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THE EFFECT OF THE ROTATION GROUP
ON THE BEHAVIOUR OF
A ROTATION AUTOMORPHIC FUNCTION

RAUNO AULASKARI AND TUOMAS SORVALI

1. Introduction.

If the extended complex plane € and the sphere {x? + x3 + (x5 — $)?
=4} in R? are identified via the stereographic projection with the point
(0,0,1) as the center of the projection, then € is called the Riemann sphere.
A function f, meromorphic or holomorphic in the unit disk D, is rotation
automorphic with respect to a Fuchsian group I acting on D if it satisfies the
equation

1) f(T@) = S:(f ()
where TeI' and S; is a rotation of the Riemann sphere. Then

X ={Sy| T e I'} isarotation group and T — Sy is a homomorphism qf r

onto 2.
In [4] we considered rotation automorphic functions f satisfying the

condition
() §§ f*(2)%do, < oo,
F

where F is a fundamental domain of I', f*(z) = | f'(2)l/(1 +! f(z)I?) is the
spherical derivative of f, and do, is the euclidean area element. Then a
condition on F was derived which implies the normality of fin D, i.e.,

sup 1-1zI2)f*(z) <0

(cf. [7]). Certain restrictive conditions on F are also necessary for the
normality of f, since in [3] a non-normal rotation automorphic function
was constructed satisfying (2).
In [1] we took another point of view: We let I’ be an arbitrary Fuchsian
group but imposed some restrictions on the rotation group
= {Sy| T € I'}. Then the following theorem holds:
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THEOREM 1. Let f be a rotation automorphic function satisfying (2). If the
rotation group X is discrete, then f is a normal function in D.

Hence we have obtained a slight generalization of the following theorem
of Pommerenke (cf. [8, Corollary 1]):

THEOREM 2. Let f be an automorphic function with respect to I'. If the
condition (2) holds, then f is a normal function in D.

In section 2 we shall obtain more detailed knowledge on the boundary
behaviour of f*(z), and hence improve Theorem 1. The proof of our result
(Theorem 3) is easily seen to generalize a result of Yamashita (cf. [9,
Lemma 3.2. (II)]) as pointed out briefly in Remark 1.

Section 3 contains examples of different rotation automorphic
functions. We first show that there exist rotation automorphic functions
with discrete rotation groups X (e. g. groups 2 with 1, 3 and 7 rotation axes).
Then an example is constructed such that X has an infinite number of
rotation axes. Finally we construct an example where D/I" is compact and X
has 2g + 1 rotation axes, where g is the genus of D/I'. In this example the
meromorphic rotation automorphic function is bounded and hence
holomorphic in F.

2. Boundary behaviour of f*(z).

Let 0D denote the boundary of the unit disk D in the complex plane. The
hyperbolic distance between the points z,,z, € D is denoted by d(z,,z,)
and the hyperbolic disk {z|d(z,zo) <r} by U(zo,r). We fix the
fundamental domain F of I' to be some normal polygon in D. Let
F,=FnND, where F is the closure of F. The spherical area of a set
A < € is denoted by m*(A).

For proving our theorem we need the following lemma [4, Lemma]:

LeEMMA. Let (z,) = F be a sequence of points converging to 0D, that
is lzl>1. If r>0, 0<R<1 and Dg={z|lzl >R}, then
T(U(Z,,,r)) N Dy + & for finitely many T € I" and n € N only.

We are now ready to prove the main result:

THEOREM 3. Let f be a rotation automorphic function with respect to I for
which the condition (2) holds. If the rotation group X is discrete, then

lim (1-1z,1?) f*(z,) =0

n-—oo

Jor every sequence of points (z,) = Fy converging to oD.
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Proor. Suppose, on the contrary, that there is a subsequence (z;) of (z,)
for which

3) irk)f(l —1z12) f*@z) =a > 0.

