THE EFFECT OF THE ROTATION GROUP ON THE BEHAVIOUR OF A ROTATION AUTOMORPHIC FUNCTION

RAUNO AULASKARI AND TUOMAS SORVALI

1. Introduction.

If the extended complex plane \hat{C} and the sphere $\{x_1^2 + x_2^2 + (x_3 - \frac{1}{2})^2 = \frac{1}{4}\}$ in \mathbb{R}^3 are identified via the stereographic projection with the point (0,0,1) as the center of the projection, then \hat{C} is called the Riemann sphere. A function f, meromorphic or holomorphic in the unit disk D, is rotation automorphic with respect to a Fuchsian group Γ acting on D if it satisfies the equation

(1)
$$f(T(z)) = S_T(f(z))$$

where $T \in \Gamma$ and S_T is a rotation of the Riemann sphere. Then $\Sigma = \{S_T \mid T \in \Gamma\}$ is a rotation group and $T \to S_T$ is a homomorphism of Γ onto Σ .

In [4] we considered rotation automorphic functions f satisfying the condition

where F is a fundamental domain of Γ , $f^*(z) = |f'(z)|/(1+|f(z)|^2)$ is the spherical derivative of f, and $d\sigma_z$ is the euclidean area element. Then a condition on F was derived which implies the normality of f in D, i.e.,

$$\sup_{z\in D} (1-|z|^2)f^*(z) < \infty$$

(cf. [7]). Certain restrictive conditions on F are also necessary for the normality of f, since in [3] a non-normal rotation automorphic function was constructed satisfying (2).

In [1] we took another point of view: We let Γ be an arbitrary Fuchsian group but imposed some restrictions on the rotation group $\Sigma = \{S_T \mid T \in \Gamma\}$. Then the following theorem holds:

THEOREM 1. Let f be a rotation automorphic function satisfying (2). If the rotation group Σ is discrete, then f is a normal function in D.

Hence we have obtained a slight generalization of the following theorem of Pommerenke (cf. [8, Corollary 1]):

THEOREM 2. Let f be an automorphic function with respect to Γ . If the condition (2) holds, then f is a normal function in D.

In section 2 we shall obtain more detailed knowledge on the boundary behaviour of $f^*(z)$, and hence improve Theorem 1. The proof of our result (Theorem 3) is easily seen to generalize a result of Yamashita (cf. [9, Lemma 3.2. (II)]) as pointed out briefly in Remark 1.

Section 3 contains examples of different rotation automorphic functions. We first show that there exist rotation automorphic functions with discrete rotation groups Σ (e.g. groups Σ with 1, 3 and 7 rotation axes). Then an example is constructed such that Σ has an infinite number of rotation axes. Finally we construct an example where D/Γ is compact and Σ has 2g+1 rotation axes, where g is the genus of D/Γ . In this example the meromorphic rotation automorphic function is bounded and hence holomorphic in F.

2. Boundary behaviour of $f^*(z)$.

Let ∂D denote the boundary of the unit disk D in the complex plane. The hyperbolic distance between the points $z_1, z_2 \in D$ is denoted by $d(z_1, z_2)$ and the hyperbolic disk $\{z \mid d(z, z_0) < r\}$ by $U(z_0, r)$. We fix the fundamental domain F of Γ to be some normal polygon in D. Let $\overline{F}_D = \overline{F} \cap D$, where \overline{F} is the closure of F. The spherical area of a set $A \subset \hat{C}$ is denoted by $m^*(A)$.

For proving our theorem we need the following lemma [4, Lemma]:

LEMMA. Let $(z_n) \subset F$ be a sequence of points converging to ∂D , that is $|z_n| \to 1$. If r > 0, 0 < R < 1 and $D_R = \{z \mid |z| > R\}$, then $T(U(z_n, r)) \cap D_R \neq \emptyset$ for finitely many $T \in \Gamma$ and $n \in \mathbb{N}$ only.

We are now ready to prove the main result:

Theorem 3. Let f be a rotation automorphic function with respect to Γ for which the condition (2) holds. If the rotation group Σ is discrete, then

$$\lim_{n \to \infty} (1 - |z_n|^2) f^*(z_n) = 0$$

for every sequence of points $(z_n) \subset \overline{F}_D$ converging to ∂D .

