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ON THE GROWTH OF ALGEBROID SOLUTIONS
OF ALGEBRAIC DIFFERENTIAL EQUATIONS

HE YUZAN AND ILPO LAINE

1. Introduction.

It has been shown by Bank [ 1] that the growth of meromorphic solutions
of linear differential equations, hence of algebraic differential equations,
with meromorphic coefficients cannot be estimated uniformly in terms of
the growth of the coefficients alone. Later on, such uniform estimates for
the growth of meromorphic solutions were developed by Bank [3] and
Bank-Laine [4]. In the general situation of algebraic differential equations
Q(z,y) = 0, where

Q(z,y) = ZQ(z,y) Zn:l . Z a;(z)y (). (P)b

iot...+i,=j

is a differential polynomial in y with meromorphic coefficients, quantities
needed to obtain such an estimate for y(z) are, essentially, the growth of the
coefficients and the counting functions for the poles and zeros of the
solution, see [3, Lemma 4] for the nonhomogeneous case (2;(z,y(z)) % 0
for some j) and [4, Theorem 4], [4, p. 125] for the homogeneous case
(2)(z,y(2)) = 0 for all j).

An immediate question arises whether similar estimates may be found
for algebroid solutions of linear and algebraic differential equations with
meromorphic coefficients. The first step into this direction was taken by
Xiao and He [10, Theorem 3] by generalizing [3, Lemma 4]. This paper
contains the corresponding generalizations of [4, Theorem 4] and [4,
Theorem 3] as well as a similar uniform estimate for the growth of
algebroid solutions of the equation

Q(z,y) = R(z,y)

with meromorphic coefficients, R(z,y) being irreducible and rational in y.
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2. Notation and main results.

All meromorphic functions to be considered here are assumed to be
meromorphic in the complex plane. Respectively when considering a
v-valued algebroid function w defined by

¥Y(z,w):= B,z)W' +B,_ )W ' +...+ By(z) = 0,

we always assume that the coefficients B;(z), j = 0,...,v, are meromorphic
functions in the complex plane (and therefore we may assume them to be
entire). We shall apply the usual notations and basic results of Nevanlinna
theory of value distribution, see e. g. [ 7] for the meromorphic case and [8],
[9] for the algebroid case.

We mostly consider algebraic differential equations

1) Q(z,y')' = ;a,.(z)y'b... 0y =0

with meromorp‘ﬁic coefficients a;(z) and with a finite set I of multi-indices
i = (ip,...,i). The (total) degree of a single term of multi-index i € I in Q1is
denoted by
lil i=ig 4+ ... 4+ iy
and its weight by
il := i, +2ip +... + ki
We usually write

t2) Q(z,y) = .20 Qi(z,y) = i ‘z.ai(z)u"o“. (y P,

=0 j

thus presenting the homogeneous part ©;(z,y) (of total degree j) of 2(z,y)
separately. For a homogeneous part €;(z,y) of Q(z,y), we denote by A4;(z)
the sum of all coefficients a;(z) in £;(z,y) having multi-indices of maximal
weight, i.e. for

k := maxy _;lil

we have
A zZ)= . 'a,-‘ .
(2) lil =j,;i|| =k @)
Finally, we denote’
&(r):= max (logr, T(r,a;(2))).
1€

We recall [10, Theorem 3] due to Xiao and He:
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THEOREM A. Let y(z) be an algebroid solution of (1) such that y(z) does not
satisfy all homogeneous equations Q;(z,y) =0, j=0,...,n, see (2). Then
there exists a constant K > 0 such that

T(r,y) = KH(r),
outside a possible set of finite linear measure, where
H(r) := N(r,y) + N(r,1/y) + N;(r,y) + @ (7).