We choose the hyperbolic disks U(z,,r), r >0, k =1,2,.... Let

70 =1(F2)

By [1], {fx({)} is a normal family in D. We may assume, without loss
of generality, that (f;({)) tends to f;({) locally uniformly in D. Here
fo is a meromorphic function or co in D. If f, is not constant, then
fo(U(0,r)) = B(a,s) where B(a,s) is a disk on the Riemann sphere € with
center a and radius s.

We choose an increasing sequence of positive real numbers (R,) tending
to 1. By Lemma, there is an index sequence (k) such that

) T(U(z,r))ND(O,R,) = & forall Ter.
By [5, 5.1. Theorem], the group X contains m, rotations, that is,

Z = {STO’ STl’ ceey STmo—l}'
By (4), _
f(UG@,7) = TleJr f(T(Fp \ D(O,Ry)))

mo?l

= U Sg(/(Fo \ D(O,Ry)).

i=0

©)

mo_—l _
Wedenote |J Sy(f(Fp \ D(0,Ry))) by 4,. By (2),
i=0

() m*(A;) - 0
as k — 00. Since (R;) is increasing, we have
) Apsy < Ay

foreachk = 1,2,.... By (6)and (7) we find a point b € B(a,s), b # oo, such
that b¢ A;, k 2 ko. Thus, by (5), b¢ f(U(z,r)) for each k = ko. Now



THE EFFECT OF THE ROTATION GROUP ... 179

there is a zo, € U(0,r) such that f,(zo) = b. We choose a hyperbolic disk
U(zo,r') = U(0,r) such that | f5(zo)l £ M < o for each z € U(zy,7). In
this disk, (f;,) converges to f, uniformly (also in the sense of the euclidean
metric) and we may assume that all f,, k2 ko2 ko, are analytic
in U(zy,r’). By the Hurwitz theorem, there exists a sequence of points
(wy) = Ulzo,7") = U(0,r) such that f, (w,)=> for each k = kg = k.
But this is a contradiction and thus f, is constant. Therefore, for the
sequence of spherical derivatives ( h":(O)),

(1 —lz,]2)/*(@,) = £¥0)~ 0

as k —oo. This contradicts (3) and thus the theorem is proved.

Yamashita [10] considers the set K, (f) of the points { € 0D for which
lim 1=z f*@z) =0
along each angular domain at (. By an angular domam at { we mean a

triangular domain whose vertices are ¢ and two points of D.

CoROLLARY. Let f be a rotation automorphic function with respect to
I for which the condition (2) holds. If the rotation group X is discrete, then
FNoD < Ky(f).

Proor. Let { € F N 0D and let 4 be an arbitrary angular domain at {. We
choose any sequence of points (z,) = 4 converging to {. Then there is a
positive constant M such that

®) supd(z,,00) < M

where 0( is the radius from 0 to {. Let T, € I" such that T,(z,) = z, € F for
each n = 1,2,.... By (8) we may apply our Lemma and thus |z,| — 1 for
h —o00. By Theorem 3 we obtain

(1 =1z, f*z) = A =1z f*(z) - 0

as n— co. Thus the corollary is proved.

REeMARk 1.1In [9, Lemma 3.2. (II)] Yamashita proved the following: Let
& be a meromorphic function in D. Then

) I1i|m1 1-1z*)g*z) =0
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if and only if there exists r > 0 such that

(10) lim {§ g*(z)*do, = 0.

|zl »1 Ulz,r)

The condition (10) means that the spherical area of the Riemannian
multiple-sheeted image of U(z,r) by g tends to zero. By the proof of
Theorem 3 we generalize this result as follows: If the spherical area of the
image of U(z,r) by g tends to zero for |zl — 1, then (9) holds. We outline
the proof briefly. Suppose, on the contrary, that there is a sequence of
points (z,) for which

inf (1 —1z,/%)g*(z;) = a > 0.
k

We may assume, without loss of generality, that the spherical area (without
multiplicities)

m*(g(U(z, 1)) < 2"11

foreach k =1,2,.... Then

m(g(U Uun)) Y. m*(e(U )
(11) = =

Let

a0 =5 )

By (11) the family {g,} omits three values in U(0,r) and thus is a normal
family there. After this we shall continue as in the proof of Theorem 3.

