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HARMONIC ANALYSIS AND RADON TRANSFORMS
ON PENCILS OF GEODESICS

E. BADERTSCHER

We introduce pencils of geodesics as generalized points in classical
geometries X. We generalize the spherical harmonic analysis on X to
pencils (in particular we consider spherical functions and spherical Fourier
transforms on pencils). By means of “Radon transforms” (i.e. by changing
the invariance type of a function through integration) we can relate the
theories on different pencils. By evaluating the Radon transforms of
spherical functions we get various product formulas.

In the interesting case that X = H" (hyperbolic n-space) we express
anything explicitly. The spherical functions in particular can be expressed
by Jacobi functions, the Radon transforms can be reduced to fractional
integral transforms.

By a Radon transform we also transfer the convolution structure from
K-invariant functions on H" to H-invariant functions on H"(K = SO(n),
H =80,(1,n—-1)).

1. Introduction.

In the Kleinian model, hyperbolic n-space H" consists of the points of the
open unit ball B" < R" S RP". Here we consider the elements of RP" as
“generalized points” of H" and associate to them a “‘generalized spherical
harmonic analysis”. It is a new aspect of this generalization that we can
relate the different theories obtained thus by means of “Radon
transforms”.

In section 2 we lay the geometrical basis. We introduce “pencils of
geodesics” as generalized points in “classical geometries X™. The set X" of
pencils may be identified with RP" and the action of G = I,(X") extends to
X" A decomposition of G is associated to each 2 € X". We separate the
pencils into “elliptic”’, “parabolic” and “hyperbolic” ones and choose a
standard pencil of each type in H".

The geometry of “parabolic pencils” in the general context of symmetric
Spaces has been treated in detail in [14].
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In section 3 we treat the harmonic analysis on a given pencil 2. We define
radial functions on £ and take the radial eigenfunctions of the Laplace—
Beltrami operator 4 on X" as “spherical functions on 2”. The “Fourier
transform on 2’ may then be treated as spectral decomposition of the
radial part of 4 (see [1]).

By a simple general method we obtain the explicit expressions for
X" = H". The Fourier transform on £ can be reduced to the ordinary
Fourier transform (£ parabolic) or to a “Jacobi transform” (see [18]). For
hyperbolic 2 a discrete spectral part occurs (n = 4) and the continuous part
has multiplicity two (so “odd Jacobi functions” have to be introduced).

The harmonic analysis on elliptic (“classical spherical harmonic
analysis”) and parabolic pencils (see [14]) is well-known for general
symmetric spaces. The “even spherical functions” in the hyperbolic
case occur also as trivial K-types in the harmonic analysis on SO, (1,n)/
O(1,n—1) (see [5]).

In sections 4 and 5 we study “Radon transforms” between pairs of
pencils in H" (i.e. the process of changing the invariance type of a function
by means of an integration).

In section 4 we obtain various “product formulas” by evaluating
explicitly the Radon transforms of spherical functions and “spherical
functions of second kind”. ‘“Universal factors” (expressible by the c-
functions of section 3) appear in these formulas.

In particular we get “integral representations” by applying the Radon
transforms to spherical functions on a parabolic pencil.

Our formulas generalize simultaneously the product formula for the
common spherical functions on H", their integral representation and the
integral representation for the common c-function on H" (see [18; (3.6),
(3.23), (5.18))).

In section 5 we study the Radon transforms themselves more precisely.
The simple method of section 3 applies also here to give the explicit analytic
expressions.

As an application, we transfer the convolution structure from the K-
biinvariant functions on G = SO,(1,n) to functions which are left
O(1,n —1)- and right K-invariant.

The Radon transforms generalize the “translation of K-biinvariant
functions” and the “Abel transform” on H" (see [18]). Convolution
products associated to the Jacobi transforms have been studied in [9], but
only for parameters where no discrete spectral part occurs. (From our
approach a certain obstruction role of the discrete part is apparent).

This paper is partially based on work done already in [1]. Also the list of
properties enumerated in [7] has partially served as a program.
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Note that formulas, propositions etc. are consecutively numbered in
each section.
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2. Pencils of geodesics in classical geometries.

Let X be a Riemannian manifold, I(X) itsisometry group. Closed totally
geodesic submanifolds of X we call planes. Planes of dimension m we call
m-planes. By the totally geodesic span (A) of a set A S X we mean the
intersection of all planes which include 4. For a plane Y in X there is at
most one involution in I(X) for which Y is a component of the fixed point
set (see [12, Lemma 1.11.2]); we call it reflection sy in Y if it exists.

We call X a classical geometry if for each x € X thelinear isotropy group
of X at x is the full orthogonal group of X,. In the following X is a classical
geometry and X" a classical geometry of dimension n. It is well known that
X" is either a sphere S, an elliptic space RP" a euclidean space R" or a
hyperbolic space H" (see e.g. [15, Theorem I1.3.1]).

We call two distinct points of X antipodal if their isotropy group is the
same.

LemMa 1. Each subspace Y, of each tangent space X, is tangent to a plane
of X. Each plane Y in X is itself a classical geometry with the induced
Riemannian structure (and Y is of the same type as X).

Proor. To the reflection of X, in Y, there corresponds an involution
s € I(X). The x-component of the fixed point set of s is a plane (see [15,
Theorem 5.1]) with tangent space Y, at x.

Let y € Y. Any orthogonal transformation of Y, is the restriction of some
orthogonal transformation of X,. So Y is a classical geometry. (Note that
the types are easily distinguished by curvature and antipodal points, say.)

LEMMA 2. Toany x € X there exists at most one antipodal point y € X. If
X,y are antipodal then each geodesic through x goes through y too. If
conversely two distinct points x,,x, € X can be joined by two distinct
geodesics y,,y,, then they are antipodal.

Proor. Suppose that x and y are antipodal. x can be joined to y by a
geodesic y. Since X is two-point homogeneous, any geodesic through x goes
through y too. From s,(y) = y we see that y is unique.

Conversely let first n > 3. The pointwise stabilizers of y,,7, generate
together the full isotropy group of X at x and y (note that SO(n—1) is
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maximal in SO(n) for n = 3). Now let n = 2. Embed X as a 2-plane in a
space X3. Even each geodesic through x in X3 goes through y too.

LeEMMA 3. Let A S X. Then {A) is a plane or consists of two antipodal
points.

Proor. Suppose that x,y € A are not antipodal. Then by Lemma 2 the
geodesic y joining x and y is unique. So y & {4). Let z € A. Then thereis
a z, €y, z, not antipodal to z. The joining geodesic lies in (4). So (A4} is
connected and thus a plane.

DEeriNTION. Embed X = X" as an n-planein X"*!. For a geodesic d in
X"+l 5 X, define the pencil 2(5) of geodesics in X to be the set of
nonempty intersections of 2-planes through 6 with X. (These are geodesics
by (Lemma 3).) Set

X = {.@(5) 5SS X"t 5%X}
and
X(P)-’—'{g’(a):pEé%X”*l} fOprX"“\X.