An obvious application of [2, § 2] proves the following modification of
Theorem A:

THEeOREM 1. Let y(z) be an algebroid solution of (1) such that y(z) does not
satisfy all homogeneous equations Q;(z,y) =0, j=1,...,n, see (2). For
any ¢ > 1, there exist positive constants A and r such that for all r 2 r,,

T(r,y) < AH(or),
where
H(r):= N(r,y)+ N(r, 1/y) + N3 (r,y) + D ().

Therefore, the growth of y(z) can be estimated in this case uniformly in terms
of the growth of the coefficients and the counting functions for the branch
points, distinct poles and distinct zeros of y(z).

To prove the corresponding uniform estimate in the homogeneous case,
we need the following

LemMMA 2. Let y(z) be an algebroid function and denote w = y'/y. For any
a > 1, there exist positive constants C, C, and r, such that for all r > r,

T(r,y) < C(rN(ar,y) + r?exp(C, ‘I’(ar))),
where
¥(r):= T(r,w)+ N(r,w)logr + N(r,w)log* N (r,w).

The uniform estimate corresponding to Theorem 1 in the homogeneous
case now reads as follows:

THEOREM 3. Let y(z) be an algebroid solution of (1) also satisfying all
homogeneous equations Q;(z,y) =0, j =1,...,n, see (2). If for some j such
that Q;% 0 we have A;(z) % 0, then for any ¢ >1 there exist positive
constants C, C, and r, such that for all r = r,,

T(r,y)<C (rN (or,y) +r*exp(C, H (or)log(rH (or)))),
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where
H(r) := N(r,1/y) + N(r,y) + N5 (r,y) + ®(r).

Therefore the growth of y(z) can be estimated in this case uniformly in terms
of the growth of the coefficients and the counting functions for the branch
points, poles and distinct zeros of y(z).

An immediate corollary to Theorem 1 and Theorem 3 concerns with the
special case of linear differential equations.

THEOREM 4. Let y(z) be an algebroid solution of linear differential equation

L 5@ =1

with meromorphic coefficients. Denote
O(r) := max(logr,T(r,f), T(r.fo), ..., T(.f3))-

(A)If f(z) = 0, then for any o > 1, there exist positive constants A and r,
such that for all r 2 ry,

T(r,)’) é AHI (ar),
where
H,(r) := N(r,1/y) + N3(r.y) + ©(r).

(B) If f(z) =0, then for any ¢ > 1, there exist positive constants C, C,
and rq such that for all r Z r,

Tr,y)<C (rN(ar, 1/y) + r* exp(C, H, (or)log(rH, (or)))),

where
H(r) := N(r,1/y) + N3(r,y) + O(r).
Our final result concerns with the differential equation
€) Q2(z,y) = R(z,),
where Q(z,y) is defined by (2),
RGy)= § a6 / 2 by

is an irreducible rational function in y with meromorphic coefficients and

p > q+ 4 where 4 = max lil. We now get
ie
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THEOREM 5. Let y(z) be an algebroid solution of (3) which satisfies the
above conditions. For any ¢ > 1, there exist positive constants K and r, such
that for all r 2 ry,

T(r,y) < KF(or),
where “

F(r):=N(r,y)+Z(r),

£0):= 00)+ ¥ TCa)+ 3 Twb).

=0

3. Proof of Lemma 2.

This lemma generalizes [2, Lemma 7] into the algebroid case. Our proof
applies the same basic idea as proof of [2, Lemma 7]. Therefore some
details may be taken from [2] and will be omitted here.

Suppose y(z) is a v-valued algebroid function. Its logaritmic derivative
w(z) = y'(2)/y(z) may also be considered as a v-valued algebroid function.
Therefore, let By(z),..., B,(z) be entire functions such that

B,z)W' +B,_ )W '+ ...+ By(z) =0
and denote
fj(@) :== B(z)/B,(2), j=0,...,v—1.