PROOF. Suppose, on the contrary, that there is a subsequence (z_k) of (z_n) for which

(3)
$$\inf_{k} (1 - |z_k|^2) f^*(z_k) = \alpha > 0.$$

We choose the hyperbolic disks $U(z_k, r)$, r > 0, k = 1, 2, ... Let

$$f_{k}(\zeta) = f\left(\frac{\zeta + z_{k}}{1 + \overline{z}_{k}\zeta}\right).$$

By [1], $\{f_k(\zeta)\}$ is a normal family in D. We may assume, without loss of generality, that $(f_k(\zeta))$ tends to $f_0(\zeta)$ locally uniformly in D. Here f_0 is a meromorphic function or ∞ in D. If f_0 is not constant, then $f_0(U(0,r)) \supset B(a,s)$ where B(a,s) is a disk on the Riemann sphere \hat{C} with center a and radius s.

We choose an increasing sequence of positive real numbers (R_k) tending to 1. By Lemma, there is an index sequence (h_k) such that

(4)
$$T(U(z_h, r)) \cap D(0, R_k) = \emptyset$$
 for all $T \in \Gamma$.

By [5, 5.1. Theorem], the group Σ contains m_0 rotations, that is,

$$\Sigma = \{S_{T_0}, S_{T_1}, \dots, S_{T_{m_0-1}}\}.$$

By (4),

(5)
$$f(U(z_{h_k}, r)) \subset \bigcup_{T \in \Gamma} f(T(\overline{F}_D \setminus D(0, R_k)))$$
$$= \bigcup_{i=0}^{m_0-1} S_{T_i}(f(\overline{F}_D \setminus D(0, R_k))).$$

We denote $\bigcup_{i=0}^{m_0-1} S_{T_i}(f(\overline{F}_D \setminus D(0, R_k)))$ by A_k . By (2),

$$m^*(A_k) \to 0$$

as $k \to \infty$. Since (R_k) is increasing, we have

$$(7) A_{k+1} \subset A_k$$

for each k = 1, 2, ... By (6) and (7) we find a point $b \in B(a, s)$, $b \neq \infty$, such that $b \notin A_k$, $k \ge k_0$. Thus, by (5), $b \notin f(U(z_h, r))$ for each $k \ge k_0$. Now

there is a $z_0 \in U(0,r)$ such that $f_0(z_0) = b$. We choose a hyperbolic disk $U(z_0,r') \subset U(0,r)$ such that $|f_0(z_0)| \leq M < \infty$ for each $z \in U(z_0,r')$. In this disk, (f_{h_k}) converges to f_0 uniformly (also in the sense of the euclidean metric) and we may assume that all f_{h_k} , $k \geq k'_0 \geq k_0$, are analytic in $U(z_0,r')$. By the Hurwitz theorem, there exists a sequence of points $(w_{h_k}) \subset U(z_0,r') \subset U(0,r)$ such that $f_{h_k}(w_{h_k}) = b$ for each $k \geq k''_0 \geq k'_0$. But this is a contradiction and thus f_0 is constant. Therefore, for the sequence of spherical derivatives $(f_{h_k}^*(0))$,

$$(1-|z_{h_1}|^2)f^*(z_{h_2})=f_{h_2}^*(0)\to 0$$

as $k \to \infty$. This contradicts (3) and thus the theorem is proved.

Yamashita [10] considers the set $K_0(f)$ of the points $\zeta \in \partial D$ for which

$$\lim_{z \to \zeta} (1 - |z|^2) f^*(z) = 0$$

along each angular domain at ζ . By an angular domain at ζ we mean a triangular domain whose vertices are ζ and two points of D.

COROLLARY. Let f be a rotation automorphic function with respect to Γ for which the condition (2) holds. If the rotation group Σ is discrete, then $\overline{F} \cap \partial D \subset K_0(f)$.

PROOF. Let $\zeta \in \overline{F} \cap \partial D$ and let Δ be an arbitrary angular domain at ζ . We choose any sequence of points $(z_n) \subset \Delta$ converging to ζ . Then there is a positive constant M such that

(8)
$$\sup_{n} d(z_{n}, 0\zeta) \leq M$$

where 0ζ is the radius from 0 to ζ . Let $T_n \in \Gamma$ such that $T_n(z_n) = z'_n \in \overline{F}$ for each $n = 1, 2, \ldots$ By (8) we may apply our Lemma and thus $|z'_n| \to 1$ for $n \to \infty$. By Theorem 3 we obtain

$$(1 - |z_n|^2) f^*(z_n) = (1 - |z_n'|^2) f^*(z_n') \to 0$$

as $n \to \infty$. Thus the corollary is proved.