PRroPOSITION 4. (a) Let x € X. If x ¢ O, then there is a unique geodesic
through x in 2 (8). If x € 6, then P (J) is the set P (x) of all geodesics through
xin X.

(b) Any two geodesics y,,y, € P () lie in a 2-plane.

(c) Let y,,y, be geodesics in X, dim{y,y,> =2. To each
p€ X"t \ X there is a unique & through p with y,,7y, € 2(5) and P(J)
does not depend of p (i.e. X = X (p)).

Proors. (a)If x ¢ &, then {,x) is the unique 2-plane through é and x in
X"*1 and thus {4,x) N X the unique geodesic through x in 2(4).

Now let x €4, ye X \\J. Then the geodesic through y in P(d) is
0,y> N X =<{x,y) (use Lemma 2), that is #(6) = P(x).

(b) Let x €y, \y;. Then y, =<6,x) N X = {J,x) N{yy,x), since
dim {é,y,,x> = 3.

(c) Let 7y,,7,€#(0) and ped; then & =<y,p) N<y2 P>
Conversely, if dim{y,,y,> =2 then & = {y;,p) N{y,,p) is indeed a
geodesic (as in (b)) and y,,7, € 2(9).

Now assume 7,7, € # € X" and n > 3. Then for x € X"\ {y,,72)
we have y=<(y;,x) N{y;,x)€eP by (b), (a) and then for
y€<y1,¥2> \7; by the same argument <y,y)> N{y;,y> € #. Hence
# e X" is uniquely determined by 7,,7,.

Now let n=2. Embed X3 in X% choose an ye X%\ X3 set
Y=(X%y>. By (b) any pencil 2 e X?*(p) is the restriction
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{yeP:y<S X?*} ofapencil Z e ¥(p). So the uniqueness follows also for
n=2.

As a consequence we may identify X" with projective space RP" (namely
the set of geodesics through p € X"*! \ X"). X" is mapped into X" in a
natural way (x — 2(x)).

Also the action of I(X") extends to X": To ge I(X") choose an
extension § € I(X"*!) (such extensions exist if g is in an isotropy group,
thus for any g € I(X")). Then g(2(3)) is the pencil 2(g(5)).

LEMMA 5. Let # € X" If g e I(X") stabilizes some y € P pointwise,
then gP = 2.

Proor. Choose x € y and denote the geodesic through x in X"*!
orthogonal to X" by . Let g€ I(X"*!) be the extension of g which
stabilizes also B (see Proof of Lemma 1). Choose a J & (y,B) with
P=2(0) (see Proof of Proposition 4(c)). Then g2(d)=2P(§d6)=2(9).

Let G = I,(X). Denote by
Z(S)={ge G:gs=s5Yse S}
the “stabilizer in G”, by
N(S)={geG:gS =S}
the “normalizer in G of some set S of geometrical objects in X.

Deriniion. Let 2 € X. Denote the intersection with G of the group
generated by the stabilizers in I(X) Zjy(y) (y€#?) by L =L(P)
(“Isotropy group of 2”). Set L = L(#) = N(#). (From Lemma 5 it
follows that L is a normal subgroup of L.)

The orbits of L(#2) in X" we call spheres of .

PROPOSITION 6. Let yo € # = P(8) € X", x € yo \ 0. (Note: L-x = x
if x € 8.) The sphere L-x of 2 is a closed submanifold of X" of dimension
n—1. With the Riemannian structure induced from X" it is a classical
8eometry. It intersects each y € P once or each y € P twice orthogonally.

Proor. Let first n > 3. Denote the identity component of Z (y) by Z, ().
Let L, be the group generated by the Z,(y) (y € 2). L, is a connected Lie
group, L, * x a submanifold of X™.

Now let y e 2. Z,(y)- x intersects (y;,70,> at most twice (see [12,
Lemma I.11.2]) and is invariant with respect to the reflection in
1,70, since

s(hﬁ'o)ZO (Y)s('}'m’o) X = ZO(y) X,
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Hence Zy(y)- x is orthogonal to <{y,,7o> and in particular to y,, thus
Ly - x is orthogonal to y, at x and dim (Ly-x) < n—1.

Conversely, for y € 2 \ 7, we have dim(Z,(y)-x)=1 and Ly x is
Z(yo)— invariant, hence dim (L, - x) = n — 1. From this follows also that
Lo (yo \ 8)isopenin X" \ &, thisistrueforany y, € 2(5) and X" \ ¢ is
connected, thus Ly (yo\0)=X"\6. Hence Ly y=2 (see
Proposition 4(a)) and L, - x intersects each y € .

Next, for ye 2 and y € Ly x Ny we have

Zl(x-)(?) Y=Y,
Zl(x'-)(?) “Lo y=Lg- ZI(x'-)(V) "y=Lo y=0Loy"x.

This shows that L,-x is a classical geometry and that Ly, -x = L x.
Moreover, if also z€ Ly x Ny, z # y, then z is antipodal to yin Ly - x
and thus unique by Lemma 2. Using Proposition 4(a) this shows also
that L, - x is an embedded submanifold and thus closed.

Finally let n = 2. Embed X2 as a 2-plane in X3. Let & € X* be the
unique extension of £ (see Proof of Proposition 4(c)). Obviously
L(?)-x S L(#)- x N X2 The converse follows from the fact that to any
y € L(#?)- x thereisa y € # with y = s, s, X (see Proof of Corollary 7).

Also 2 itself (covered twice at most by L - x) can be provided with an L-
invariant Riemannian structure. For n = 3, £ is then a nonspherical
classical geometry (note that for n >3, 7y, is the unique geodesic
normalized by Z(y,)).

2 is determined by any of its spheres (see Propositions 4(a) and 6). So L
is also the normalizer of the set of spheres of 2.

Call x e ye 2 “regular point of 2 if Z(x)NL = Z(y); else call x
“singular”. So xis singular iff s,Jy = hly for some h € H. There are at most
two singular points on y (see Proposition 6). So L is also the stabilizer of the
set of spheres of 2 (and in particular closed).

We need some more group terminology. Fix x, € y, € #. As usual (see
[12]) define K =Z({xo}), M =Z({,), M =N@o)NK. 7o=Axo
(where A =expa,a & p,p =1! ing). Then N(y,) = M’'A. Choose also a
positive Weyl chamber a* S a.

The groups N(yo) N LM, N(yo) N L /M act on y,. We denote their
preimages in I(a) by W = W(2) (“Weylgroup of ) and W' = W'(2),
respectively. The significance of W and W’ as symmetry groups in the
harmonic analysis on £ will become clear in section 3.
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Let a' = {H, € a: exp H, " xq regular} be the set of “regular elements of
a” (W can be shown to be generated by the reflections in the singular
elements).

Define R = R(Z,7,) = {s,s,,: y € #}.

COROLLARY 7. Let ay be an interval representing W \ a.
We have the decompositions L = RM and G = R-expay - K (unique in
Ho € 00).

