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MINIMAL AND DISTAL FUNCTIONS
ON SEMIDIRECT
PRODUCTS OF GROUPS II

PAUL MILNES!

Abstract.

Let G = G; @ G, be a semidirect product of locally compact groups
with multiplication (s',#)(s,t) = (s'o(t')s, t't). The formula F(s,t) = f(s)
provides a canonical way to extend a function f on G, to a function F on G.
In an earlier paper we studied the case when G, is compact, and also
showed that

(*) if fis point distal, then F is minimal on the discrete version of G.

In the present paper it is shown that the point distal hypothesisin (*) cannot
be weakened and the main result asserts that, if G, is compact, then F is a
distal function on G for every f € C(G,) if and only if the action of G, on
G, is distal. Many examples are discussed.

1. Preliminaries.

Let G be alocally compact group. A bounded complex-valued function F
on G is called right uniformly continuous if, for any ¢ > 0, there is a
neighbourhood V of the identity e of G such that |F(s)—F(t)l <e
whenever st~ ! € V. Let U(G) be the class of such functions. U(G)is a C*-
subalgebra of the C*-algebra C(G) of all continuous bounded complex-
valued functions on G. The right translate R,F of F € C(G) is defined by

R,F(s) = F(st), s,teG,
and, if F € U(G), then the closure RgF~ of the orbit
RGF = {R,F|t e G}

in the topology of pointwise convergence on G is compact in C(G) for that
topology. In fact, this compactness property characterizes U (G). See [2]
for all this, noting that the space we have called U(G) here is called, for a
good reason, LUC(G) in [2]. If F € U(G), the translation operators R,,
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t € G,leave RgF ™ invariant and (Rg, RgF ™) is a flow. F is called minimal,
point distal, or distal if that flow is minimal, point distal with F as special
point, or distal, respectively. Specifically, an F in U(G) is:

minimal if, whenever H; = lim, R, F (pointwise on G), there is a net
{ty} = G such that F =1limyR, H,;

point distal if, whenever H,;=Ilim,R, F and lim, R, Hy=H
= lim, R, F, it follows necessarily that H, = F; or

dlstal 1f whenever H; =1lim,R, F, H, —hmﬁR F, and lim,R, H,
= H' =lim, R, H,, it follows necessanly that H, = -H 2

Clearly dlstal functions are point distal, and point distal functions are
minimal (see [4], [19]). Also, the limit function H, of the definition will be
minimal or distal if F is minimal or distal, respectively, but can fail to be
point distal if F is point distal. Thus, if F is point distal, if H’ is some
m1n1ma1 function, and if hm R, F = li;n R, H', then H e RgF~ and
H =

We need to define one more kind of function. For an f € U(G) and
£>0, let

A, =A,(f)={seG|IRf —fll <¢g},

a symmetric set. Then f is called Bohr almost periodic if, for every ¢ > 0,
there is a compact K, < G such that 4,K, = G. A reference for such
functions is [7] (where they are called “uniformly almost periodic”
functions).

Note. Our terminology would have been more accurate if we had called
the functions defined above right minimal, right point distal, etc., since the
definitions involved right uniform continuity and right translation. We
wish to assert here that, in this paper, a function will be called left minimal,
left point distal, etc., if it satisfies the appropriate analogous condition
involving left uniform continuity and left translation.

2‘

Let o be a homomorphism of a locally compact group G, into Aut (G,),
the group of automorphisms of another locally compact group G,. The
multiplication formula

(s, t)(s,t) = (s'a(t')s, t't)

gives the product space G, X G, a group structure. G, X G, with this
multiplication is called a semidirect product of G, and G, and is designated
by G, ® G,, G, ® G, is a topological group if the map
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(s,t) > a(t)s, Gyx G, G,

is (jointly) continuous; we will generally assume that this is the case.

In [13] we showed that, for compact G,, the formula F'(s,t)
= f(o(t™")s) extends a minimal {point distal} [distal]f on G, to a
minimal {point distal} [distal]F on G, ® G,. After the first version of
[13] was written, T.-S. Wu pointed out to us that the result of the last
sentence can be obtained, and generalized, via a theorem of Hahn [8]; see
the appendix at the end of this paper. In [10], [13], we also drew the
following conclusions.

