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ON A PROBLEM OF FROBENIUS

OTTO MARSTRANDER

1.
In this paper the numbers are non-negative integers, if not expressly
mentioned that they may be negative.

Let k > 0 and A4, = {aq,ay,...,a,} asetwithg.c.d. (ap,...,a) = 1. Ifn
can be written on the form n = xgay+...+ x;a;, we shall say that n is
dependent on the basis Ay.

The problem of Frobenius consists in determining the largest integer
g(4,) = g(ao, ...,a;) not dependent on A,.

We also touch lightly into the problem of determining n(A4,), i.e. the
number of integers not depending on A,.

It is well known that g(ag,a;) =a,(@,—1)—a, and n(ae,a,)
=%(a; —1)(ap — 1), see Sylvester [6].

In section 2 we define a class of bases which we call regular. In section 3
we prove a basic lemma for regular bases and some lemmas which may help
us to decide whether a basis is regular. In section 4 we give a recursion
formulae to determine g for regular bases, and also two more special
theorems.

We use our method to improve some results obtained by Hofmeister [3]
and [2], Selmer [5], and Temkin [7] and to determine g for an almost
arithmetic set, i.e. all but one of the basis elements form an arithmetic
sequence (see Radseth [4]).

2.

If one of the basis elements, say a,, is dependent on the others, then
clearly a, can be removed from the basis without altering the values of g
and n.

Throughout the paper we assume ao,>1 and (a9,a;) =1. For
i=1,...,k we determine b; by

a; =da, bi(mod ao) With 0 é bl' < Ay, bl =1.
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We can assume b; >0, b; +b; for i #j, and a; < a; b;. Otherwise the
basis is dependent. Then there exist c,,...,¢; such that a; = a, b; —ay¢;,
¢, =0.

We write by, =ag, Cx+1 =a;, and a;,, =0. If needed we may
reindex a,,...,a; such that

a,=ab;—agc; fori=1,...,k+1,
(2.1) 1=b1<b2<...<bk+1=ao and
0=C1 <C2<...<Ck+1 =4a;.

(If ¢; 2 ¢; for i < j, then g;is dependent on a,,a,,a;.) If (2.1) holds we say
that the basis is ordered. The basis is then fully determined by the sets

Bk = {1 =bl""$bk+1 = ao} and Ck = {0 = Cys0005Cr41 =a1}.

Because b; =1 every n can be written on the form
j

(2.2) n= inbi’ 0<]§k+1.
i=1

We call the number Z{= . Xi¢; associated to the form (2.2). If 2f= 1 Xib;
< b4+, forall I <j then we call (2.2) the regular representation of n by
by,...,b; (Hofmeister [2]). Abbreviated we call it j-regular. This
representation is unique and easy to determine. We now define:

j J
2.3) R(n,j) = i x;c; where n= Y x;b; isj-regular,
i=1 i=1
and
Jj Jj
(2.4) M(n,j) = max{ Xici|n= ) x bi}'
i=1 i=1
Clearly R(n,j) £ M(n,j), R(n+mb;,j)=R(n,j)+mc;, R(n,j)=R(n,j+1)
if n< bj+ 1.
We define R(n) = R(n,k). Then, for n<b;,; and j<k we have
R(n,j) = R(n).
If
2.5) R(n,k+1)=M(n,k+1) foralln
then

a;=ayb;—aoc; = R(by+1bi,k +1) — R(by+ by, i)
2 M(by+1bi,k+1) = M(bys 1 by,i) 20

and for i < k+1 is a; = 0 impossible, because (ag,2;) =1 and b; < a,.
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DEerFINITION. If the basis is ordered and (2.5) holds, we shall say that the
basis is regular.

> We use a lemma by Brauer and Shockley [1] in the following form:
LeMMa 1. Let

t; = min {t| t = a,l(mod a,), | < a, and t dependent on a, ..., a;}.

Then
g(@o,...,a) = max {t;| I < ay} —aq.

(We remark that ¢, is defined only for I < q,.)

