ON A PROBLEM OF FROBENIUS

OTTO MARSTRANDER

1.

In this paper the numbers are non-negative integers, if not expressly mentioned that they may be negative.

Let k > 0 and $A_k = \{a_0, a_1, ..., a_k\}$ a set with g.c.d. $(a_0, ..., a_k) = 1$. If n can be written on the form $n = x_0 a_0 + ... + x_k a_k$ we shall say that n is dependent on the basis A_k .

The problem of Frobenius consists in determining the largest integer $g(A_k) = g(a_0, ..., a_k)$ not dependent on A_k .

We also touch lightly into the problem of determining $n(A_k)$, i.e. the number of integers not depending on A_k .

It is well known that $g(a_0, a_1) = a_1(a_0 - 1) - a_0$ and $n(a_0, a_1) = \frac{1}{2}(a_1 - 1)(a_0 - 1)$, see Sylvester [6].

In section 2 we define a class of bases which we call regular. In section 3 we prove a basic lemma for regular bases and some lemmas which may help us to decide whether a basis is regular. In section 4 we give a recursion formulae to determine g for regular bases, and also two more special theorems.

We use our method to improve some results obtained by Hofmeister [3] and [2], Selmer [5], and Temkin [7] and to determine g for an almost arithmetic set, i.e. all but one of the basis elements form an arithmetic sequence (see Rødseth [4]).

2.

If one of the basis elements, say a_k , is dependent on the others, then clearly a_k can be removed from the basis without altering the values of g and n.

Throughout the paper we assume $a_0 > 1$ and $(a_0, a_1) = 1$. For i = 1, ..., k we determine b_i by

$$a_i \equiv a_1 b_i \pmod{a_0}$$
 with $0 \le b_i < a_0, b_1 = 1$.

Received April 16, 1985.

We can assume $b_i > 0$, $b_i \neq b_j$ for $i \neq j$, and $a_i < a_1 b_i$. Otherwise the basis is dependent. Then there exist c_1, \ldots, c_k such that $a_i = a_1 b_i - a_0 c_i$, $c_1 = 0$.

We write $b_{k+1} = a_0$, $c_{k+1} = a_1$, and $a_{k+1} = 0$. If needed we may reindex a_2, \ldots, a_k such that

(2.1)
$$\begin{cases} a_i = a_1 b_i - a_0 c_i & \text{for } i = 1, ..., k+1, \\ 1 = b_1 < b_2 < ... < b_{k+1} = a_0 & \text{and} \\ 0 = c_1 < c_2 < ... < c_{k+1} = a_1. \end{cases}$$

(If $c_i \ge c_j$ for i < j, then a_j is dependent on a_0, a_1, a_i .) If (2.1) holds we say that the basis is *ordered*. The basis is then fully determined by the sets

$$B_k = \{1 = b_1, \dots, b_{k+1} = a_0\}$$
 and $C_k = \{0 = c_1, \dots, c_{k+1} = a_1\}.$

Because $b_1 = 1$ every *n* can be written on the form

(2.2)
$$n = \sum_{i=1}^{j} x_i b_i, \quad 0 < j \le k+1.$$

We call the number $\sum_{i=1}^{j} x_i c_i$ associated to the form (2.2). If $\sum_{i=1}^{l} x_i b_i < b_{l+1}$ for all l < j then we call (2.2) the regular representation of n by b_1, \ldots, b_j (Hofmeister [2]). Abbreviated we call it j-regular. This representation is unique and easy to determine. We now define:

(2.3)
$$R(n,j) = \sum_{i=1}^{j} x_i c_i \text{ where } n = \sum_{i=1}^{j} x_i b_i \text{ is } j\text{-regular,}$$

and

(2.4)
$$M(n,j) = \max \left\{ \sum_{i=1}^{j} x_i c_i \middle| n = \sum_{i=1}^{j} x_i b_i \right\}.$$

Clearly $R(n,j) \le M(n,j)$, $R(n+mb_j,j) = R(n,j) + mc_j$, R(n,j) = R(n,j+1) if $n < b_{j+1}$.

We define R(n) = R(n, k). Then, for $n < b_{j+1}$ and $j \le k$ we have R(n, j) = R(n).