(i) Let G = C® T be the euclidean group of the plane and let f be a non-
trivial continuous character on C, e.g., f(z) = f(x +iy) = e**. Then (the
corresponding) F’ is not left uniformly continuous on G and is not even left
point distal on G, (which is the group G with the discrete topology).

(i) If G = G, ® G, and fisaleft point distal function on G,, then F'isa
left minimal function on G,.

(iii) In the particular case where G = R® R*, the affine group of the
line, and f'is a non-trivial continuous character on R, F’ is left minimal on
G,, while a net of right translates of F’ converges to the constant function
1: F’is not even minimal on G,. (Of course, R* is not compact.)

Professor Wu also pointed out the relevance to (iii) of a construction of
Furstenberg [6; I1.5.5]. We take this opportunity to thank Professor Wu.

In this paper we wish to emphasize the result (i) and first restate it in its
“right” version.

THeOREM 1. Let G = G; ® G,. Then the formula F(s,t) = f(s) extends
a point distal function f on G, to a minimal function F on G,.

[The proof can go as follows. The function f is right point distal (if and)
only if f, defined by f(s) = f(s™!) for s € G, is left point distal, which
implies F,, F,(s,t) = f(s) is left minimal on G [13; Theorem 3]. But then
F = F| is right minimal on G.]

The following examples show that the point distal hypothesis can be
necessary for the conclusion of Theorem 1.

ExampLEs AND REMARKS 2. 1. Let G be the discrete group T® {+1}
(Where T is the circle group) with multiplication

(W,G)(WI,EI) = (wwcb 881)'

On T, the function defined by f,(w) = 0 if w = €, 0 < 0 < 2=, is easily
seen to be minimal, but is not point distal, since
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li:n R,-wnf1 = fa,
where f,(w) =0, if w=¢" 0<60<2r, and
li’rln Rnfr = lirr'n Rnfi = f1,
while f, # f,. Further, the extension F of f; to G is not minimal. For, if

. . . w), ife=1
im R n 1) (w,) = lim fy (we™") = g: Ew; ife=—1

= H(w,¢), say,

then
R(etw,e)H(l,l) - F(l,l) =0

if and only if Y — 0%, while
Ry yH(1,—1) = F(1,—1) =0

if and only if ¢ -0~

2. A similar example can be set up on G = C® {11}, where C is the
complex plane and (z,¢)(zy,&,) = (z +&zy,¢¢,). For j = 1,2, let f; be the
“piecewise linear” function on C defined by fj(n +iy) = sinn/Isinnl, if
n#0, and f;(iy) = (—1)Y"!, f being linear on each “interval” {(x,iy)| n
< x < n+1}. Then one can check directly that f; is minimal on C (or one
can prove that it is the pointwise limit of translates of the “piecewise linear”
almost automorphic function f; on C defined by

f3(n+iy) = cosn/lcosnl

for all integers n). If one extends f; to F on G as above, F(z,&) = f;(z), and,
if {m,} is a sequence of integers such that m, (mod 2r) — 07, then, still as
above, lim, R, ;)F is a function which cannot be right-translated back to
F. Thus, again, F is not minimal.

3. The functions above provide easy illustrations of the fact (see [1]) that
the minimal functions generally do not form an algebra: if f; and f, are as
in (1) or (2), then neither f; + f, nor f; f, is minimal. We note as well that
the almost automorphic function f; of (2) is point distal [4; Satz 4]
and, hence, defining F(z,&) = f3(z) does give a minimal function F on
C® {+1}.

4. It seems highly likely that, if f; is as in (2), the corresponding F on
(C® T),, the discrete euclidean group of the plane, is not minimal.
However, F¢ U(C ® T) and we are unable to calculate pointwise limits of
right translates of F.
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The next theorem gives a setting, where F (as in Theorem 1) will be in
U(G) if fisin U(G,). The first part of it is due to Wu (see [20]).

THEOREM 3. Let G = G; ® G, be a semidirect product of topological
groups with G, compact. Let f € C(G,) and define F on G by F(s,t) = f(s).
(i) F is Bohr almost periodic, hence is in U(G).

(ii) The action of G, on G, is distal if and only if, for every f € C(G,), the
corresponding F is a distal function on G.

Proor. (i) (see [20]).
A, = {(5,t)] IR, F—Fl <&}

contains {e} X G, for all ¢ >0, hence (G X {e})4, =G for all ¢ > 0.
That F € U(G) now follows from [7].