REMARK 1. In [9, Lemma 3.2. (II)] Yamashita proved the following: Let g be a meromorphic function in D. Then

(9)
$$\lim_{|z| \to 1} (1 - |z|^2) g^*(z) = 0$$

if and only if there exists r > 0 such that

(10)
$$\lim_{|z|\to 1} \iint_{U(z,r)} g^*(z)^2 d\sigma_z = 0.$$

The condition (10) means that the spherical area of the Riemannian multiple-sheeted image of U(z,r) by g tends to zero. By the proof of Theorem 3 we generalize this result as follows: If the spherical area of the image of U(z,r) by g tends to zero for $|z| \to 1$, then (9) holds. We outline the proof briefly. Suppose, on the contrary, that there is a sequence of points (z_k) for which

$$\inf_{k} (1 - |z_k|^2) g^*(z_k) = \alpha > 0.$$

We may assume, without loss of generality, that the spherical area (without multiplicities)

$$m^*(g(U(z_k,r))) \leq \frac{\pi}{2^{k+1}}$$

for each $k = 1, 2, \dots$ Then

(11)
$$m^*(g(\bigcup_{k=1}^{\infty} U(z_k, r))) \leq \sum_{k=1}^{\infty} m^*(g(U(z_k, r)))$$
$$\leq \sum_{k=1}^{\infty} \frac{\pi}{2^{k+1}} = \frac{\pi}{2} < \pi.$$

Let

$$g_k(\zeta) = g\left(\frac{\zeta + z_k}{1 + \overline{z}_k \zeta}\right).$$

By (11) the family $\{g_k\}$ omits three values in U(0,r) and thus is a normal family there. After this we shall continue as in the proof of Theorem 3.

REMARK 2. By Remark 1 we note that the spherical area of the Riemannian image of U(z,r) by g and the spherical area of the image of U(z,r) by g simultaneously tend to zero as $|z| \to 1$.

REMARK 3. We could compensate \overline{F}_D by $G_R = \{z \mid d(z,F) < R\}$ in Theorem 3.

REMARK 4. In [3] we constructed a non-normal rotation automorphic function satisfying the condition (2). For this function the rotation group Σ was infinite with one rotation axis only $(0\infty$ -axis).

This example and Theorem 3 show that if we do not restrict Γ in any way, then changing on the image side from finite Σ to infinite Σ can cause a strict difference in the behaviour of the expression $(1-|z|^2)f^*(z)$.

3. Examples.

In this section we give examples of rotation automorphic functions f holomorphic or meromorphic in D. We shall always suppose that the rotation group Σ of f contains rotations with 0∞ -axis. Hence, if Σ has only one rotation axis, then f is character automorphic (cf. [8]).

Denote by Γ_0 a Fuchsian group representing a Riemann surface D/Γ_0 conformally equivalent to a sphere with three punctures. Suppose that the metric fundamental polygon F of Γ_0 is a regular non-euclidean quadrilateral with all vertices on the unit circle. Denote by s_1, s_2, s_3, s_4 the positively oriented sides of F, let T_1 and T_2 be the generating parabolic transformations of Γ_0 and suppose that

$$T_1(s_1) = s_2^{-1}, T_2(s_3) = s_4^{-1}.$$

Character automorphic functions. Let $S: \hat{C} \to \hat{C}$ be the rotation S(w) = -w, let Σ be the cyclic group generated by S and let F' be the upper half plane with the sides $t_1 = [-1,0], t_2 = [0,1], t_3 = [1,\infty], t_4 = [-\infty, -1].$

Since F and F' both are conformally equivalent to a square, there exists a conformal map $f: F \to F'$ for which

$$f(s_1) = t_1, \ f(s_2) = t_2,$$

 $f(s_3) = t_3, \ f(s_4) = t_4.$

Then we have on the boundary of F

$$f \circ T_1 = S \circ f$$
, $f \circ T_2 = S \circ f$.

Hence f can be extended to D and we have obtained a character automorphic function holomorphic in D.

Rotation automorphic function with a quadratic group of rotations. The simplest discrete non-cyclic rotation group, the quadratic group, has three different rotation axes which are orthogonal to each other. (In [6] all discrete rotation groups are thoroughly treated.)

Let

$$F' = \{ w = u + iv | v \ge 0, |w| \ge 1 \}$$

and let the sides

$$t_1 = \{ w | |w| = 1, u \le 0 \}, t_2 = \{ w | |w| = 1, u \ge 0 \},$$

 $t_3 = \{ w | u \ge 1, v = 0 \}, t_4 = \{ w | u \le -1, v = 0 \},$

be positively oriented with respect to F'.