LEMMA 2. Let | < a, and | = Z:;  X;b; be k-regular. A necessary and
sufficient condition that
(3.1) t;=a;l—ayR(l) = i-il x;a; forall 1< a,

is that the basis should be regular.
Proor. 1) The condition is sufficient. Let

k+1

Z& y:a; = a;1 (mod a,).

From (2.1) and because g, = 0 follows

k+1 k+1
yiai = a, .Zl yibi—aq .Zl yi¢; = a1 (mod ay).

i

i=1

Hence Y**!y,b; = I+ na, with n = 0. Thus, because the basis is regular

™M=~

yia; 2 a,(l +nay) —agM(l+nag,k +1)

[}

i=1

X;a;

M=

=al(l+nao)—aoR(l+na0,k+l)=all"‘a0R(l)= .

and (3.1) follows.
2)If the basis is not regular there existsan | < a, andan n = 0 such that
R(I'+ nag,k +1) < M(l + nao, k +1). Let
k+1 k+1

l+nao= z Zgbi WIth M(l+na0,k+1)= leici'
i=1 i=

1
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We then have

k+1
zia;= Y, z;a; = ay(l+nap) —aoM(I+nag,k +1)
i=1

i

i=1

<ay(l+nay)—ag R +nag,k +1) =a; 1 —ae R(l)
and (3.1) does not hold.

LEMMA 3. Suppose R(n,j)= M(n,j) for all n,j<k+1. Then
R(pn +gm,j) =2 pR(n,j) + qR(m,}) for all p, n, q and m.

ProoF. Let n=)7_, x;b; and m = Z{=1 y: b; both be j-regular. Then

J
R(pn + gm,j) = M(pn +qm,j) = ._Zl (px; + qy:)e; = pR(n,j) + gR (m, ).

We now write

— — bi+1 .
(3.2) bi+1 - qibi_si, S; < bi’ q; = <T> g 2, 1= 1,...,k,
and prove

LEMMA 4. Suppose j <k +1 and

(3.3) R(n,j) = M(n,j) foralln.
a) A necessary and sufficient condition that
(3.4) R(n,j+1)=Mn,j+1) foralln
is
(3.5) ¢e1 2 4r¢— R(s)),

b) If (3.5) holds for j = 2,...,k, then R(n,j) = M(n,j) holds for all n and
all j < k+1. The basis is regular.

Proor. a) The condition is necessary. From (3.2) and (3.4) follow
R(bj+1 +sj,j+1) = M(g;b;,j +1) or ¢4y + R(s;) 2 gjcj, thatis (3.5).

The condition is sufficient. From (3.3) follows R(n,j+1)= M(n,j +1)
for n < b;,,. For n = b;,, we write

i
n= Z x,-b,-+tbj+l, where
i=1

(3.6) ,
p= Y x;b, isj-regular and t > 0.
i=1
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The associated number is m(n,j+1,t) = R(p,j) + tcj+,. We have then
mn,j+1,t —1) = R(p + bj+4,j) + (¢t —1)cj+,. Because (3.5), (3.3), and
Lemma 3

m(n,j+1,t)—m(n,j+1,t —1) = ¢j4y 1 + R(p,j) — R(p + bj+ 1,J)
2 gjcj— R(s;) + R(p,j) — R(p + bj 1,j)
g qjcj +R(Pa])—R(P +qujaj) =0.

It follows that m(n,j+1,t) is maximal for ¢t maximal i.e. when (3.6) is
(j + 1)-regular, and (3.4) follows.
b) Clearly R(n,2) = M(n,2) for all n, and b) follows by induction.

Temkin [7] introduced an ordered basis with ay = b,y < 2b, and
a; = Cp+q = 2¢,. We prove

LEMMA 5. Suppose that the basis {ag,...,a;} is ordered and ay = by,
< 2b,. Then a necessary and sufficient condition that the basis should be
regular is

(3.7) Ay = Cr+1 g maX{C,-+Cj—R(bi+bj—ao)| 2 é i é] é k}.
Proor. 1) If the basis is regular, we have (for 2 < i <j< k)

R(ao+(b,+bj—ao),k+1)=M(b,+bj,k+1)
or
a1+R(b,~+bj—ao)gc,-+Cj

and (3.7) follows.
2)If n < by, ,, then clearly

3.8) R(n,k+1)=M(n,k+1).