(The first decomposition is unique if h¢ N(yo) \ M. The second
decomposition is unique if gxoé¢7y, \ €Xpagy- X, and if gx, is not
singular.)

Proor. Let he L, g e G. Choose x € expag* Xo and assume gxq¢ o
(? = 2(5)). Then there are “geodesic symmetries” sy, 8,2 in the classical
geometries L-x, L-gx, respectively with syhx =x  and
5,28X0 € €Xpag - Xo respectively (unique if the additional conditions are
satisfied); hence s,os,h € M and there is a unique H, € ao with sy $,8%

=exp Hy " x¢.

We conclude the section by choosing a standard pencil in each G-orbit of
H"

First we separate the pencils 2(d) in X into the three types “elliptic”,
“parabolic”, “hyperbolic” according to “d intersects y,”, ““d is parallel to
Y0, ‘0 is ultraparallel to y,” in the 2-plane {y,,> (see [2, 9.6]). This
amounts to Z£(5) being an elliptic, euclidean or hyperbolic space

respectively for n > 3.)

(8) Now let X = H", G = SO,(1,n).
(K) In the elliptic case, #(5) = 2(y, N ). The spheres of 2#(J) are
ordinary spheres. Our standard example is 2 (x,). Then

L=K=exp(m' Nt)-M=SO(), W=M /M, W /W={e.

(N) In the parabolic case 2(d) consists of all geodesics parallel to
exp(a*)- x, or of all geodesics parallel to exp(—a™*)x,. The spheres of
2(3) are horospheres (see [14]). We take —a™ to get a standard example;
let G=NAK be the associated Iwasawa decomposition. Then
L=NM ~I,(R"), L= NAM, W = {¢}, W' =R.

(H) In the hyperbolic case, 7, and § have a common perpendicular (see
[2,9.69]). 2(5) consists of the geodesics orthogonal to some hyperplane.
The spheres of #(5) are equidistant surfaces (see [2]). We choose the
hyperplane orthogonal to y, in x, to get a standard example. Then
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L=H=exp(a* Np)M = SO(L,n—-1): L=HM =H',
W={e. W=M,M.

So the partition of H" into types coincides with its partition into G-orbits.

3. Spherical functions and Fourier transform on pencils.

As in section 2 we fix Xxo,79, 2 With x, € 7o € # € X. Moreover we

|Thoolise the fixed geodesic parametrization y,(t) = exp(tHy) - xo (Hy € a¥,
Hyll =1).

We call a function on X radial on 2 if it is constant on the spheres of 2;
or equivalently, if it is L(£)-invariant. By restriction to y, we may identify
radial functions on & with W-invariant functions on R (see Corollary
(2.7)), by extension to G with left L- right K-invariant functions.

We shall denote the invariant extension of a function f on W \ R to X
(or to G) by f*%, thatis f*(I-yo(t)) = f(¢) (VI € L). But we shall also write
shortly fZ(t) instead of f*(y,(t)) for the restriction of a radial function.

Now fix a Haar measure dl on L and normalize dm on M such that
SM dm =1. The measure on the sphere L-yy(t) induced from the
Riemannian structure on X" can then be written as w”(t)-d(IM). By
denoting the Riemannian measure on X by dx we may restate this as
integral formula for the decomposition (2.7).

PRrROPOSITION 1.
f f(x)dx = I f(l-yo(t))dle(t)dt (f € L‘(X)).
X WN\R JL

Later we shall normalize dx and w’(t) differently; but the formula
(Proposition 1) will remain valid (see (8)).

It is thus natural to define the space I?(L \ X) of radial I?-functions on
X by identification with the space I*(W \ R,w"(t)dt). Also “radial
functions with compact support” we define in this way.

The Laplace—Beltrami operator 4 maps C*(L \ X) into itself (see
[11, Lemma 3.1]). We denote the corresponding radial part of 4 on
expa’-xo by 4-. Expressed in the geodesic coordinate, it is a second order
differential operator on R (maybe singular for singular t) which can be
written down explicitly in terms of the weight function w(z):

PROPOSITION 2.
At = (l/wL(t))d/dt(wL(t)d/dt) = d?/dt® + (w Lt)/w"(¢))d/dt.
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Proor. This is just a “codimension 1 simplification” of Helgasons
formula (see [11, Theorem 3.2]). There is a direct simple proof for it too:
let [¢4,t,] be any interval of R with [t,,t,]- Hy S a’. Chooseaball Bin L
of measure one. Set I' = B - y,[t,,t,]. By Greens formula and Proposition
1 we obtain for f € C*(W \ R), proving the proposition

f " AN Owt0)dt = [ (A fH)x)dx = J o /on - ds
" _ot@apads

- j " (oot ) dide(w ) dfde) ot 2)de

As the spherical functions on 2 we take the radial eigenfunctions of 4
on X.

Note that the individual radial eigenfunctions are W-invariant on R,
while the radial eigenspaces of 4 considered on R are even W'-invariant.

Lemma 3. If W'/ W contains a reflection, then the eigenspaces of 4™
may be decomposed into even and odd functions. If W’ contains all
translations of R (this is fulfilled for parabolic ), then the eigenspaces of
4" are exponential functions (maybe times t; see (11), (N)).

Proor. If W’ contains all translations of R, then A4“ commutes with d/dt.
Thus it has constant coefficients. (We have 4 & L = N(£) for parabolic
pencils.)

4% is a symmetric second order differential operator in
(W \ R, wk(t)dt) by Proposition 2. So we can treat the spherical Fourier
transform on 2 as the spectral decomposition of A in I?(W \ R,w"(t)dt)
(see [1], [4]).

We shall determine now explicitly the weight functions and the radial
Laplacians for our standard pencils (2.8) in the case X = H". The weight
functions might be obtained from hyperbolic trigonometry (e.g. for L = K
see [2, 13.72]) or also be read off from the literature directly (e.g. for
L= H see [5, p. 403]).

We prefer to calculate in an alternative simple approach the radial
Laplacians first. Our method is based on the consideration of simple
invariant functions on the group SL(2, R) and has many other applications
too (look at the proofs of (4.6), (4.7), (5.17)).
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On G/K, the Laplacian may be written (see [13, chapter 2])
~ n—1 -
4d=Hi+ Y 1?
i=1

(where Y; (i =1,...,n—1)is an orthonormal basisin a* N p).
First we have for f € C*(W \( R)

(B @) = d*/ds*|o f*(exp(tHo) exp(sHo)) = d*/ds?lo f (¢ + ) = d>f /di*.