REeMARk 2. By Remark 1 we note that the spherical area of the
Riemannian image of U(z,r) by g and the spherical area of the image of
U(z,r) by g simultaneously tend to zero as |zl - 1.

Remark 3. We could compensate Fj, by Gg = {z| d(z,F) <R} in
Theorem 3.

REemaRrk 4. In [3] we constructed a non-normal rotation automorphic
function satisfying the condition (2). For this function the rotation group
was infinite with one rotation axis only (0oco-axis).
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This example and Theorem 3 show that if we do not restrict I' in any way,
then changing on the image side from finite X to infinite X can cause a strict
difference in the behaviour of the expression (1 —1z1?)f*(z).

3. Examples.

In this section we give examples of rotation automorphic functions f
holomorphic or meromorphic in D. We shall always suppose that the
rotation group X of f contains rotations with Qoco-axis. Hence, if Z has
only one rotation axis, then f is character automorphic (cf. [8]).

Denote by I, a Fuchsian group representing a Riemann surface D/I
conformally equivalent to a sphere with three punctures. Suppose that the
metric fundamental polygon F of I, is a regular non-euclidean
quadrilateral with all vertices on the unit circle. Denote by s, s,, 53,54 the
positively oriented sides of F, let T; and T, be the generating parabolic
transformations of I, and suppose that

Ti(sy) =531, Th(s3) =s5'.

Character automorphic functions. Let S:C—C be the rotation
S(w) = —w, let X be the cyclic group generated by S and let F’ be the
upper half plane with the sides t, = [—1,0], t,=[0,1], t3=[1,00],
ty=[—o00,—1].

Since F and F’ both are conformally equivalent to a square, there exists a
conformal map f: F — F' for which

fs1) =t1, f(s2) =ty
f(s3) =t3, f(s4) =ts.

Then we have on the boundary of F
feTy=8cf, feT,=8f
Hence f can be extended to D and we have obtained a character

automorphic function holomorphic in D.

Rotation automorphic function with a quadratic group of rotations. The
simplest discrete non-cyclic rotation group, the quadratic group, has three
different rotation axes which are orthogonal to each other. (In [6] all
discrete rotation groups are thoroughly treated.)

Let

F={w=u+iv|]v20, lwl =1}
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and let the sides
ty={wllwl=1,u<0}, t,={w|lwl=1,u20}
t3={w|u;1,v=0}, t4={w|u§—1,u=0},
be positively oriented with respect to F'.

Let ¥ be the group generated by the rotations S,(w)=—w,
S;(w) = —1/w. Then X is a quadratic group containing the rotations
S1,85,83(w) = 1/w and theidentity. Let f: F — F’ be a conformal map for
which

f(s1)=ty, f(s2) =t

fs3) =t3, f(s4) = ta.
Let j: I, » X be the homomorphism defined by j(T;) = S,, j(T3) = S,.
We can extend f to a holomorphic function f:D— C satisfying
feT=jMofforal Tel.

An example of a rotation automorphic function with the group of the
tetrahedral rotations (i.e. a group containing 12 rotations and 7 axes) is
given in [4].

Rotation automorphic function with a non-discrete group of rotations. Let
2 be the group generated by the rotations S, (w) = e 'w and S,(w) = 1/w,
let

F ={w| —4<argw=4lwl <1}
and let the sides

t, ={w|argw =14, Iwl <1},

t,={w|argw=—4, lwl <1},

ty={w| —$<argw=0, Iwl=1},

ta={w|0<argw=4, Iwl=1}

be positively oriented with respect to F'. ,

The fixed points of the rotation S%o 5,0 8" are +e ™. Hence X has
infinitely many rotation axes.