(i) We note first that, by Theorem A3, the action of G, on G is distal if
and only if the flow (G, ® G,, G,),

(S,t): N g SO'(t)Sl,

is distal. We next assume (G, @ G,,G,) is distal and must show that each
F, coming from f € C(G,), as above, is distal. Suppose

H(s,t) = imR,,,F(s,1) = lim f (55 (t)s,)

for all (s,t) e G. Without loss, we can assume lim,s, =s; and thus
H(s,t) = f(so(t)s,) for all (s,t) € G. It follows that the map that takes
s; € G, to the corresponding H e U(G) is a continuous homo-
morphism of flow (G;® G,,G,) onto flow (G;® G,,Xf). Since
(G, ® G,,G,) is distal, so is (G, ® G,,X§) [3; Corollary 5.7].

On the other hand, suppose that, for each f € C(G,), the corresponding
F is distal. For f € C(G) and s € Gy, let F,(s,t) = f(s'a(t')s) for all
(s',¢') € G. Then,if M < C(G,), themap s — (F) e m effects a continuous
homomorphism of (G, ® G,,G,) into (G, ® G,,n{Xy| f € M}). If the
map is one-to-one (e.g., if M = C(G,)), then it effects an isomorphism
of (G;® G,,G,) and a subflow of a product of distal flows; thus
(G, ® G,,G,) is distal [3; Proposition 5.8], and the proof is complete.

ExampLEs 4. (i) Let G be abelian groups, j = 1,2,3, and let y be a
homomorphism of G into Hom (G, G} ), which is an abelian group under
addition. Then

G=G,®G, = (G, xG,)Q G}
is a semidirect product of G, =G} %G, and G, = Gj, the group
Operation being
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(5’1,5'2,-93)(51,52,53) = (sll +sl +¢(S’3)52,S,2 +32’s3 +S3);

see [15; Theorem 7]. The action of G3 on G} x G is given by

531 (51,52) “’(51 +'//(53)52,32)

and is easily seen to be distal. Thusif G} % G is compact, G satisfies all the
hypotheses of Theorem 3. Further,if f € C(G} X G}), then F (defined on G
by F(sy,S83,83) = f(s1,5;) as in Theorem 3) is also left minimal on G,.
[For, if

llin L(sl,,sz,,sga)F(SlaSZaSB) = li:nf(sla +5;+ '//(5301)529 S2q+ 32)

=f(S/1 +s1+¢(32)’s’2+82) =H(Sl’52a53)9 say
for some s}€G},s,e€G, and ¢ € Hom(G,,G;), and for all
(s1,5,,83) € G, then

li:nL(_s" _ssa)H = F.]

+¢(s2), =52,
We doubt that such F’s (on G = G; ® G, as in Theorem 3) will always be
left minimal, even with the added assumption that the action of G, on G, is
distal; certainly when the action of G, is allowed not to be distal or when G,
is allowed not to be compact, such F’s need not be left minimal; see
Example 4 (vi), below (details in [14]), and (iii) at the beginning of this
section.

(i) Let K be a locally compact abelian group with dual group K. Then
the Heisenberg group G = (T x K)® K, where T is the circle group and
W,s,8)(w,s,8) = (WwS'(s),s' +5,5 +3),

is of the form discussed in (i).

(iii) When K = T, K = Z and Theorem 3 implies that, if fis defined on T
by f(w,;) =w,, then F(w,;,w,,n)=w, defines a distal function F on
G = (T x T)® Z. We wish to point out now that F, although left minimal
on G, is not left point distal on G,. For, suppose A, is the character on T;
such that h, (w) = w, if wisaroot of unity, and h, (w) = 1 otherwise; since,
for any finite A = T, thereis a w, € T'such that w,w is not a root of unity
forany w € 4, it follows that lim, L,, H; = 1 (pointwise on T). So, if {n.}
is a net in Z such that

lim L(l,l,n,)F(Wls Wy, n) = lim wy wi = wy hy (w,) = H(wy, w,,n), say,
a a

for all (wy,w,,n) € G, then
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lim Ly, 0 = F=lmLg,, oF,

as required.
(iv) Another way to view Example (iii) is as follows. Let y be the

automorphism of T2 ~ [0,1)? corresponding to matrix (§ 1),

¥ (a,b) = ((a+ b)(mod1),b).