If

(2.5)
$$R(n, k+1) = M(n, k+1)$$
 for all n

then

$$a_i = a_1 b_i - a_0 c_i = R(b_{k+1} b_i, k+1) - R(b_{k+1} b_i, i)$$

$$\geq M(b_{k+1} b_i, k+1) - M(b_{k+1} b_i, i) \geq 0$$

and for i < k+1 is $a_i = 0$ impossible, because $(a_0, a_1) = 1$ and $b_i < a_0$.

DEFINITION. If the basis is ordered and (2.5) holds, we shall say that the basis is regular.

3.

We use a lemma by Brauer and Shockley [1] in the following form:

LEMMA 1. Let

$$t_l = \min\{t \mid t \equiv a_1 l \pmod{a_0}, \ l < a_0 \ and \ t \ dependent \ on \ a_1, \dots, a_k\}.$$

Then

$$g(a_0, ..., a_k) = \max\{t_l | l < a_0\} - a_0$$

(We remark that t_l is defined only for $l < a_0$.)

LEMMA 2. Let $l < a_0$ and $l = \sum_{i=1}^k x_i b_i$ be k-regular. A necessary and sufficient condition that

(3.1)
$$t_l = a_1 l - a_0 R(l) = \sum_{i=1}^k x_i a_i for all l < a_0$$

is that the basis should be regular.

PROOF. 1) The condition is sufficient. Let

$$\sum_{i=1}^{k+1} y_i a_i \equiv a_1 l \pmod{a_0}.$$

From (2.1) and because $a_{k+1} = 0$ follows

$$\sum_{i=1}^{k} y_i a_i = a_1 \sum_{i=1}^{k+1} y_i b_i - a_0 \sum_{i=1}^{k+1} y_i c_i \equiv a_1 l \pmod{a_0}.$$

Hence $\sum_{i=1}^{k+1} y_i b_i = l + na_0$ with $n \ge 0$. Thus, because the basis is regular

$$\sum_{i=1}^{k} y_i a_i \ge a_1(l + na_0) - a_0 M(l + na_0, k + 1)$$

$$= a_1(l + na_0) - a_0 R(l + na_0, k + 1) = a_1 l - a_0 R(l) = \sum_{i=1}^{k} x_i a_i$$
and (3.1) follows.

2) If the basis is not regular there exists an $l < a_0$ and an $n \ge 0$ such that $R(l + na_0, k + 1) < M(l + na_0, k + 1)$. Let

$$l + na_0 = \sum_{i=1}^{k+1} z_i b_i$$
 with $M(l + na_0, k+1) = \sum_{i=1}^{k+1} z_i c_i$.

We then have

$$\begin{split} \sum_{i=1}^k z_i a_i &= \sum_{i=1}^{k+1} z_i a_i = a_1 (l + n a_0) - a_0 \, M (l + n a_0, k + 1) \\ &< a_1 (l + n a_0) - a_0 \, R (l + n a_0, k + 1) = a_1 \, l - a_0 \, R (l) \end{split}$$

and (3.1) does not hold.

LEMMA 3. Suppose R(n,j) = M(n,j) for all $n,j \le k+1$. Then $R(pn + qm,j) \ge pR(n,j) + qR(m,j)$ for all p, n, q and m.

PROOF. Let $n = \sum_{i=1}^{j} x_i b_i$ and $m = \sum_{i=1}^{j} y_i b_i$ both be j-regular. Then

$$R(pn + qm, j) = M(pn + qm, j) \ge \sum_{i=1}^{j} (px_i + qy_i)c_i = pR(n, j) + qR(m, j).$$

We now write

(3.2)
$$b_{i+1} = q_i b_i - s_i$$
, $s_i < b_i$, $q_i = \left\langle \frac{b_{i+1}}{b_i} \right\rangle \ge 2$, $i = 1, ..., k$, and prove

LEMMA 4. Suppose j < k+1 and

(3.3)
$$R(n,j) = M(n,j) \text{ for all } n.$$

a) A necessary and sufficient condition that

(3.4)
$$R(n, j+1) = M(n, j+1)$$
 for all n

is

$$(3.5) cj+1 \ge qj cj - R(sj),$$

b) If (3.5) holds for j = 2,...,k, then R(n,j) = M(n,j) holds for all n and all $j \le k+1$. The basis is regular.