Since S,(t;) =t;! and S,(t;) = t; !, we can continue the conformal
map f:F->F', f(s;)=1t, k=1,2,3,4, to a holomorphic rotation
automorphic function f: D — C having X as the group of rotations.

Rotation automorphic function with compact D/I'. Let F be the regular
non-euclidean octagon in D whose vertices are

4 =3/V/2+1 —iy//2-1)e07 0, =18,
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Then all vertices of F lie on the circle |zl = 271/4 and the sum of the angles
of F equals 2r. Denote by s; the side of F starting from a;, j = 1,...,8 (see
Fig. 1).

Figure 1.

In order to define a Mobius transformation T of D onto itself it suffices to
give the isometric circles I(T) and I(T~1). Let

I(Ty)>s,, I(T{')>s;,
I(T) 25, I(T3')>s4,
I(Ty) > 55, I(T3')> s,
I(T})>s,, I(T;')>ss.

o) =i z3//2+1 -2 ,
z\/i—\/\/—Z_+1

and all transformations T,:D-D, j=1,...,4, are hyperbolic.
Moreover, T (s,) = s3!, T(s;) = s3 !, Ty(ss) = s¢ !, and T,(s;) = s5!.

Let I be the Fuchsian group generated by T, T,, Ty, and T,. ThenI has
F as a metric fundamental polygon. Now Tj(a;) = atg, T3 '(xts) = a3,
Ti'(a3) = ay, and Ty(x;) = 5. Hence

Then for instance
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Tz(Tl_l(Tz—l(T1 (“1)))) = 5.
Similarly, T !(as5) = ag, Ty(ag) = a7, Ty(2t7) = a6, and T3 '(ag) = ;.
Hence

T3 (T(T(T3 ' @) = o1
Since the sum of the angles of F equals 2=, it follows that the relation
(12) T3loToToTiltoT,o T e Ty o T, =id

holds. The relation (12) is a basis for all relations in I'.
Let F’ be the octagon whose sides lie on the unit circle and whose vertices
are
B;=e™=IB j=1,..,8.

Denote by ¢; the side of F’ starting from ;, j =1,...,8 (see Fig. 2). Define
rotations S;, j = 1,2, of the Riemann sphere € as follows:

Sl (Z) = i/Z,

S,(z) = —1/z.

Figure 2.

Then S, and S, generate a discrete group Z of dihedral rotations having five
different axes. Moreover, S;(t,) = t3*, S,(t;) =ti !, S,(ts) =ts !, and
Si(t)) =15
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Define j(TF') =j(T ')=S, and j(T;f')=j(T')=S,. Since
S2(S 1(2)) = iz, we have

J(T3Y)ej(Ta)e j(T) 2 j(Ta ) 2 j(Ty) e j(T1 1) e j(T3 1) e j(Ty)
= (S50 8,)* = id.

Since (12)is the basis relation in I', j extends to a surjective homomorphism
jir—-2.

Let f be the conformal map of F onto F' for which f(a;) = f;,
j=1,...,8. Then we have

feTy=8,°f onsy,
feTy=8;°f onsy,
foTi=S8,°f onsg,
foTy=S8.°f ons;.
Definein T(F), Te I, f by
SIT(F)=j(T)e (fIF)o T

It follows that f is a well-defined meromorphic rotation automorphic
function in D having X as the group of rotations and satisfying the
following conditions:

(i) D/TI is a compact surface of genus 2,
(i) X has 5 axes,
(iii) I f(z)l <1 forall z e F.

The above construction applies evidently to every genus g > 1. The
number of axes of 2 is then 2g + 1.

If f'is either automorphic or character-automorphic and D/I" is compact,
then f cannot be bounded in F unless f reduces to a constant (cf. [2]).
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