We now suppose (3.7) to be true and have to prove that (3.8) holds for all
n 2 b,,,. Thus, we assume n > b,,, and write

k
n= Z xibi+tbk+1 = S+tbk+1, where
i=1

k
M(s,k)= ) x;c; and t20.
i=1

The number associated with this representation of  is

M(n,k+1,t) = M(s,k) +tcyq.



166 OTTO MARSTRANDER

We assume t < [n/b; 4] and so s = b, . Then it is clearly sufficient to
prove

(3.9) Mmk+1,t+1)= M(n.k+1,t).

Because s 2= b,,,; we have M(s,k) = ¢,. If M(s,k) = ¢, then (3.9)
obviously holds. If M(s,k) > ¢;, then x,+...+ x;, = 2.

There are two cases:

1) There is a I > 1 with x; = 2. In this case we put y, = x; —2 and
y; = x; for i + 1. Then

k
n= -—21 .Vibi +2bl —'ao"' (t +1)bk+1'

We then have
k
M(n,k+1,t+1) % Z in§+R(2bl—ao)+(t+1)Ck+l
i=1

=M(m,k+1,t)—2c,+ R(2b, — ay) + a,.

Because (3.7) we see that (3.9) is true.

2) There is a I>1 with x;=1 and a h>1 with x,=1. We put
¥, =y, =0 and y; = x; for i % [,h. We obtain (3.9) in a similar way as in
case 1).

From Lemmas 5 and 4 follows: Suppose thereis an | 2 <<k +1)
such that 2b, = b, and

¢ = max{c;+c;—R(b;+b;j—b)l 2<i<j<1-1}
and that (3.5) holds for j =1,...,k. Then the basis is regular.
LEMMA 6. a)
R(n+1,j)—R(n,j) < max {c;— R(b;—1)| 2 <i £ j}.
b) If
(3.10) Civ1 2 qici—R(s) fori=2,...,j—1
then R(n+1,j)— R(n,j) < ¢;— R(b; —1).

PrOOF. a) Let n= Z{, . X;b; be j-regular and s <j be the largest
suffix with 1+ )7;_, x;b; = by, (this is true for s = 0). Then

ntl= (e dbit O xiby
i=s+2
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is j-regular. We have
S
R(n+1,j) = R(n,j) = €41 — . X;¢; = Cer1 — R(bg+1 — 1),

i=

and a) follows.
b)Let 2<i < j—1. From (3.19), Lemma 4, b), and Lemma 3 follows:
Civ1— R(bi+1—1) 2 gic; — R(s;,i) = R(b;4 1 —1,0)
2 g;¢c;— R(g;b; —1,i)
= g;c;— R((g: —1)b; + b;—1,i) = ¢; — R(b; - 1),
and b) follows.
4,
We assume that the basis A, is regular with
.Bk = {1 == bl,""bk"'l = ao} and Ck = {0 = CryeeesCpp1 = al},

and shall derive a recursion formula to determine g. First, some defini-
tions:
1)

k
L= { Z x;b;
i=1

i.e. L; is the ordered set of the k-regular representations of the numbers
0,...,b;—1.
2) Replacing b; by a; for all i, L; (by Lemma 2) becomes

T,={tl 0 <1<by}.

k
I= Z x; b; is k-regular, 0§l<b,}, i=1,...,k+1.
i=1

3) Let S be an ordered set and p a number. We write
S+p={xlx=s+p, seS}.
4)

~

S+xp)=g forr<O0.
0

5) y* = Min{1,y}.