Iteration of ¢ gives an action of Z on T? and the resulting semidirect
product T2 & Z is isomorphic to that given above.

Analogously, if 4 is any upper triangular n X n matrix with integral
entries and 1’s on the diagonal, then iteration of the corresponding
automorphism of T" gives a distal action of Z on T" (see [5], [16]).

(v) To get a non-distal action of Z on T", one starts with an invertible
n x n matrix A with integral entries, determinant 1, and an eigenvalue not
equalto1; e.g., A =(} {) yields an expansive automorphism of T? (see
[17]) and a non-distal action of Z on T? (see [7]).

(vi) Another example of non-distal action appears in the semidirect
product G = TT ® T; with multiplication

(W, w)(h,w) = (W R, h, w'W),

where T is the circle group and T; is the same group with the discrete
topology. (The non-normal subgroup, i.e., the acting subgroup, must
have the discrete topology to make G a topological group.) Here, let
he TT be defined by h({) = —1 if { =—1, h() =1 otherwise, and let
{w,} = {€'"}. Then

limR, h=1=1lmR,1.

This example is used in [14] to illustrate some pathology of the Bohr
almost periodic functions and appears in [15] in connection with the Ellis
group of a distal flow (R® R*, X), where R® R* is the affine group of
the line.

(vii) The construction of Furstenberg [6; 5.5, p. 27] also gives non-distal
actions. As a special case, consider R ® R*, the affine group of the line
with multiplication

*,¥)(x.p) = (X" +y'%,y'y).

Of course, R is not compact, but one can extend the action of R* on R to
the almost periodic compactification AR of R, which we will view as (R,),
the set of all characters on R. One then gets a semidirect product
G = AR® R; with multiplication
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(h,y)(h,y) = (W R, h,y'y),

where R, h(x) = h(xy’) forhe R,, xe R, y' € R*, and, again, the acting
subgroup must have the discrete topology to make G a topological group.
Let h e AR be the character such that h(x)=¢™ if xe Q, h(x) =1
otherwise. It follows readily that there exists a net of y’s such that

limR,h = 1 = lim R, 1.

REMARK 5.1In [20], Wu uses the non-distality of the action of G, on G, to
conclude the existence of a function Bohr almost periodic, but not left Bohr
almost periodic, on G = G, ® G,. Example 4 (iii) shows that the weaker
assumption of non-equicontinuity of the action of G, on G, can be enough
to ensure the existence of such functions, and we point out that, in this
example, G, = Z does act equicontinuously on each minimal subset of
G, =TxT (see [2; Example V. 1.6]). It follows from ideas as in [9;
Theorem 3.2] that, if the action of G, on compact G, is equicontinous,
then all F’s on G coming from f’s on G, as above will, in fact, be almost
periodic.

In the corollary which follows, G, is not assumed to be compact, but
the other hypotheses ensure that the necessary work can be done on
AG, ® (G,),;, where AG, is the almost periodic compactification of G,
and (G,), is the discrete version of G,.

COROLLARY 6. Let G = G, @ G, be a semidirect product with G, acting
distally on G, and suppose the action of G, on G, extends to a distal action
of G, on AG,. Then the formula

*) F(s,t)=f(s), (st) e,
extends each almost periodic function f on G, to a distal function F on
G, ® (G,

ExampLEs 7. (i) In Example 4 (vii), the distal action of R* on R is seen
not to extend to a distal action of R* on AR. Somewhat similarly, the
action of T on C in the euclidean group of the plane C & T can be seen not
to extend to a distal action of T on AC.

(ii) One can use the action of a group G’ on itself by inner automorphisms
to form a semidirect product G = G’ ® G’, and this action is often distal
(see [18]). There is a problem with this setting: on the one hand, one wants
G’ to have many almost periodic functions, i.e., G’ should be “fairly
abelian”, while, on the other hand, one wants the action of G’ on itself
by inner automorphisms to be significant, i.e., G' must be ‘‘somewhat
non-abelian”. The euclidean group of the plane G’ = C® T presents
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an example of what can happen. The action of G’ on itself by
inner automorphisms is distal, but AG' ~ T (see [11]) and the resulting
action of G’ on AG’ is trivial; hence AG' @ G’ is just the direct product
Tx (C® T). The same sort of collapsing happens for G = R® R*,
where AG’'® G'~R* x (R® R™*) (the action of G’ on AG’ being
distal, trivially, although the action of G’ on G’ by inner automorphisms
is not distal), and also for G’ = (T x T) & Z of Example 4 (iii), where

AG® G ~(TxZ)x ((TxT)® 2).