PROOF. a) The condition is necessary. From (3.2) and (3.4) follow $R(b_{j+1} + s_j, j+1) = M(q_j b_j, j+1)$ or $c_{j+1} + R(s_j) \ge q_j c_j$, that is (3.5).

The condition is sufficient. From (3.3) follows R(n,j+1) = M(n,j+1) for $n < b_{j+1}$. For $n \ge b_{j+1}$ we write

(3.6)
$$n = \sum_{i=1}^{j} x_i b_i + t b_{j+1}, \text{ where}$$

$$p = \sum_{i=1}^{j} x_i b_i \text{ is } j\text{-regular and } t > 0.$$

The associated number is $m(n,j+1,t) = R(p,j) + tc_{j+1}$. We have then $m(n,j+1,t-1) = R(p+b_{j+1},j) + (t-1)c_{j+1}$. Because (3.5), (3.3), and Lemma 3

$$\begin{split} m(n,j+1,t) - m(n,j+1,t-1) &= c_{j+1} + R(p,j) - R(p+b_{j+1},j) \\ &\geq q_j \, c_j - R(s_j) + R(p,j) - R(p+b_{j+1},j) \\ &\geq q_j \, c_j + R(p,j) - R(p+q_j b_j,j) = 0. \end{split}$$

It follows that m(n, j + 1, t) is maximal for t maximal i.e. when (3.6) is (j + 1)-regular, and (3.4) follows.

b) Clearly R(n, 2) = M(n, 2) for all n, and b) follows by induction.

Temkin [7] introduced an ordered basis with $a_0 = b_{k+1} \le 2b_2$ and $a_1 = c_{k+1} \ge 2c_k$. We prove

LEMMA 5. Suppose that the basis $\{a_0, ..., a_k\}$ is ordered and $a_0 = b_{k+1} \le 2b_2$. Then a necessary and sufficient condition that the basis should be regular is

$$(3.7) a_1 = c_{k+1} \ge \max\{c_i + c_j - R(b_i + b_j - a_0) | 2 \le i \le j \le k\}.$$

PROOF. 1) If the basis is regular, we have (for $2 \le i \le j \le k$)

$$R(a_0 + (b_i + b_i - a_0), k + 1) = M(b_i + b_i, k + 1)$$

or

$$a_1 + R(b_i + b_j - a_0) \ge c_i + c_j$$

and (3.7) follows.

2) If $n < b_{k+1}$, then clearly

(3.8)
$$R(n, k+1) = M(n, k+1).$$

We now suppose (3.7) to be true and have to prove that (3.8) holds for all $n \ge b_{k+1}$. Thus, we assume $n \ge b_{k+1}$ and write

$$n = \sum_{i=1}^{k} x_i b_i + t b_{k+1} = s + t b_{k+1}$$
, where

$$M(s,k) = \sum_{i=1}^{k} x_i c_i$$
 and $t \ge 0$.

The number associated with this representation of n is

$$M(n, k+1, t) = M(s, k) + tc_{k+1}.$$

We assume $t < [n/b_{k+1}]$ and so $s \ge b_{k+1}$. Then it is clearly sufficient to prove

$$(3.9) M(n, k+1, t+1) \ge M(n, k+1, t).$$

Because $s \ge b_{k+1}$ we have $M(s,k) \ge c_k$. If $M(s,k) = c_k$, then (3.9) obviously holds. If $M(s,k) > c_k$, then $x_2 + \ldots + x_k \ge 2$.

There are two cases:

1) There is a l > 1 with $x_l \ge 2$. In this case we put $y_l = x_l - 2$ and $y_i = x_i$ for $i \ne l$. Then

$$n = \sum_{i=1}^{k} y_i b_i + 2b_i - a_0 + (t+1)b_{k+1}.$$

We then have

$$M(n, k+1, t+1) \ge \sum_{i=1}^{k} y_i c_i + R(2b_l - a_0) + (t+1)c_{k+1}$$

$$= M(n, k+1, t) - 2c_l + R(2b_l - a_0) + a_1.$$

Because (3.7) we see that (3.9) is true.

2) There is a l > 1 with $x_l = 1$ and a h > l with $x_h = 1$. We put $y_l = y_h = 0$ and $y_i = x_i$ for $i \neq l, h$. We obtain (3.9) in a similar way as in case 1).

