a Hausdorff
space X , is perfect, if it is continuous, closed, with compact fibers. Then its
inverse P = p~1: X, — X, isa usco map, and p is irreducible whenever P is
minimal usco.

Let U be a subset of X ;. Then we will denote

P ' (U)={xe X,:P(x)c U}.

LeEMMA 3. Let X,, X, be Hausdorff spaces and let p: X, - X | be perfect
and irreducible. Suppose that X, is P-unfavourable for the game G
(respectively G,, Gk, G 4). Then X, is so too.

Proor. We shall first indicate the idea of the proof, which is the same for
all games considered. Let s be a strategy for the player fin X,. Then

t=P log

is the strategy for B in X,. The player « can win in X, thus transferring
back his moves to X,, he wins against s therein. Hence X, is f-
unfavourable.

(1) We suppose that X, is f-unfavourable for G.
Let U@ be the first move of f in X, according to his strategy s. Define

UY ={xe X,:P(x)c UP}

as the first move of #in X ;. U{" is open by the upper semi-continuity of P
and we have to check that it is non-empty. However, if it is empty, then the
map

x—P(x) N (X, \ UP)

is usco and is properly contained in P. This is impossible by the minimality
of P,

Let V(! be the first move of « in X,. Then define
VP =PV =p 1 (V{)
as the first move of a in X,. Now,
UP =s(UP, V{)
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is the 2nd move of Bin X ,, and we set U = P~ 1 (UY), which is as needed
by the argument used at the first step. Continuing this process, the strategy
t = P~ 1o is defined for fin X,.

As X, is B-unfavourable, o can choose his moves so that [, VD
# &. Then

Ave= i = p"(ﬁ Vi.”)
n=1 n=1

n=1
is non-empty, i.e., X, is S-unfavourable for G.

(2) In other cases the proof is similar. We only consider the game G, of
Deville. According to its rules, the player a chooses now V{" and a K-
analytic set A at his nth move in X ,. Since one of possible definitions of
K-analytic set is that it is the image of irrationals under a usc compact-
valued map (see [15]), 4 = P(A") is K-analytic in X,. It remains to
show that

Aven Jap#o.
n=1 n=1
Suppose the contrary. Then, since V{? = p~1(V()),
A V;Z) — A Vgll)
Q)=

is disjoint from the closed set p( * , AP). Hence U ALV is disjoint
with [, VV: a contradiction with the winning choice of ain X,.

We proceed to the proofs of Theorems 1 and 2. Let X be a Baire space
(respectively -unfavourable for G ), and F a minimal usco map into (Y, w)
(respectively C,(Z)). Consider the first projection

p;: Gr(F) - X.
Then p, is perfect and irreducible. Indeed, the inverse to p;:
x+—>{x} x F(x)

is minimal usco since, by Lemma 1, Gr(F) is the minimal graph of a usco
map. Thus, by Lemma 3, Gr(F) is Baire (applying this Lemma twice, but
see also Remark 4 next section) or f-unfavourable for G, according to the
case considered. Let

p2: Gr(F)— Y (respectively C(Z))
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be the 2nd projection. In both cases, by “point-valued”” Namioka
Theorem, Z,(p,) is dense in Gr (F). Since X is (at least) Baire, it suffices to
show that

E(F)={xeX:oF,X)<e}

is dense in X. Suppose the contrary. Then there exists an open set W, in X
such that, for every open non-empty set V < W, p-diam F (V') = ¢. On the
other hand, take w € Z,(p,) N p7 (V) and an open ball U with diameter
less than ¢ around p,(w). Then, if

W =F~1(U),
we have

F(W)=py(pi'(W))=U.

Thus W is open non-empty subset of W, such that p-diam F(W) < &. We
have obtained a contradiction. Theorems 1 and 2 are proved.

5. Concluding remarks. '

1) The first multi-valued Namioka Theorem (corresponding to our
Theorem 2 above) has been obtained by J. P. R. Christensen ([4, Theorem
1]) who noticed that his ““point-valued”” argument in [2] can be suitably
modified. A predecessor to our Theorem 1 also exists (Christensen—
Kenderov [5]). Again, it is obtained, for (Y*, weak*) with the Radon—
Nikodym property, by a suitable adaptation of the “point-valued”

-argument. Another appropriate spaces are given in [6], [7], and it may be
noted that, generally, a weak or weak* Banach space whose unit ball can be
“fragmented by the norm metric” (cf. [8], [10]) is appropriate.

2) Minimal usco maps are by no means rare creatures. In fact, by
applying Kuratowski-Zorn Lemma and by taking into account e.g.
Lemma 1 above, it follows easily that any usco map contains a minimal one.
Multi-valued Namioka Theorems give the first important insight into their
structure. Further results in this direction (i.e., giving rather more precise
descriptions of minimal usco maps) have been obtained, applying
Namioka Theorems, by the author and will appear elsewhere.

3) Christensen and Christensen with Kenderov give also multi-valued
versions of B. E. Johnson’s theorem ([4, Theorem 3], [5, Theorem 1.8]). It
may be of interest to note that also these results can be obtained as
corollaries to Namioka Theorem rather than the independent ones. The
following statement ‘“‘contains” both of them.
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THEOREM 3. Let F:X — (Y,w,p) be a minimal w-usco map such that
Eo(F) is dense in X. If every family of disjoint open sets in X is at most
countable, then the range of F is w-separable. Moreover, if (Y, ) is a Banach
space with its weak topology and p is the norm metric, then the range of F is
norm separable.

ProoF. Observe first that F(&,(F)) is p-separable. Indeed, otherwise
there exists ¢ > 0 and an uncountable subset H in F(Z,(F)) such that the
open balls

B(z,e)={ye Y:p(z,y)<e¢}, ze H

are disjoint. As F is p-usc at any point of Zy(F), F~*(B(x,¢)) are disjoint
open sets in X which is impossible by the condition on x. Now, the closure
E of F(Eo(F)) in (Y,w) contains the range of F by its minimality, which
shows the first part of the theorem. The second follows by the usual
argument.

4) Lech Drewnowski has shown to me a simple game-free proof of the
Baire space part of Lemma 3. This is based on the fact that, if Vis open and
dense in X ,, then P~ (V) is so too in X,. I decided to keep the unified
game-theoretic approach.

5) I would like to thank Professor Isaac Namioka for the discussions,
concerning Namioka’s Theorem for usco maps, during his stay in the
Banach Center, Warsaw, in the Spring 1984. The present paper is a
development of his idea of looking onto the graph and the second
projection.
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