The action of this last group on itself even extends to a distal action on the
distal compactification DG’ ~ (T x T) ® DZ (see [12]) of G’ (where DZ
is the distal compactification of Z), the extended action being given by

(Wls Wan): (w’l’ W'Z,#) e (Wll (WIZ)n#(WZ)_la W,Z’ﬂ)'

(We must define u(w,). There is a canonical continuous homomorphism y
of DZ onto AZ ~ T; (see [1], [13]). u(w,) isjust yu(wz).) This example
has been set up to answer a question concerning a possible generalization
of Corollary 6: does the formula (*) always extend a distal f on G, to a
distal F on G, ® (G,), if the action of G, on G, extends to a distal action
on DG, ? That the answer is “no” is shown by the distal function f defined
by f(wy,w,,n) = w; on (T x T)® Z = G'. The corresponding F is readily
seen to be minimal, but not point distal on G' ® Gj .

A final example we want to mention is the “symmetrical” Heisenberg
group G = (T x R)® R with operation

W, x,y)w,x,y) = (W we™, x' + x, y' + y).

The formula (*) extends the almost periodic function fon T % R, f(w,x)
= w, to a function F that is neither left nor right point distal on G,, but is
both left and right minimal on G,.

Appendix.

Here we state and discuss briefly some theorems about embedding flows.
The first two are due to Hahn [8] and were pointed out to the author by
T-S. Wu.

THEOREM Al. Let G = G, ® G, be a semidirect product of locally
compact groups with G, compact and let (G,,X) be a flow. Then

(5,8): (x,t0) = (o(tto) ™ tsx,tt)

makes (G, ® G,, X X G,) aflow that is minimal {point distal} [distal] if and
only if (G,, X) is minimal {point distal} [distal].
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The point here is that (G,, X) is embedded in (G, ® G,, X x G,),
(G, X) = (Gy % {e}, X x {e}).

We indicate how this theorem shows the formula F'(s,t) = f(a(t™!)s)

extends a distal fon G, to adistal Fon G, ® G, (as asserted in the second

paragraph of Section IT). We assume fis a distal function, that s, (G, X )

is a distal flow, and then form the extended flow (G; & G,, XX G,),

which is distal by the theorem. Hence, if F; is the continuous function,
Fi: (X;xGy)—> C, Fy(ht)=h(e),

(where e is the identity of G,) then the function

(s,t) > F((s,0)(f,0)) = F1(R 1), /i) = f(o(t™1)s) = F'(s,1)

is a distal function on G; ® G, [1; section 4].
The setting of Theorem Al can be broadened a little.

THEOREM A2. Let G be a locally compact group with closed normal
subgroup G, such that G, = G/G, is compact. Then every minimal {point
distal} [distal] flow (G,X) can be extended to a minimal {point distal}
[distal] flow (G, Y).

HINT ATPROOF. On X X G, let p be the equivalence relation with
equivalence classes

{(sx,ts1)| se G}, (x,t)e X xG.
Then Y = (X X G)/p and (G,Y) is determined by the action,
ty: (x,t) > (x,t,t), x€ X, ty,t€G.

The verification that (G,Y) is as claimed is straightforward; we mention
only that the homeomorphism of X into Y is given by the map x — (x,e).
(To be precise, the image of x under this map is the p-class of (x,e).)

We state one more theorem.

THEOREM A3. Let G, ® G, be a semidirect product of locally compact
groups with G, compact. Then

(s,t): 5y, > sa(t)sy, Gy — Gy

makes (G, ® G,,G,) a flow. This flow is distal if and only if the flow
(G,,G,) is distal.
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NOTE ADDED IN PROOF. In Example 4 (i) we give a semidirect product
formulation of the group (G} X G3) ® G3. Since this paper was submitted,
we have noted that such groups are just the groups of Heisenberg type of
H. Reiter, Comment. Math. Helv. 49 (1974), 333-364.
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