From Lemmas 5 and 4 follows: Suppose there is an l (2 < l < k+1) such that $2b_2 \ge b_l$ and

$$c_l \ge \max\{c_i + c_j - R(b_i + b_j - b_l) | 2 \le i \le j \le l - 1\}$$

and that (3.5) holds for j = l, ..., k. Then the basis is regular.

LEMMA 6. a)

$$R(n+1,j) - R(n,j) \le \max\{c_i - R(b_i-1) | 2 \le i \le j\}.$$

b) If

(3.10)
$$c_{i+1} \ge q_i c_i - R(s_i)$$
 for $i = 2, ..., j-1$

then $R(n+1,j) - R(n,j) \le c_j - R(b_j - 1)$.

PROOF. a) Let $n = \sum_{i=1}^{j} x_i b_i$ be j-regular and s < j be the largest suffix with $1 + \sum_{i=1}^{s} x_i b_i = b_{s+1}$ (this is true for s = 0). Then

$$n+1 = (1+x_{s+1})b_{s+1} + \sum_{i=s+2}^{j} x_i b_i$$

is j-regular. We have

$$R(n+1,j)-R(n,j)=c_{s+1}-\sum_{i=1}^{s}x_{i}c_{i}=c_{s+1}-R(b_{s+1}-1),$$

and a) follows.

b) Let $2 \le i \le j-1$. From (3.19), Lemma 4, b), and Lemma 3 follows:

$$c_{i+1} - R(b_{i+1} - 1) \ge q_i c_i - R(s_i, i) - R(b_{i+1} - 1, i)$$

$$\ge q_i c_i - R(q_i b_i - 1, i)$$

$$= q_i c_i - R((q_i - 1)b_i + b_i - 1, i) = c_i - R(b_i - 1),$$

and b) follows.

4.

We assume that the basis A_k is regular with

$$B_k = \{1 = b_1, \dots, b_{k+1} = a_0\}$$
 and $C_k = \{0 = c_1, \dots, c_{k+1} = a_1\}$,

and shall derive a recursion formula to determine g. First, some definitions:

1)

$$L_i = \left\{ \sum_{i=1}^k x_i b_i \middle| l = \sum_{i=1}^k x_i b_i \text{ is } k\text{-regular, } 0 \le l < b_i \right\}, \quad i = 1, \dots, k+1.$$

i.e. L_i is the ordered set of the k-regular representations of the numbers $0, \ldots, b_i - 1$.

2) Replacing b_i by a_i for all i, L_i (by Lemma 2) becomes

$$T_i = \{t_l | 0 \le l < b_i\}.$$

3) Let S be an ordered set and p a number. We write

$$S + p = \{x \mid x = s + p, s \in S\}.$$

4)

$$\bigcup_{x=0}^{r} (S + xp) = \emptyset \quad \text{for } r < 0.$$

5)
$$y^+ = Min\{1, y\}.$$

Let now

$$b_i - 1 = \sum_{s=1}^{i-1} r_{i,s} b_s$$
 be k-regular, $i = 1, ..., k+1$.

Then $L_1 = \{0\}$, $L_2 = \bigcup_{x=0}^{r_{2,1}} (L_1 + xb_1)$ and generally for $1 < i \le k+1$:

(4.1)
$$\begin{cases} L_i &= \bigcup_{j=i-1}^{1} L_{i,j} \text{ where} \\ L_{i,j} &= \bigcup_{x=0}^{r_{i,j}-1} (L_j + xb_j + \sum_{s=j+1}^{i-1} r_{i,s}b_s) \text{ for } j > 1, \text{ and} \\ L_{i,1} &= \bigcup_{x=0}^{r_{i,1}} (L_1 + xb_1 + \sum_{s=2}^{i-1} r_{i,s}b_s). \end{cases}$$

We need only a little consideration to see this. E.g. let $1 \le p < q \le i-1$ and $L_{i,q} \ne \emptyset$, $L_{i,m} = \emptyset$ for p < m < q, $L_{i,p} \ne \emptyset$. Thus $r_{i,q} > 0$, $r_{i,m} = 0$, and $r_{i,p} > 0$ for p > 1. Then the last element in $L_{i,q}$ is

$$\sum_{s=1}^{q-1} r_{q,s} b_s + (r_{i,q} - 1) b_q + \sum_{s=q+1}^{i-1} r_{i,s} b_s = -1 + \sum_{s=q}^{i-1} r_{i,s} b_s.$$

The next element in L_i is the first element in $L_{i,p}$, that is

$$\sum_{s=p+1}^{i-1} r_{i,s} b_s = \sum_{s=q}^{i-1} r_{i,s} b_s.$$

Because of Lemma 1 we are only interested in max T_{k+1} . Replacing b_i by a_i for all i, $L_{i,j}$ becomes $T_{i,j}$ and from (4.1) we obtain:

THEOREM 1.