Defining then g(s),r(s) by
g(s) = exp(tHo)exp(sY;) € Lexp(r(s)H,) K

(in particular r(0) = t) we obtain for f

(4a) dfdslo f*(g(s)) = 7(0)df/dr(z)
and, if we suppose r(0) = 0
(4b) (Y2 f) = d*/ds?lo f4(g(s)) = F(0)df /dt(z)

So r(s) needs not be known: Any radial function is suitable to calculate the
operator ¥;2. Moreover ¥? = Y2 (by the M-invariance (2.5) of #) and Y;,
H, generate a Lie algebra = sl(2,R). So we may restrict ourselves to the
case n =2 and work with the group G = SL(2,R). Assuming sectional
curvature —1 in H" we may set ([10, p. 405])

1 0 0 1 0 1

) Ho= °) n=(] o) 2=(% %)
(where Z, =[H,,Y;]). Our standard isotropy groups are now K
=exp(RZ,), N =exp(R(Z, — Y;)), H = exp(RY;), So we may apply (4)
to the following simple radial functions
(@) =4tr(g-g")-

fX(g(s)) = chs-cht = 7(0) =0, #(0) = cotht
fﬁ(g) = (g_' £"11-

fY¥g(s)) =chs-¢ = r(0)=0, #(0) = +1
fH(g) =tr(Ho g g").

fH(g(s)) = chs-sht = #(0) =0, #(0) = tanht

(6)

where we have used

r chse’  «
g(s)- g(s)' =exp(tHo)'exp(ZSYl)'eXp(tHo)=< * chse_')'

Now 4% can be read off from (4), (6). By Proposition 2, w” is then
determined up to a constant.
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PROPOSITION 7. Define p = (n—1)/2. Then we have for A and (up to a
constant) for w*

A% = d@%/dt® + 2p cothed/dt  wX(t) = (2sht)?*
AN = @2/de* + 2pd/dt o (t) = e
A% = d*/dt* + 2ptanhtd/dt " (t) = (2cht)?

(8). Normalization of measures. We choose dk on K such that SK dk = 1.
Next we take dx on X and then dn on N, dh on H such that the formula
(Proposition 1) holds for w¥, o™, w® as defined in Proposition 7.

(Note that we have to multiply dx and di by 272k, _,, dh by k,_, in
order to get the measures on X, N - x,, H - x, respectively induced from
the Riemannian structure on X. Here k,_; = 21"?/I'(n/2) denotes the
volume of the euclidean unit sphere in R".)

Now we will determine the spherical functions on our standard pencils.
For 1 € C consider on R the eigenequation

) (4X+p2+ 3 f =0.

For L = K, H there is a unique normed even solution ¢% of (9) (that is ¢%
even, ¢%(0) = 1). For L = H thereis also a unique normed odd solution /%
of (9) (that is y¥ odd, ¥ #(0) = 1). (Remember also Lemma 3.)

Inallcases L = K, N or H thereis (at least for 1 ¢ —iN) also a unique
solution of second kind ®% of (9). ®%is recessive at +oo for ImA > 0,
it is defined for ImA > 0 by lim,_ , ®%(t)e"***#" =1 and is defined by
analytic continuation for ImA < 0 (see [6, p. 144]).

Note that &% is singular at t = 0, but that lim,_qt"~ 2 ®X(t) (n > 2),
lim,,, ®X(t)/logt (n = 2) respectively exist (see [6, p. 144]).

Now we recall (see [18]) that the Jacobi functions ¢§? are defined for
8,4 € C, a ¢ —N, as the normed even C®-solutions on R of the equation.

(10) (d?/dt* + ((2« + 1)cotht + (28 + 1)tanht)d/dt + p*> + A%)f =0
(here p =a + f +1).

The harmonic analysis with respect to the functions ¢ has been studied
very much (see the nice survey article [18] which can also be taken as
general reference in the following). Comparing Proposition 7, (9), and (10)
we see directly that the ¥, ¥ are Jacobi functions; but also the odd
solutions ¥ may be expressed explicitly by using Jacobi functions (the
expression given below is checked readily).
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CoroLLARY 11. The C®-solutions of (9) on W \\ R (i.e., the spherical
functions on P) are linear combinations of the following functions:

K) @it) =¢f™V2712(0)
(N) &F,(t) = e*=0" (A£0: te™*" is a second solution for 1 =0)

H) ¢f@t) =i V227V2(r), yi(t)=shto{/>P~12(e) = YT H2r~ 1D (),

RemaArk. The functions ¢¥ occur also as trivial K-types in the harmonic
analysis on the pseudoriemannian symmetric space H' \ G which is a
“generalized Gelfand pair” (see [ 3, Example (6)]). It is well known among
experts, that (G,H) is not a generalized Gelfand pair (see also [ 3, Example
).

The occurrence of the Y& suggests, that even the “spherical part” of
I?(H \ G) is not multiplicity free. This will be confirmed in section 5.

By Corollary 11 we can reduce the spherical Fourier transform on the
pencils in H" either to the ordinary Fourier transform (£ parabolic) or else
to the Jacobi transform. In order to formulate the results in the cases
L = K,H we have yet to introduce the c-functions c(), d(4) by

@5 =LA PE + (=P,
Y =d" V)@Y +dT (- )%, (A ¢iZ)
These can be expressed explicitly in terms of the I'-function ([18, 2.18])

12)

220=1T(p +4)I'(iA)

(1) = VI A+ p)
_ NLY )
1) O = g+ )T BEA=p 1)
PR VL: e K C)

TGGA+p+D)I(GA—p +2)

Furthermore we have to take into consideration (for L = H) a discrete
contribution to the Plancherel formula at the zeroes of c?(— A1), d¥(—4) in
the upper half plane (see [8, A.9]); these lie in

C={u=ilp—2k—-1):p>2k+1, ke Ny},
D={v=i(p—-2k—2):p>2k+2, ke Ny}
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respectively and the contribution there may be evaluated explicitly by
taking residues (see [ 1], correcting incidently formula, [8, A.11] by a factor
4 in the case p € N):

—2ip T'(k+3)I'(p—k—1%)

kT 2%qp k'IT'(p—k)

—8iv I'k+3H)I'(p—k—1%)
2% g kK'l'(p—k—1)
Now we can take over the general results of the Jacobi transform theory

(see [18, §2]).

COROLLARY 15. The following transformations (‘“‘spherical Fourier
transforms on pencils”) f — f are isometries of Hilbert spaces

K)f() = J fOeE Ok )t (E(K\X)-’Lz(["’”[’*rzx—zn di(z)lf))

R0 =k f Ok
NS = f(t)d?’l’a(t)w”(t)dt (L’(N \X)“’L2<R’§_i))

-

(14)

¥x) = 51’7.[.; F)e¥ (x)da

H) f(2) =J f @)% ()" (t)dt
0

(Lim,(H \X) - L’([O [, ——rymz) <® Cof ))

Fie) = J 1L Tt + % el W)

The formulas for I2,4(H\ X) are obtained by replacing everywhere
¢byy, cbyd, CbyD,andc,byd,.

Remarks. In all cases also a Paley—Wiener theorem holds (see [16,
Theorem 3.4]). The even I}-functions (L = K,N,H) and the odd L-
functions (L = N, H) are mapped onto functions which are holomorphic
in the strip {1 e C:/ImAl < p} and continuous and bounded on its
closure.