Let now

i—1
b;—1= Y r, b, bek-regular, i=1,...,k+1.
s=1
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Then L, = {0}, L, = U (Ly + xby) and generally for 1 <i<k+1:

x=0
1
L; = U L;; where
j=i—1

risbs) for j>1,and
s=j+1

r;—1 i—1
U (Lj+xb;+ 3.
x=0

=
—
N
I~
<

]

Ti i—-1
L,,= Uo (Ly +xby + Zz ri,sbs).
x= s=

We need only a little consideration to see this. E.g.let 1 <p<g<i—1
and L, + &, L;,=@& for p<m<gq, L,,+&. Thus r,;>0,
rim =0, and r; , > 0 for p > 1. Then the last element in L;, is

q—1 i-1 i—1
Z rq,sbs + (ri,q - l)bq + Z ri.sbs =-1 + Z ri,s bs-
s=1 s=q+1 s=q

The next element in L; is the first element in L; ,, that is
i-1 i—-1
Z ri,s bs = Z ri,s bs'
s=p+1 s=q
Because of Lemma 1 we are only interested in max T, . ,. Replacing b; by q;
for all i, L;;becomes T;;and from (4.1) we obtain:

THEOREM 1.
i—1

max T;,j = (max T}‘}' (ri,j—].)aj+ Z+1

s=j

+ .
r,.,sas)ri,j forj>1,

i-1
Y risa,=ay(b;—1)—ao,R(b;—1) and

“42 7=
s=1

max7; =max{maxT;l 1<j<i-1}.

By Lemma 1 we have

4.3)

By Lemma 2 we have
tier—t=a;—ao(RU+1)—R(), I<a,—-1.

8(A4x) = max Tp 4 — ao.
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If thereis a j < k with
(4.4) a; > aomax{¢;—R(b; -1 2<i<j},
then by Lemma 6, a) it follows ¢,,; —t, > 0 forall I < b;,, —1, and so
max T; =max T;; = a;(b; —1)—aoR(b;—1) forall i <j+1.
This may be useful by determining max T, ,. We also obtain
THEOREM 2. If the basis is regular and (4.4) holds for j=k, then
g(ao, ..., @) = glao,a;) —aoR(ap —1).

REMARK. Selmer [5] proved:
ap—1
n(aO’ "-’ak) =— Z tl —%(ao - 1)
) Ao 1=0
From this theorem and Lemma 2 follows:

n(ao,-..,a) = n(ay,a;) — IZ R()

if and only if the basis is regular.

In the next theorem we do not suppose that the basis is regular.

THEOREM 3. Let ai=a1b,~—aoc,-, i=1,...,k, Where 1 =b1 <...< bk

and 0 =c; <...<c¢,. Wewrite by, =q;b;—s;, s;<b;, i=2,...,k—1
and suppose

4.5) Cir1=qic;i—R(sy), i=2,...,k—1

and

(4.6) a, > ao(c, — R(b, - 1)).

Let m be the largest suffix with b,, < ay. Then

g(ao,-..,ax) = gao, -..,a,) = glag,a;) —ao R(ap —1).

ProOF, We have a;(x+1)—aoR(x +1) — (ay x — ap R(x))
=a;—ay(R(x +1)—R(x)). From (4.6) and Lemma 6 follow
that a, x — q, R(x) is an increasing function of x.

If m<k and m <i <k we determine p by b; = p (moda,), p < a,.
Then

a; = a, b;—agR(b;) = a, p — ao R(p) (mod ao)
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and because p < b; there exists a z, such that
m
a;=a;p—aoR(p)+2z0ay = Zozjaj
J=

where p=Z;?'=lzjbj is m-regular. It follows that g(ao,...,a)

= g(a09""am)'
We write ay = gb,, — s, s < b,,. From (4.5), (4.6), and Lemma 6 follows

.7 ay > ag(cw — R(b,, — 1))
Further, from (4.5), Lemma 4. b), and Lemma 3 follows
a; >agc,—agR(b,—1,m) 2 ayc, — R(agb,, — ap,m)
= dgCp— R((@o — )b + 5,m) = gc, — R(s).
Thus the basis ay,...,a, is regular and by (4.7) and Theorem 2 we have

g(aOv"’am) = g(a05al) _aOR(aO - 1)

ReMARK. Theorem 3 is a generalization of a result by Hofmeister ([3,
p. 79]). The proof of this assertion will not be included.

s.
ExXAMPLE 1. Ay = v,-a,-+d, v; > 0, i= U,...,k—l and (ao,d) =1..
d may be negative.