(4.2)
$$\max T_{i,j} = \left(\max T_j + (r_{i,j} - 1)a_j + \sum_{s=j+1}^{i-1} r_{i,s} a_s\right) r_{i,j}^+ \text{ for } j > 1,$$

$$\max T_{i,1} = \sum_{s=1}^{i-1} r_{i,s} a_s = a_1(b_i - 1) - a_0 R(b_i - 1) \text{ and}$$

$$\max T_i = \max \{\max T_{i,j} | 1 \le j \le i - 1\}.$$

By Lemma 1 we have

$$(4.3) g(A_k) = \max T_{k+1} - a_0.$$

By Lemma 2 we have

$$t_{l+1} - t_l = a_1 - a_0(R(l+1) - R(l)), l < a_0 - 1.$$

If there is a $j \leq k$ with

$$(4.4) a_1 > a_0 \max \{c_i - R(b_i - 1) | 2 \le i \le j\},$$

then by Lemma 6, a) it follows $t_{l+1} - t_l > 0$ for all $l < b_{j+1} - 1$, and so

$$\max T_i = \max T_{i,1} = a_1(b_i - 1) - a_0R(b_i - 1)$$
 for all $i \le j + 1$.

This may be useful by determining max T_{k+1} . We also obtain

THEOREM 2. If the basis is regular and (4.4) holds for j = k, then $g(a_0, ..., a_k) = g(a_0, a_1) - a_0 R(a_0 - 1)$.

REMARK. Selmer [5] proved:

$$n(a_0,\ldots,a_k)=\frac{1}{a_0}\sum_{l=0}^{a_0-1}t_l-\frac{1}{2}(a_0-1).$$

From this theorem and Lemma 2 follows:

$$n(a_0,...,a_k) = n(a_0,a_1) - \sum_{l=0}^{a_0-1} R(l)$$

if and only if the basis is regular.

In the next theorem we do not suppose that the basis is regular.

THEOREM 3. Let $a_i = a_1 b_i - a_0 c_i$, i = 1, ..., k, where $1 = b_1 < ... < b_k$ and $0 = c_1 < ... < c_k$. We write $b_{i+1} = q_i b_i - s_i$, $s_i < b_i$, i = 2, ..., k-1 and suppose

$$(4.5) c_{i+1} \ge q_i c_i - R(s_i), \quad i = 2, \dots, k-1$$

and

$$(4.6) a_1 > a_0(c_k - R(b_k - 1)).$$

Let m be the largest suffix with $b_m < a_0$. Then

$$g(a_0,\ldots,a_k)=g(a_0,\ldots,a_m)=g(a_0,a_1)-a_0\,R(a_0-1).$$

PROOF. We have $a_1(x+1) - a_0 R(x+1) - (a_1 x - a_0 R(x))$ = $a_1 - a_0 (R(x+1) - R(x))$. From (4.6) and Lemma 6 follow that $a_1 x - a_0 R(x)$ is an increasing function of x.

If m < k and $m < i \le k$ we determine p by $b_i \equiv p \pmod{a_0}$, $p < a_0$. Then

$$a_i = a_1 b_i - a_0 R(b_i) \equiv a_1 p - a_0 R(p) \pmod{a_0}$$

and because $p < b_i$ there exists a z_0 such that

$$a_i = a_1 p - a_0 R(p) + z_0 a_0 = \sum_{j=0}^{m} z_j a_j$$

where $p = \sum_{j=1}^{m} z_j b_j$ is *m*-regular. It follows that $g(a_0, ..., a_k) = g(a_0, ..., a_m)$.