For L = H there is a discrete spectral part for n = 4 (even functions)
and n 2 6 (odd functions). We characterize now the “continuous part” in
these cases.
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LEMMA 16. The equation (4 + p* + u*)g = f (1 € C) has a solution
(@) ge 2H' \X) for f € DH \ X) iff f(u) =0 (and g is unique).
(b) ge P(H' \ X) for f e I}(H' \ X) and p € C iff f(u) =0 (and there
is a unique such g with g(u) = 0).
Analogous statements hold also for odd functions.

Proor. By the Paley—Wiener and Plancherel theorem for the Fourier
transform on H’' \ X we have to find a function g with (u? —A?)g(1)
= f(A) tosolve the equation; g has to be even, entire, rapidly decreasing in
the case (a); even, in I?([0,00[, dA./|cf(1)1?) and to be defined on C in the
case (b). In both cases this amounts to the stated conditions.

4. Product formulas and integral representations.

In the next two sections we study the process of changing the radiality of
functions through integration. For a pencil # on X, L = L(#) and
suitable functions f we define

) (REf)(x) = J fbx)dl.
L

RLf is radial on 2. We call the restriction of RL: to functions which are
already radial on &, the Radon transform from 2, to %, and denote it by
RE (L = L(#)).

Recall that by f we denote invariant extensions of functions and also
the “restrictions” of invariant functions to R.

In this section we determine explicitly the Radon transforms of the
spherical functions and the (extended) spherical functions of second kind in
the cases of absolute convergence of the integral in (1). In this way we get
various product formulas and integral representations (generalizing the
common product formula of ¢¥ and the common integral representations
of X and cX(1)).

We restrict ourselves to the case X = H". We may choose %, standard
and &, conjugate to a standard pencil (see section 2, (8)) in order to treat all
possible pairs of pencils up to the action of the group.

First, for L, = K, we may write down RXf, explicitly for an arbitrary
eigenfunction f; of 4 on X

) d+p*+A3)f,=0.
ProposITION 3. For any solution f, of (2), A € C we have

f figkx)dk = f3(gx0)@% (x)
K
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Conversely, let ©#0 be a distribution on X with ({,t(gkx)dk
=r(x) ® t(gx,) for all g € G, all x in some neighborhood of x, (here the
left hand side has to be considered as a distribution on X X X in the obvious
way). Then t is a solution of (2) on X for some A € C and r(x) = ¢¥(x).

REMARKS. We get back the common product formula of X setting
fi= (p 2 in Proposition 3. We get back the common integral representation
of o¥ by setting g = e, f;, = ®Y. For f, = ®X the result has to be modified
only in the region d(x, x,) > d(gxq,Xo):

0 [ ofighnae = [PHEORN oo S dlero o
K

1 (8x0) D% (x) d(x,x) 2 d(gxg,Xo).

It may be worthwhile to note, that the right hand side of (4) may be
viewed (for Im A > 0) as a Green’s function multiplied by W (%, ®X)
= —2iAc®(—1) (see [3]; [7, A.6]) for 4X on IZ([0,0[, wX(t)dt).
—®%X  2iAcK(—1) is thus a fundamental solution for the operator
4+ p* + A% on X (use section 3, Proposition 1). Compare (4) also with the
remark in [9, p. 255].

CoROLLARY 5. We have the following “mixed product formulas” for
oiyE.

th (gkx)dk = @¥ (gx0) % (x), f Vi (gkx)dk = y% (gxo) % (x).
K

Conversely, let © be an H-invariant distribution on X with § t(gkx)dk
=r(x)® t(gx,) for all g € G and all x in some neighborhood of Xo. Thent
is a linear combination of %,y for some /. € C and r(x) = @X(x).

Proors. As a function of x € X, Sx f:(gkx)dk is obvious a K-invariant
solution of (2), thus a multiple of @X. The factor f;(gx,) can beread off by
setting x = x,. For the converse, the proof givenin [10, Theorem X. 7.2] is
easily seen to apply to distributions too.

The proof shows also that (4) holds in the region d(x, x,) < d(gX¢,Xo); it
applies also to the region d(x,x,) > d(gxo,X,) if the integral in (4) is
treated there as a function of y = gx,. Note also that the integral (4)
converges still absolutely for d(x,x,) = d(gxo,Xo) if gxo # xo. (By the
asymptotics of ®X(t),t — 0, see section 3).
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In the following we will consider the Radon transforms of spherical
functions which involve integrations over noncompact groups L,. Only
when working with spherical functions of the second kind and for Im 4 big
enough we may hope to obtain absolutely convergent integrals.

LemMA 6. The radial part of the operator H?+Z'=1 (Y2 —Z?) (see
section 3, (5)) on expR*-H, for H-biinvariant functions on G is
HAR = 42/dt? + 2p cotht d/dt.

Proor. We apply the method of section 3, (4)-(6). As H-biinvariant
function on SL(2,R) we choose f(g) =4tr(g-t(g)), where t is the anti

automorphism
X, —Xx
X1 X2\ | 1 3)
X3 X4 —X; X4
For Z% we find

f(g(s)) = cht - coss = d/dsl, f(g(s)) =0,
d?/ds?l, f(g(s)) = —cht, thus — Z2(f)(t) = + cothrd/ds.

THEOREM 7. Define m(A) = —22°cX(—A)/4iicH(—A)d"(—A). Then we
have for ImA > p —1, with absolute convergence of the integrals (and dh
normalized by section 3, (8)) .

» ®7(0(g™ " x0)) D7 (x) Hg™'xo < Hx
" _ 2 0 A 0=
(a) H‘pz (ghx)dh = m(i){qjil(g-l x0)®4(ox) Hg 'x,= Hx

(b) [ oY (ghx)dh = m(J)- "o (g)d¥ (x) ge NAH

JH
)

©) @4 (ghx)dh = m(1)- HdH (g)dH(x) ge HAH.
JH

Here o denotes the reflection in the plane H - x, and the ordering on the
spheres H - x is the one induced from y,.

NgH(7i-exptHy - h) = ®#Y(t) (Viie N, t € R).
H¢£I(h1 exptHohz) = ¢§(t) (Vhl,hz € H, te R+).

Proor. We may assume g =a =exp(sHy) € A, x =exp(tH,): xo.
For h =exp(u-Y;) (see section 3, (5)) the radial measure on H -x, and
thus on H is up to a constant (shu)?>*~!du (see section 3, Proposition 7).
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(i) First we prove the absolute convergence of the integrals. Let
L=K/N or H. Define veR by exp(sHy)exp(uY;)exp(tH,)
€ L-exp(vHy) K. For FL=2fK fN2fH (see section 3, (6)) and
¢ =1,0,—1 respectively for L = K, N, H respectively we find

FE(v) = 2sh?(u/2)cht (e + &~ e ™) + (e 19 + - - e~ *0),

So v+ for u—>oo (remember that we have assumed s > 0 for
L = H). But

&% (v) = (FE()* (1 +o(1)) for v— + co.