By induction we find a; = a, b; — a, c;, where

bo=0, by =1, bjyy =v;b;+1=(; +1)b;—v;-1 b; -,

and

co=-1, ¢;=0, ¢4y =0v;¢;+vo=@;+1)c;—v;_yc;—y fori=1,....k—1

We have ¢; — R(b; — 1) = vy. From Theorem 3 follows:

For d>0 is g(A;) = g(ag,a;) —apgR(ao—1). This is a result by
Hofmeister ([3, p. 83-84]).

We assume now daq > b, d <0 and that (3.5) holds for j = k. Then
the basis aq,...,a, is regular. The representation b;,; —1 =uv;b;
is k-regular. By use of (4.2) we obtain

maxT,=a;—(i—1)d fori=2,...,k.
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Further by (4.3)
"k
g(4y) = max{ Yxa—(i—-1dl1<gisg k} —a,,
j=i
where

k
ag—1=by —1= Zl x;b; is k-regular.
=

EXAMPLE 2. a; = ao +p' " 'd, i=1,...,k, (ap,d)=1, p=2. d may be
negative.

This basis was introduced by Hofmeister [2] for d > 0. Selmer [5]
treated it for p =2, d =1 and ay > (k — 4)2F" ! +1.

First, we use Theorem 3. We have a; = a, b; — aoc;, where b; = p
and c; = b; — 1. Itis easy to see that the condition (4.5) holds.

(Let n=Y*  xb; be k-regular. We write S(n)=Yr_, x;. Then
R(n) =n-S(n).).

From Theorem 3 we obtain: If a, > ao(c; — R(by — 1)) = ao S(by— 1)
=ayg(p—1)(k—1), thatis d > ay(pk — k — p), then

i—1

g(Ak) = ao(S(ao - 1) - 1) + d(ao - 1)

See Hofmeister [2, p. 31]. We now suppose a, > b,. Let then
k
(5.1) ag—1= ) x;b; bek-regular (x;, >0 and x; < p for i < k).
i=1

Then
k-1
ag = (xk + l)bk bt 2 (p —-1- x,-)b,-.
i=1
We suppose

k-1
al ;(xk'i"l)ck“' Z (p-—l—xi)ci=a0+pk—k—p—S(a0—-1)

i=1

thatis d > pk —k — p — S(ap —1). Then by Lemma 4 the basis is regular,
and we can use/Theorem 1.
We have

i—-1
bi—1= Y (p—1)b; isk-regular, i =2,...,k.
i=1
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By induction it is easy to prove that
maxT, = (p—1) Z s i =2,.,k.
From (5.1), (4.2), and (4.3) we obtain

1<i gk}

g(Ay) = —ag + max {(p - 1);;1 a—a;+ éi X;a;, jé X;a;
In discussing this formula, we distinguish three cases. We will not go
into details but only state the results.
1) S@ao—1)=p—-1)k—=1)+ x4.
Then ag = (1 +x,)p* . For d > —1—x, is
g(Ay) = xya, + (pk —k —p)ao +d(p*~* - 1).

2) S(ag—1) = (p—1)(k —1) +x, — 1.

Then there exists an r < k such that ao = (1 +x,)p* ! —p
We obtain: For d >0, g =x,a,—a,+ (pk—k—p)a,+d(p*~1-1).
For 0 >d 2 —x,

(5.2) g = (xx—1ay+ (pk — k —p)ag +d(p*~ 1 —1).

r—1

3) S(ag—1) < (p—1)(k —1) + x; — 1.

Let r be the largest suffix less than k with x, < p—1. For x, = p— 2 letsbe

the largest suffix with x, <p—1 and s<r. For x,<p—2,lets=r.
We obtain:

For dZzmax{pk—k—p—S(a,—1),1} and a,>d(p

r 1 _ s-—l)

g =Xy~ a1+ (pk —k —p)ag+d(p*~* —-1).
For 0 >d =2 pk—k —p—S(a, — 1), the result is (5.2).
In all three cases we have: If 0 > d = pk —k —p — S(ap — 1), then
= ([ao/P* " '] = D)ay + (pk — k — p)ao +d(p*~! - 1).
ExampLE 3. Suppose a; =a b;—ayc;, i=1,....,k, 1=b,<b, <

<byyy=ap and 0=c; <c¢; <...< x4y =ay. Suppose further that
ay < 2b, and

a, gmaX{C"'l‘Cj—R(bi'}'bj_ao)l 2 ____<.l§_].§ k}
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By Lemma 5 the basis is regular. We use Theorem 1 and easily obtain
g =max{(b;—1)a; — (c;_, +D)aol i =2,...,k+1}.
For a; = 2¢, this is a result by Temkin [7].