We write $a_0 = qb_m - s$, $s < b_m$. From (4.5), (4.6), and Lemma 6 follows

$$(4.7) a_1 > a_0(c_m - R(b_m - 1)).$$

Further, from (4.5), Lemma 4. b), and Lemma 3 follows

$$a_1 > a_0 c_m - a_0 R(b_m - 1, m) \ge a_0 c_m - R(a_0 b_m - a_0, m)$$

= $a_0 c_m - R(a_0 - q) b_m + s, m = q c_m - R(s)$.

Thus the basis a_0, \ldots, a_m is regular and by (4.7) and Theorem 2 we have $g(a_0, \ldots, a_m) = g(a_0, a_1) - a_0 R(a_0 - 1)$.

REMARK. Theorem 3 is a generalization of a result by Hofmeister ([3, p. 79]). The proof of this assertion will not be included.

5.

EXAMPLE 1. $a_{i+1} = v_i a_i + d$, $v_i > 0$, i = 0, ..., k-1 and $(a_0, d) = 1...$ d may be negative.

By induction we find $a_i = a_1 b_i - a_0 c_i$, where

$$b_0 = 0$$
, $b_1 = 1$, $b_{i+1} = v_i b_i + 1 = (v_i + 1)b_i - v_{i-1} b_{i-1}$

and

$$c_0 = -1$$
, $c_1 = 0$, $c_{i+1} = v_i c_i + v_0 = (v_i + 1)c_i - v_{i-1} c_{i-1}$ for $i = 1, ..., k-1$.

We have $c_k - R(b_k - 1) = v_0$. From Theorem 3 follows:

For d > 0 is $g(A_k) = g(a_0, a_1) - a_0 R(a_0 - 1)$. This is a result by Hofmeister ([3, p. 83-84]).

We assume now $a_0 > b_k$, d < 0 and that (3.5) holds for j = k. Then the basis a_0, \ldots, a_k is regular. The representation $b_{i+1} - 1 = v_i b_i$ is k-regular. By use of (4.2) we obtain

$$\max T_i = a_i - (i-1)d$$
 for $i = 2, ..., k$.

Further by (4.3)

$$g(A_k) = \max \left\{ \sum_{j=i}^k x_j a_j - (i-1)d \mid 1 \le i \le k \right\} - a_0,$$

where

$$a_0 - 1 = b_{k+1} - 1 = \sum_{j=1}^{k} x_j b_j$$
 is k-regular.

EXAMPLE 2. $a_i = a_0 + p^{i-1}d$, i = 1, ..., k, $(a_0, d) = 1$, $p \ge 2$. d may be negative.

This basis was introduced by Hofmeister [2] for d > 0. Selmer [5] treated it for p = 2, d = 1 and $a_0 > (k - 4)2^{k-1} + 1$.

First, we use Theorem 3. We have $a_i = a_1 b_i - a_0 c_i$, where $b_i = p^{i-1}$ and $c_i = b_i - 1$. It is easy to see that the condition (4.5) holds.

(Let $n = \sum_{i=1}^k x_i b_i$ be k-regular. We write $S(n) = \sum_{i=1}^k x_i$. Then R(n) = n - S(n).)

From Theorem 3 we obtain: If $a_1 > a_0(c_k - R(b_k - 1)) = a_0 S(b_k - 1)$ = $a_0(p-1)(k-1)$, that is $d > a_0(pk-k-p)$, then

$$g(A_k) = a_0(S(a_0 - 1) - 1) + d(a_0 - 1).$$

See Hofmeister [2, p. 31]. We now suppose $a_0 > b_k$. Let then

(5.1)
$$a_0 - 1 = \sum_{i=1}^k x_i b_i$$
 be k-regular $(x_k > 0 \text{ and } x_i .$

Then

$$a_0 = (x_k + 1)b_k - \sum_{i=1}^{k-1} (p - 1 - x_i)b_i.$$

We suppose

$$a_1 \ge (x_k + 1)c_k - \sum_{i=1}^{k-1} (p - 1 - x_i)c_i = a_0 + pk - k - p - S(a_0 - 1)$$

that is $d \ge pk - k - p - S(a_0 - 1)$. Then by Lemma 4 the basis is regular, and we can use Theorem 1.

We have

$$b_i - 1 = \sum_{j=1}^{i-1} (p-1)b_j$$
 is k-regular, $i = 2, ..., k$.