Let Σ be the group generated by the rotations $S_2(w) = -w$, $S_1(w) = -1/w$. Then Σ is a quadratic group containing the rotations $S_1, S_2, S_3(w) = 1/w$ and the identity. Let $f: F \to F'$ be a conformal map for which

$$f(s_1) = t_1, \ f(s_2) = t_2,$$

 $f(s_3) = t_3, \ f(s_4) = t_4.$

Let $j: \Gamma_0 \to \Sigma$ be the homomorphism defined by $j(T_1) = S_1$, $j(T_2) = S_2$. We can extend f to a holomorphic function $f: D \to \mathbb{C}$ satisfying $f \circ T = j(T) \circ f$ for all $T \in \Gamma$.

An example of a rotation automorphic function with the group of the tetrahedral rotations (i.e. a group containing 12 rotations and 7 axes) is given in [4].

Rotation automorphic function with a non-discrete group of rotations. Let Σ be the group generated by the rotations $S_1(w) = e^{-i}w$ and $S_2(w) = 1/w$, let

$$F' = \{ w \mid -\frac{1}{2} \le \arg w \le \frac{1}{2}, |w| \le 1 \}$$

and let the sides

$$t_1 = \{ w \mid \arg w = \frac{1}{2}, |w| \le 1 \},$$

$$t_2 = \{ w \mid \arg w = -\frac{1}{2}, |w| \le 1 \},$$

$$t_3 = \{ w \mid -\frac{1}{2} \le \arg w \le 0, |w| = 1 \},$$

$$t_4 = \{ w \mid 0 \le \arg w \le \frac{1}{2}, |w| = 1 \}$$

be positively oriented with respect to F'.

The fixed points of the rotation $S_1^n \circ S_2 \circ S_1^{-n}$ are $\pm e^{-ni}$. Hence Σ has infinitely many rotation axes.

Since $S_1(t_1) = t_2^{-1}$ and $S_2(t_3) = t_4^{-1}$, we can continue the conformal map $f: F \to F'$, $f(s_k) = t_k$, k = 1, 2, 3, 4, to a holomorphic rotation automorphic function $f: D \to \mathbb{C}$ having Σ as the group of rotations.

Rotation automorphic function with compact D/Γ . Let F be the regular non-euclidean octagon in D whose vertices are

$$\alpha_j = \frac{1}{2} \left(\sqrt{\sqrt{2} + 1} - i \sqrt{\sqrt{2} - 1} \right) e^{(j-1)i\pi/4}, \ j = 1, \dots, 8.$$

Then all vertices of F lie on the circle $|z| = 2^{-1/4}$ and the sum of the angles of F equals 2π . Denote by s_j the side of F starting from α_j , j = 1, ..., 8 (see Fig. 1).

Figure 1.

In order to define a Möbius transformation T of D onto itself it suffices to give the isometric circles I(T) and $I(T^{-1})$. Let

$$I(T_1) \supset s_1, \quad I(T_1^{-1}) \supset s_3,$$

 $I(T_2) \supset s_2, \quad I(T_2^{-1}) \supset s_4,$
 $I(T_3) \supset s_8, \quad I(T_3^{-1}) \supset s_6,$
 $I(T_4) \supset s_7, \quad I(T_4^{-1}) \supset s_5.$

Then for instance

$$T_1(z) = i \frac{z\sqrt{\sqrt{2}+1}-2}{z\sqrt{2}-\sqrt{\sqrt{2}+1}},$$

and all transformations $T_j\colon D\to D$, $j=1,\ldots,4$, are hyperbolic. Moreover, $T_1(s_1)=s_3^{-1}$, $T_2(s_2)=s_4^{-1}$, $T_3(s_8)=s_6^{-1}$, and $T_4(s_7)=s_5^{-1}$. Let Γ be the Fuchsian group generated by T_1,T_2,T_3 , and T_4 . Then Γ has Γ as a metric fundamental polygon. Now $T_1(\alpha_1)=\alpha_4$, $T_2^{-1}(\alpha_4)=\alpha_3$, $T_1^{-1}(\alpha_3)=\alpha_2$, and $T_2(\alpha_2)=\alpha_5$. Hence

$$T_2(T_1^{-1}(T_2^{-1}(T_1(\alpha_1)))) = \alpha_5.$$

Similarly, $T_4^{-1}(\alpha_5) = \alpha_8$, $T_3(\alpha_8) = \alpha_7$, $T_4(\alpha_7) = \alpha_6$, and $T_3^{-1}(\alpha_6) = \alpha_1$. Hence

$$T_3^{-1}(T_4(T_3(T_4^{-1}(\alpha_5)))) = \alpha_1.$$

Since the sum of the angles of F equals 2π , it follows that the relation

$$(12) T_3^{-1} \circ T_4 \circ T_3 \circ T_4^{-1} \circ T_2 \circ T_1^{-1} \circ T_2^{-1} \circ T_1 = id$$

holds. The relation (12) is a basis for all relations in Γ .