ExampLE 4. The basis A+ = {aq,...,a, P}, a;=ao—id, i =1,...,k,
(ag,d) =1, ag > kd and p > 0.

Redseth [4] has solved the problem of determining g(A4;+,).

Although in general the basis is not regular, our method may be used.
We determine s, and r, by

p =a1sl '—aorl, rl < Sl < ao and rl < al.
Further, we write s, = a, and ry = a; and

So =q1S1—S3, To=4q17{— T3, 0=s;<sy,

S1=(38,—S83, Fr4=4q3r,—Tr3, 0=<s3<s,,

Sm—1 = 9mSm> Tm—1=q9m"m — Tm+1> 0=Sm+1<sm

(rys...,rm+1 may be negative).

Then a,s;,—aqr; = P.p, where P, =0, P, =1 and P,,, = q;P,— P,_;.
We consider now the basis

Ak+i = {a09-'-’a0—kdsI)ip"",Plp}’
where

Bevi ={1,...,k,8;,8i-1,...,81,80} and

Ck+i = {0,...,k—l,ri,r"_l,...,rl,ro},

where i is defined by the condition r;,; < R(s;+,k) and r; > R(s;,k) for
J=i. (If i =0, then p is dependent on ay,...,a, and A;4; = {do,...,a}.)
It is easy to prove that i>0, s;>k, r;>k—1 and that A, is
regular. Obviously g(4,+;) =g(Ax+;). Let s;—1=m+nk and
Si—S8;+1 —1 = u+ vk be k-regular representations. By using Theorem 1,
it is not difficult to prove that

8(Axy) = —d+m+m* —1)(ay —kd) +
+(Pyy —1)p—min{Pp,(n —v+m* —u*)(ao — kd)}.
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Added in proof.
Finally we will prove the following generalization of Theorem 2:

THEOREM 4. Let the basis A, = {ay,...,a,} be ordered, a; = a;b; — aqc;
and

(5.3) a; > agmax{c;— M(b; — 1,k)| 2 < i < k}.
Then
g(4,) = glag,a,) —ao M(ao — 1,k).
PROOF. Let
k k
n= i=21 x;b; with M(n,k) = i=21 x;c;, n>0.

Suppose x; > 0. Then clearly M(n —b;,k) = M(n, k) — c;. Hence
M(n,k)—M@m—1,k) = M(n,k)—M(@m—b;j+b;—1,k)
< M(n,k)—M(n—b;, k) — M(b;—1,k)
=¢;—M(b;—1,k).
From (5.3) follows
ayn—aoM(n,k)—(a;(n—1)—aoM(@n—1,k)) >0 forall n>0.
Therefore (see Lemma 1) t; = a,l —aoM(l, k) and
g(Ay) = ay(ao—1)—aoM(ao — 1,k) —ao = glag,a;) — agM(ao — 1,k).
EXAMPLE. Let the basis A be defined by
B ={1,7,23,40,a, =47} and C ={0,3,11,19,a,}.

From Theorem 4 follows: for a; > 141 is g(4) = 46a, — 1081. Let further
A’ be the basis defined by
B ={1,7,23,28,30,35,37,40,44,46,a, = 47} and
C' ={0,3,11,12,14,15,17,19,20,22,a,}.
Then A’is regular for a; = 25 (follows from a generalization of Lemma 5).
In addition is g(4) = g(A4’). Using Theorem 1 we find
g(4) =20a, — 329 for a, = 25 or 26,
g(A) =45a, —987 for 26 < a, < 94,
g(A) = 46a, — 1081 for a, > 94.
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