Hence we may replace ®%(v) by (F“(v))*”° in order to prove that
{5 ®%(v)(shu)®**~*du converges absolutely for ImA > p —1. (Asin (4) no
convergence problems arise at the singularity of oX).

(ii) Next we show that

lim f @ (ahx)/®Y (s)dh = j &N (hx)dh.
s>+ o0 H H

As in (i) the integrands on the left hand side may be replaced by
(F™(ahx)/e®)i*~», But the convergence of

FL(agxo)/e* = (g g")11 +E- e (g 8g"),,

to FN(g) = (g-g"),, is obvious and moreover monotone since (g g2,
> 0. So the integrals converge too (by the dominated convergence theorem

say).

(iii) As functions of g, the integrals in Theorem 7 are L-left H-right
invariant eigenfunctions of H3+ 2=} (¥ — Z?). The corresponding
radial parts we have already calculated (in section 3, Proposition 7,
section 4, Lemma 6 respectively, for L = N the dependence of g can be read
off directly). In (ii) we have shown that indeed we get the “eigenfunctions of
second kind”, the universal factor S H ®N(hx)dh giving the dependence of x
and A.

(iv) To evaluate this factor explicitly, we consider
RE®X(x) = j DX (hx)dx.
H
We assume ImA > p. Then &% e I}(X), so REPX e [}(H' \ X) (see

section 5, (2)), so R¥ X is indeed a multiple of &% on y,(R*). By using
Wronskians (see [8, A6]) we can compute
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—(/12+p2)f X (t)dt = — DX (W) =0 = —W(DE, 0X) = —2iAcK(—4),
0

— (2 +p?) f I () (t)dt = ... = —2iAcH (= A).
0

Now by (section 3, Proposition 1) (or section 5, (2))

0

j w@f(t)w"(t)dt= J @K (x)dx = 2 _[ (RE &%)(t)w (1) dt,
0 X

0

hence
®) RY &% = cX(—1)/2c" (- 1) DY

(valid for Imi > p—1 by analytic continuation). Setting g=e in
Theorem 7(a), m(A) can now be read off from (8) by using 22* ¢%(0)
= —2ild¥(—A). (Obtainable from (section 3, (12)), see [1, (4.8)].)

REMARKS (i) The right hand side of Theorem 7(a) has to be — 2iAcX(— 1)
times the Green’s function for 47 on I?(R,w"(t)dt) for ImA>0,p—1.
Theorem 7(a) might also be proved directly in this way.

(i) We get various integral representations setting g=e in
Theorem 7(b). First First this gives an integral representation for
&¥(ImA > p—1). By taking the even and the odd part we also
get an integral representation for ¥,y% (ImA > p —1). Setting also
x = xo we get the integral representation

©9) K(=2)2cH (1) = I & (hxo)dh

H

for the quotient of the c-functions. For x = exp(tH,) - x,, dividing by
e2=Pt we also get an integral representation for m(4) (see section 5, (23),
(24)).

(iii) For n=2, |ImAl <3} absolutely convergent integrals are also
obtained by integrating the functions ¢X; ¢, Y respectively. The results
can be obtained from (7) and section 3, (12) e.g.

_ KA (=A) _
.L X (hx)dh = m(pf(x) for G = SL(2,R).

In the sense that we take the analytic continuation of the integrals in (8) and
that we use section 3, (12) such formulas hold for general n.)
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ProrosiTioN 10. We have for ImA > 0, with absolute convergence of the
integrals

r»

PV (g 1x0)®PY(x) Ng'xo,< Nx
K — K . y (0] A 0=
@ | Pilemx)dn = ”{M(g-‘xo)ﬂl(x) Ng™'xo 2 Nx

JN

(b) [ &Y (gnx)dn = cX(—2) - VY ()Y (x) g NMAN

JN

(c) [ D (gnx)dn = X (—A) - oY (g)dY(x) g€ HAN

JN

Here &% (nexptH,-xo) = e™**?" (Vne N) and the ordering on the
horospheres N -x is induced from y,. V&Y (imexp(tHy)n) = ®Y(t)
=H@N(hexptH,n) (Yhe H, ne N, i e N).

REeMArks. We do not give the proof which proceeds step for step in the
same way as the proof of (8). Moreover, both formulas Proposition 10(a)
and (b) are well known in the classical spherical harmonic analysis on X :
They are the “Abel transform of the function % (see Proposition 10(a),
for g =e) and the “integral representation of the function cX” (see
Proposition 10(b), g = e, x = x,) respectively (see [18, (5.23), (5.18)]).

We shall give explicit analytic expressions for the Radon transforms —
and thus for the product formulas of this section — at the end of section 5.

S. Radon transforms on pencils.

In section 4 we have evaluated the Radon transforms of certain special
functions. Here we will study the transformation Rllj; themselves more
precisely. We shall also use the transformation R¥ to transfer
the convolution structure from K- to H-invariant functions on X = H".

The Radon transforms generalize both, the “translation T, of K-
invariant functions on X and the “Abel transform o/ on X (see [18,

(7.4), (5.3)])

(To/)x) = ff"(gkX)dx = (Rg-1kgdg-1f/F)X)  (Aef (x) =f(g7"x))
@) '

(o f*)(x) = ‘P'i'ip(x)f SX(nx)dn = 5, (x)(REf)(x)
N
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We begin with two general observations. R is a positive operator
(f >0 = RLf > 0) and it maps [}(X) onto L' (L \\ X):

@ jf(X)dx = I (REf) ()" (t)dt
X WX\R

by section 3, Proposition 1. Together with the positivity this implies also
IREfN, < lIfIl,. @2(X)is mapped onto 2 (L \ X).

The two operators Rf?, R} are real-adjoint. Assume namely that fis L,
and g is L,-invariant such that f(x)-g(x) e ['(X). Then we get by
applying (2) in two ways to Sx f(x)g(x)dx.

LEMMA 3.

W, \R

Next we will study the transformation pair R¥, RX. First we do this on
the Fourier transformed side by using the results of sections 3 and 4. In this
way the geometrical relevance of the c-functions and the discrete part
occurring in I2,.,(H \ X) = I?(H' \ X) will be apparant.

ProposimoN 4. Let fe IN(K\X), IImil <p or fe DK\ X),
A€ C respectively. Then (" denoting the Fourier transform (section 3,
Corollary 15) on K \ X, H' \\ X respectively).

f3)=2RE [T Q).

Proor. By (section 4, Corollary 5) and (Lemma 3) we obtain

f f(ORE) )0 (t)dt = J (RE2 ) (®)g (t)w2(t)dt.
Wi\ R

f@)= J f(t)¢§‘(t)w"(t)dt=j S O)(RE @3) ()™ (t)dt
0 0

= f (RY /) (@) 9% (o™ (t)dt = 2(RE f) (A).
R

CoOROLLARY 5. R¥ is a bijection (K \ X)—» P(H \ X). RE is an
injection I}(K \ X) - L'(H' \ X).