By induction it is easy to prove that

$$\max T_i = (p-1) \sum_{j=1}^{i-1} a_j, \quad i=2,\ldots,k.$$

From (5.1), (4.2), and (4.3) we obtain

$$g(A_k) = -a_0 + \max \left\{ (p-1) \sum_{j=1}^{i-1} a_j - a_i + \sum_{j=i}^k x_j a_j, \sum_{j=1}^k x_j a_j \middle| 2 \le i \le k \right\}.$$

In discussing this formula, we distinguish three cases. We will not go into details but only state the results.

1)
$$S(a_0-1)=(p-1)(k-1)+x_k$$
.

Then $a_0 = (1 + x_k)p^{k-1}$. For $d > -1 - x_k$ is

$$g(A_k) = x_k a_k + (pk - k - p)a_0 + d(p^{k-1} - 1).$$

2)
$$S(a_0-1) = (p-1)(k-1) + x_k - 1$$
.

Then there exists an r < k such that $a_0 = (1 + x_k)p^{k-1} - p^{r-1}$.

We obtain: For d > 0, $g = x_k a_k - a_r + (pk - k - p)a_0 + d(p^{k-1} - 1)$. For $0 > d \ge -x_k$

(5.2)
$$g = (x_k - 1)a_k + (pk - k - p)a_0 + d(p^{k-1} - 1).$$

3)
$$S(a_0-1) < (p-1)(k-1) + x_k - 1$$
.

Let r be the largest suffix less than k with $x_r < p-1$. For $x_r = p-2$ let s be the largest suffix with $x_s < p-1$ and s < r. For $x_r < p-2$, let s = r.

We obtain:

For
$$d \ge \max\{pk - k - p - S(a_0 - 1), 1\}$$
 and $a_0 > d(p^r - p^{r-1} - p^{s-1})$

$$g = x_k a_k - a_{r+1} + (pk - k - p)a_0 + d(p^{k-1} - 1).$$

For $0 > d \ge pk - k - p - S(a_0 - 1)$, the result is (5.2).

In all three cases we have: If $0 > d \ge pk - k - p - S(a_0 - 1)$, then

$$g = ([a_0/p^{k-1}] - 1)a_k + (pk - k - p)a_0 + d(p^{k-1} - 1).$$

EXAMPLE 3. Suppose $a_i = a_1 b_i - a_0 c_i$, i = 1, ..., k, $1 = b_1 < b_2 < ... < b_{k+1} = a_0$ and $0 = c_1 < c_2 < ... < c_{k+1} = a_1$. Suppose further that $a_0 \le 2b_2$ and

$$a_1 \ge \max\{c_i + c_i - R(b_i + b_i - a_0) | 2 \le i \le j \le k\}.$$

By Lemma 5 the basis is regular. We use Theorem 1 and easily obtain

$$g = \max\{(b_i - 1)a_1 - (c_{i-1} + 1)a_0 \mid i = 2, ..., k + 1\}.$$

For $a_1 \ge 2c_k$ this is a result by Temkin [7].

EXAMPLE 4. The basis $A_{k+1} = \{a_0, ..., a_k, p\}$, $a_i = a_0 - id$, i = 1, ..., k, $(a_0, d) = 1$, $a_0 > kd$ and p > 0.

Rødseth [4] has solved the problem of determining $g(A_{k+1})$.

Although in general the basis is not regular, our method may be used. We determine s_1 and r_1 by

$$p = a_1 s_1 - a_0 r_1, r_1 < s_1 < a_0$$
 and $r_1 < a_1$.

Further, we write $s_0 = a_0$ and $r_0 = a_1$ and

 (r_1, \ldots, r_{m+1}) may be negative).

Then $a_1 s_i - a_0 r_i = P_i p$, where $P_0 = 0$, $P_1 = 1$ and $P_{i+1} = q_i P_i - P_{i-1}$. We consider now the basis

$$A_{k+i} = \{a_0, \dots, a_0 - kd, P_i p, \dots, P_1 p\},\$$

where

$$B_{k+i} = \{1, \dots, k, s_i, s_{i-1}, \dots, s_1, s_0\} \text{ and } C_{k+i} = \{0, \dots, k-1, r_i, r_{i-1}, \dots, r_1, r_0\},$$