Let F' be the octagon whose sides lie on the unit circle and whose vertices are

$$\beta_j = e^{i\pi(2j-3)/8}, \quad j = 1, \dots, 8.$$

Denote by t_j the side of F' starting from β_j , j = 1, ..., 8 (see Fig. 2). Define rotations S_j , j = 1, 2, of the Riemann sphere \hat{C} as follows:

$$S_1(z) = i/z,$$

$$S_2(z) = -1/z.$$

Then S_1 and S_2 generate a discrete group Σ of dihedral rotations having five different axes. Moreover, $S_1(t_1) = t_3^{-1}$, $S_2(t_2) = t_4^{-1}$, $S_2(t_8) = t_6^{-1}$, and $S_1(t_7) = t_5^{-1}$.

Define $j(T_1^{\pm 1}) = j(T_4^{\pm 1}) = S_1$ and $j(T_2^{\pm 1}) = j(T_3^{\pm 1}) = S_2$. Since $S_2(S_1(z)) = iz$, we have

$$j(T_3^{-1}) \circ j(T_4) \circ j(T_3) \circ j(T_4^{-1}) \circ j(T_2) \circ j(T_1^{-1}) \circ j(T_2^{-1}) \circ j(T_1)$$

= $(S_2 \circ S_1)^4$ = id.

Since (12) is the basis relation in Γ , j extends to a surjective homomorphism $j: \Gamma \to \Sigma$.

Let f be the conformal map of F onto F' for which $f(\alpha_j) = \beta_j$, j = 1, ..., 8. Then we have

$$f \circ T_1 = S_1 \circ f \quad \text{on } s_1,$$

$$f \circ T_2 = S_2 \circ f \quad \text{on } s_2,$$

$$f \circ T_3 = S_2 \circ f \quad \text{on } s_8,$$

$$f \circ T_4 = S_1 \circ f \quad \text{on } s_7.$$

Define in T(F), $T \in \Gamma$, f by

$$f|T(F) = j(T) \circ (f|F) \circ T^{-1}.$$

It follows that f is a well-defined meromorphic rotation automorphic function in D having Σ as the group of rotations and satisfying the following conditions:

- (i) D/Γ is a compact surface of genus 2,
- (ii) Σ has 5 axes,
- (iii) $|f(z)| \le 1$ for all $z \in F$.

The above construction applies evidently to every genus g > 1. The number of axes of Σ is then 2g + 1.

If f is either automorphic or character-automorphic and D/Γ is compact, then f cannot be bounded in F unless f reduces to a constant (cf. [2]).

REFERENCES

- 1. R. Aulaskari, On rotation automorphic functions with discrete rotation groups, Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), 371–374.
- R. Aulaskari, Rotation-automorphic functions near the boundary, Math. Scand. 53 (1983), 207–215.
- 3. R. Aulaskari and P. Lappan, On additive automorphic and rotation automorphic functions, Ark. Mat. 22 (1984), 83-89.
- R. Aulaskari and T. Sorvali, On rotation automorphic functions, Math. Scand. 41 (1981), 222-228.
- A. F. Beardon, The geometry of discrete groups, in Discrete groups and automorphic functions (Proc. Conf., Cambridge, 1975), ed. W. J. Harvey, pp. 47-72. Academic Press, London - New York - San Francisco, 1977.

- 6. F. Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen fünften Grades, Leipzig, 1884.
- 7. O. Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47-65.
- 8. Ch. Pommerenke, On normal and automorphic functions, Michigan Math. J. 21 (1974), 193-202.
- 9. S. Yamashita, Functions of uniformly bounded characteristic, Ann. Acad. Sci. Fenn. Ser. A I Math. 7 (1982), 349-367.
- 10. S. Yamashita, On normal meromorphic functions, Math. Z. 141 (1975), 139-145.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF JOENSUU PL 111 80101 JOENSUU FINLAND