Proor. The first statement follows from the Paley—Wiener theorems for
the Jacobi transforms (see [16, Theorem 3.4]), the second one from the
injectivity of the Jacobi transforms on L!-spaces (see [9, Theorem 3.2]).
The proof given there applies also to L! (H' \\ X)).

We will also study the operators R¥, RE as unbounded operators
between the I?-spaces. Here the quotient ¢(4)/cX (1) plays a significant
role; we write it down explicitly (see section 3, (13))
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) Q) _ T T6i+p+1)
( &) ~ T+ TG@—p+1)
Observe that p,(4) is a polynomial for p € Ny, namely

Po(A) = q,(—4%) (p € 2No), p,(4) =idg,(—4%) (p € 2No+1)
where

= p,(4).

g1 = 18] (=22 —(p—(2k—1))?
‘ 2T(p+3) p =k —1))

COROLLARY 7. Consider RE:DQ(K\NX)-»PH \X) and
REi: Z(H'\ X) - 2'(K \ X) as unbounded operators between the spaces
(K \ X)and (H' \ X). Denote by P,, P, respectively the projections of
Z(H' \ X) onto its continuous part V and its discrete part respectively.

(a) The operators P.RY: I2(K\ X)— V and R%:V > *(K \ X) are
bounded operators for p ¢ 2Ng+1. For p € 2Ny+1 they are closed
operators with domains

Vy={fe K\ X): f(/l)//leL2<[0,oo[,|—éR%|7>},

V, = {fe V:f(A)/ Ae L2<[O,oo[,]?;%—)rz)}

respectively. They map into the Sobolev spaces {fe V: A¥*f € V} and
{fe Z(K\ X): A¥21f € (K \ X)} respectively.

(b) P.RY is an unbounded not closable operator (for p>1). If
f € Z(H' \ X) is mapped by RY into (K \ X), then f € V.

Proor. (a) By using the isometries f— f(1)/cX(A), f(A)./c#(A)
respectively. (From I*(K\X), I*(H'\X) respectively, onto
2([o. oo[,dA)) (see section 3, Corollary 15), we can transfer the operators
F, RK, RK, 4 respectlvely to get multiplication by cX(1)./2c# (1),
c®(=1)/cH(=1), —(A2+ p?) respectively (see Proposition 4, Lemma 3).

For p¢2N, +1 the functions cX(1)./ c#(4) and (A% + p?)?/21cK (1) cH(A)
are bounded on [0,00[ (see (6) and note that I'(z+a)/ I'(z)~z* for
z- o, largzl < n—e¢). 4

For p € 2N, + 1 they get bounded when they are multiplied by 1. We see
also from the proof that for f € V (V, respectively for p € 2No+1),

A€ [0,00[
[ K (A)?
®) (Rfvu).ﬂnﬁqﬂp
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(b) Since RY is (real-) adjoint to RY (see Lemma 3)it is sufficient to prove
that R¥ is densely definable only on V. For p ¢ 2N, + 1 this follows from
(@) and from RE@H =¢F (see section 4, Corollary 5) and
k¢ Z(K\X). For pe2No+1 and REfeZ(K\ X) also
RE(4 + p*)g e (K \ X), where g € [?(H' \\ X) is the unique solution
of (4—p?)g=f say. But for (4+ p?)g the previous argumentation
shows that ((4 +p?)g)" (u) =0 (u € C). Thus also f(u) =0 (u € C).

So we may say that RY, RE are regularizing (with the degree of
regularization described by the behaviour of cX(1) / c#(A), A - o). R¥ is
not closable (RY not densely definable) with the obstruction lying in the
discrete part of I?(H' \ X).

For p € N, also the mapping properties of RE on 2(H' \ X) are quite
nice (for p € N, it can be shown that RX f never has compact support for
fe29H \X), f+#0).

CoOROLLARY 9. Let f € 2(H' \\ X), p € No.

REf e 9(K \ X) iff f has a zero of order 2 at least at any u € C (and
alsoat u=0 for p e 2N, + 1).

In general, RE f is a linear combination of the functions ®X, 0/0, ®X with
u € C (and also of D, if p € 2Ny + 1) on each component U of R \ supp f.
(All functions are considered as functions on R by restriction to y,.)

Proor. If RK f € 9(K \ X), then

NN A )
(REST (D) = 1) Gy =35
(4 € C) by (8), but this is indeed an entire rapidly decreasing function of
exponential type iff the poles of 1,7p,(4)p,(—A) (see (6)) are compensated
by zeros of f.
RX f vanishes in the 0-component of R \ supp f. So we may assume that
U is the component of + oo. But (4 + p?)(q,(4 + p?))*f =0 on U (see
(6); use [18, Theorem 2.1, refined version]). So f is on U indeed a linear
combination of solutions of (4 + p% + u?)*® = 0 (and of (4 + p?)ep =0
for p € 2N, + 1). That only eigenfunctions of second kind are involved for
pe C can be seen from (4 +p?)q,(4+p?)(REf)e (K \ X) (see
Corollary 7). (Treat the case 4 = 0 by considering
Ri(d+p* —&*)"' f € (K \ X)
and let ¢ - 0.)

REeMARks. In the same way we might study any transformation pair R%,
RY by using section 4, Proposition 3, since the behaviour of the functions
@2, ¥, as functions of 4 is known quite well (e.g. [18, p. 53]).
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As an application we scetch a proof, that the “continuous spherical
parts” T and U of IZ, . (H \ G) and I? j4(H \ G) (i.e. the closed right G-

even
spans of I%,. (H\ X) and I? ,,(H \ X) respectively in I*(H \ G)) are
unitarily equivalent (and I? (H \ G) is a fortiori not multiplicity free).

Thus consider the intertwining operator RX: T — I?(K \ G); from
Corollary 7(a) it can be seen to be closed and having dense range and
domain; by (8) it is injective. Therefore T and I?(K \ G) are Naimark-
equivalent and thus unitarily equivalent ([17, Theorem 4.2]). In the same
way it can be shown that also U and I?(K’ \\ G) are unitarily equivalent by
considering RX' (where K’ # K is a conjugate of K).

As another application, we will transfer now the convolution product
from 2(K \ X) to 9(H' \\ X).

ProposITION 10. Define a “convolution product” ® on RE I} (K \ X) as
follows:

R;(Ifl ® R’Igfz = Rllg(fl * f3).

RE I} (K \ X) is a commutative Banach algebra, 2(H' \ X) is a subalgebra
with this product. Their characters are given by

Xa: f— J f®)ef ()" (t)dt
R

with |[ImAl < p, A € C respectively, and y; = x_ ;.

Proor. Anything may be read off from the fact, that f* — 2(RE f )y ()
defines a character on the common convolution algebras L'(K \ X)
(IImAl < p) and 2(K\ X) (LeC) by Proposition 4 and from
RED(K \ X) = 2(H' \ X) by Corollary 5.