where *i* is defined by the condition $r_{i+1} \le R(s_{i+1}, k)$ and $r_j > R(s_j, k)$ for $j \le i$. (If i = 0, then *p* is dependent on a_0, \ldots, a_k and $A_{k+i} = \{a_0, \ldots, a_k\}$.) It is easy to prove that $i \ge 0$, $s_i > k$, $r_i > k - 1$ and that A_{k+i} is regular. Obviously $g(A_{k+1}) = g(A_{k+i})$. Let $s_i - 1 = m + nk$ and $s_i - s_{i+1} - 1 = u + vk$ be *k*-regular representations. By using Theorem 1, it is not difficult to prove that

$$g(A_{k+1}) = -d + (n+m^{+}-1)(a_{0}-kd) + + (P_{i+1}-1)p - \min\{P_{i}p, (n-v+m^{+}-u^{+})(a_{0}-kd)\}.$$

Added in proof.

Finally we will prove the following generalization of Theorem 2:

THEOREM 4. Let the basis $A_k = \{a_0, ..., a_k\}$ be ordered, $a_i = a_i b_i - a_0 c_i$ and

$$(5.3) a_1 > a_0 \max\{c_i - M(b_i - 1, k) | 2 \le i \le k\}.$$

Then

$$g(A_k) = g(a_0, a_1) - a_0 M(a_0 - 1, k).$$

Proof. Let

$$n = \sum_{i=1}^{k} x_i b_i$$
 with $M(n, k) = \sum_{i=1}^{k} x_i c_i$, $n > 0$.

Suppose $x_i > 0$. Then clearly $M(n - b_i, k) = M(n, k) - c_i$. Hence

$$\begin{split} M(n,k) - M(n-1,k) &= M(n,k) - M(n-b_j + b_j - 1,k) \\ &\leq M(n,k) - M(n-b_j,k) - M(b_j - 1,k) \\ &= c_j - M(b_j - 1,k). \end{split}$$

From (5.3) follows

$$a_1 n - a_0 M(n,k) - (a_1(n-1) - a_0 M(n-1,k)) > 0$$
 for all $n > 0$.

Therefore (see Lemma 1) $t_l = a_1 l - a_0 M(l, k)$ and

$$g(A_k) = a_1(a_0 - 1) - a_0M(a_0 - 1, k) - a_0 = g(a_0, a_1) - a_0M(a_0 - 1, k).$$

EXAMPLE. Let the basis A be defined by

$$B = \{1, 7, 23, 40, a_0 = 47\}$$
 and $C = \{0, 3, 11, 19, a_1\}.$

From Theorem 4 follows: for $a_1 > 141$ is $g(A) = 46a_1 - 1081$. Let further A' be the basis defined by

$$B' = \{1, 7, 23, 28, 30, 35, 37, 40, 44, 46, a_0 = 47\} \text{ and } C' = \{0, 3, 11, 12, 14, 15, 17, 19, 20, 22, a_1\}.$$

Then A' is regular for $a_1 \ge 25$ (follows from a generalization of Lemma 5). In addition is g(A) = g(A'). Using Theorem 1 we find

$$g(A) = 20a_1 - 329$$
 for $a_1 = 25$ or 26,
 $g(A) = 45a_1 - 987$ for $26 < a_1 < 94$,
 $g(A) = 46a_1 - 1081$ for $a_1 > 94$.

REFERENCES

- 1. A. Brauer and J. E. Shockley, On a problem of Frobenius, J. Reine Angew. Math. 211 (1962), 215-220.
- 2. G. R. Hofmeister, Zu einem Problem von Frobenius, Norske Vid. Selsk. Skr. (Trondheim) 5 (1966), 1-37.
- 3. G. R. Hofmeister, *Lineare diophantische Probleme*, Joh. Gutenberg-Universität, Mainz, 1978.
- 4. Ø. Rødseth, On a linear diophantine problem of Frobenius II, J. Reine Angew. Math. 307/308 (1979), 431-440.
- 5. E. S. Selmer, On the linear diophantine problem of Frobenius, J. Reine Angew. Math. 293/294 (1977), 1-17.
- J. J. Sylvester, Mathematical questions with their solutions, Educational Times 41 (1884), 21.
- 7. B. Temkin, On a linear Diophantine problem of Frobenius for three variables, Diss., City University of New York, 1983.

2770 JAREN NORWAY