It is interesting to compare the convolution product ® on 2(H' \ X)
with the ordinary convolution * on @(H' \ X) (defined only formally).
For the translations S,, T, associated to these convolutions ([18, (7.4)]) we
get, a(t) = exptH,

(RE(S, * £)(x) = ((RES)* )(x) = j (REf,(8)f (g~ x)dg
G

= | REAOSf(a(=t)h ' x)dho® (t)dt
HR

= f (R f)(®)(RPA(RD) ™ RK S )(f)w" (t)dt
R
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fl*f(x)=jf1(g)f(g'IX)dg= i f(k™ a(=t)h™* x)dkw™ (t)dtdh
G

HRK

ffl(t )(RHA,RE 1) ()" (t)dt

an (Saf)(x) = (RF2,(RE) ™" ) (x)
12) (T.f)(x) = (RTA,RE f)(x)

By Corollary 7, (8) we can compare (R¥)~! and RX on the Fourier
transformed side. For p € N, in particular we have the inversion formulas

(see also (6))
(13) (RX) ™' =Q,(4+p*)RE
where
Q (_12)={q42;(—12) pEZNO
’ +A2g2(—22) pe2No+1.
So that we may write then
(14) Saf = Q,(4+p*)T.f.

So we 'may say that the translation T, has a regularizing effect, but that it
can diverge at the discrete part. This regularizing effect is compensated and
the divergent part eliminated when S, is taken instead.

Note that for p € Ny, T,f is a well defined function in 2(H' \ X) if
f(u) has a zero of multiplicity 2 at least at any u € C and also at u = 0 for
p € 2N, + 1. Denote the space of such functions f by 2,(H' \ X).

COROLLARY 15. (@o(H’ N\ X),*) is a commutative and associative
convolution algebra for p € N. The mapping f — Q,(4 + p?)f is a bijective
isomorphism (2(H' \ X),®)—(Do(H' \ X),*). The characters of
(20(H' \ X),*) are given by

f- ff(t) (‘0‘()) ol (t)dt (A¢ Candalso A # 0 for pe 2Ny +1)

fo ff(t)—@@)é‘%f—(:}r wi(t)dt (ue Candalsop=0 for p e 2No +1).

Proor. From (14) we get
Q0,4 +p)(f®g)=(Q,(4+p)f)®g=0,(4+p*)f*Q,(4+ )8
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thus f + Q,(4 + p?)f is indeed a homomorphism; moreover it is bijective
by section 3, Lemma 16. The rest can now be taken over from Proposition
10.

Finally we will get explicit analytic expressions in geodesic coordinates
for the transforms Rf:. Again we can use the invariant functions (see
section 3, (6)). We treat here only the most interesting cases Ry,
RX.ip. RE.

In the following let a = exp(sH,), x = exp(tHy) x, be fixed. For
L,=Klet X=Z,, for L, =H let X =Y, (see section 3, (5)). Denote
the radial measure on M \ L, / M at | = exp(rX) by alz(r)dr, that is
(see section 3, (8))

(16) ok(r) = I;"'z

(sinr)>*~1dr, of(r) = 1,:__2 (shr)*~tdr

n—1 n—1

Denote the “L,-radial projection” of aexp(rX)-x on y, by u(r), i.e. for
any L,-invariant function fX* on X we have

(17) fEa-exp(rX) - x) = fha(u(r)).
So §,. fl(alx)dl gets

0

j f’“l(alx)dl=jrole(aexp(rX)-x)ozLZ(r)dr
(18) 7k .
=j fh(u(r))ata(r)dr
0

(where ro = for L, = K, ro =0 for L, = H). Rewritten in “kermel
form”

u(ro)
(19) J‘ fli(alx)dl = f w)ake(r(u))dr/du - du.
L u(0)
F or the explicit calculations we simply have to take one of the standard
Invariant functions (see section 3, Lemma 6) for f fl. For L, =K, L,
=H; L,=H, L, =K; and finally L, = H, L, = N, a = e respectively
we get then explicitly for (17)

(17a) shu = sh(s + t)cos?(r/2) + sh (s — t)sin?(r/2)
= chschtcosr + shscht
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thus
chudu = —chs shtsin?r
= (sh(s + t) — shu)(shu — sh(s — t))/ch®s sh*¢
(17b) chu = ch(s + t)ch?(r/2) + ch(s — t)sh?(r/2)
= chscht chr + shs sht,
thus

shudu = chscht shrdr, sh?r
= (chu — ch(s + t))(chu + ch(s — t))/ch?s ch?t

(17¢) e = e'ch?(r/2) + e 'sh?(r/2) = cht chr + sht,
thus
e*du = cht shrdr = (e* — €')(e" + e~ ")/ch?t.
Substituting (17a), (17b), (17¢) in (19) we get

THEOREM 20. Let a = exp(sH,), x =exp(tHo) xo. Then we have
explicitly in geodesic coordinates (f being H-invariant in (a), K-invariant in

(b)):

J f(akx)dk
K
(a) =(k,,_z/k,.—1(Chs)2ﬂ—1(8ht)2ﬂ—l)J f(u)(sh(s+t)—Shu)'
*(shu—sh(s—t))P~ 'chudu
J-f(ahx)dh
H

) = (Kn-2/kn-1(chs)**~(cht)*~1) r f)(chu—ch(s+t))-

*(chu +ch(s —t))"~*shudu
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COROLLARY 21.

(sht)* =1 (REf)(t)

@ = (ky-2/2" " %k,_) ntf(u)(ch(Zt) —ch(2u))’~*chudu (feven)
0

(cht)** " (REf)(2)

b (* 0
®) = (kn-2/2""ko—1) | f(u)(ch(2u)— ch(2t))*~ ! shudu

Jit

(cht)* " (RY f)(t)

C o]
© = (kn-2/kn- 1)J f@)((e"—e) e + e~ e du.
e .

All these transforms can easily be reduced to the Riemann-Liouville or
Weyl fractional integral transform. Mapping properties and the inversion
formulas for both are well known ([18, §5.2., 5.3]). (For the inversion of
(Corollary 21, (a) and (b)) see also [16, p. 153].)

Explicit analytic expressions for the product formulas in section 4 can
now easily be obtained. Also a refined study of the mapping properties of
R¥, RY is possible. So an explicit inversion formula for R¥, R is now also
available for the even dimensions.

As an example, we write down explicitly the integral representation (see
section 4, (9)) for the functions c¢X(—A)/2c#(—A) and m(1). By substituting
(17¢)) in (18) we obtain from Theorem 7(b)

22) m)DE () = (k,—,/k,- I)J (chtchr +sht)*~?(shr)**~'dr
(0]
thus by setting ¢ = 0 (see section 4, (9))
»

23)  K(=2)2cH(=A) = (kn_2/kn—1) f ) (chr)*= (shr)**~ 1 dr
0

and by using the other expression for ¢ in (17c), by dividing through
=Pt and by letting ¢t — co (see section 4, (9)),

@H md) =20 (ks ofk-1) r (chr)?4= shr)?~ dr.
0
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