Let {a,;} and {b,,;} be the zeros and poles, respectively, of f;(z), each

arranged in order of increasing moduli. Moreover, let {o;}, {;} and {y;}

denote, respectively, the sequence of zeros, poles and branch points of w,

each arranged again in order of increasing moduli. Clearly,

{83 S U {bn,} and {&;} E {a, o} By the Poisson-Jensen formula we get
J

2
R? —r?

0 +1r*—2Rrcos(0 — ¢)

B Ia,,;< Rlog * lb,,,§< Rlog

Wwhere z = re¥, z ¢ {a,,;}, z ¢ {bn;} and R = or with 6 = a. Similarly as
in [2], we further get

1 n
logl £;(z)l = EJ log »d() -

fi (Reie) RZ

R2 - 5",jz
R(z —a,;)
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@ loglfiz)l = -g{——im(ar,fj) + Y log(20r) + Zlogr;:h,

where sums extend over all poles b, ; such that |b,, ;]| < or. Following
[2, p. 59-60] we may assume that the sequence {f,} is non-empty and we
may find ko € N such that ), ko TR where

Ty 1= (N(UlﬁkL w))~7,

converges. Therefore the set

E=[018,) +110 U D18 —rulpd +5]

is of finite linear measure. Suppose r ¢ E'. Then |r — |8,/ > 7, for k > k,
and |r —|B,ll 2 1 for k < ko. Therefore, for all b,, ; satisfying |b,, ;| < or
there exists f kn, € {Bx} such that b,, ; = k., and so

loglr —1b,,;l1=1 =loglr =B, || 7! < logt,}
= clogN (!B, ;l, w) < log* N(c*r,w)

holds. Clearly, there are at most n(or,f;) terms in the two sums of (4).
Therefore, if r¢ E’, then

loglfj(z)| =< %t—]im(ar,fj) + n(or, f;)1og 201 + on(or, f;) log* N (o?r,w).
By [8, p. 716, (16)] we know that n(ar, f;) < n(or,w). Hence

logl £;(2)l < %T(Gr,fj) + n(or,w)log2or + on(or,w)log* N(c?r,w)

for |zl =r¢ E'. Clearly, this inequality holds for all j =0,...,n, if we
assume that
lzl =r¢ E:= {0} U{y} UE.
By [8, p. 716, (17)] we find a constant y € R such that
Te,f) = T(rw)+y
holds for all j =1,...,v. Therefore ,

c+1

logl f;2)l < p—

(vT(or,w) +7) + n(or,w)log 2or +

+ on(or,w)log* N(a?r,w),
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where the right hand side is independent of j. Let w;be any determination of
w,j=1,...,v, and denote

B(z) := max(|By(2)l,...,| B, (2)]).
From
Iw; ()l = (1B, (2)l lw;(2)I"~*) "B, -, (2)(W;(2)) " + ... + Bo(2)l
we immediately get
lw;(z)l < vB(z)|B,(z)l 1.

Therefore
loglw@)| < logy +log > o ((Zz)) = logv + max logr-ﬁlg"gl
v Sjav v

=logv+ max loglf;(z)l.

0Sjsv

Hence, for some 6 € R,

loglw;(2)l < V(r)
5

= Z i i vT(or,w) + n(or,w)log 20t + on(or,w)log* N(a?r,w) + &
holds for all j =1,...,v.
Let now & > 0 be such that y(z) has no zeros or poles on 0 < |z| < e. By
the Jensen formula [9, p.203, (20)] there exists a constant 1, > 0 such that
forall r > 0,

T(r,1/y)=T(r,y)+h(r),

where |h(r)| < Ao. Denote then b := v~ 'n(0,y) + v~ 1n(0, 1/y).
We next prove that on |z| = r we have

(6) log*ly;(z)l < B(r)

for all determinations y;(z) of y(z) and all r ¢ E, where
(7 B(r):= ;rg (2n(r,y) +re¥™) + Ay + blogr + 2nre’ ™.

Suppose that (7) does not hold. Then there exists at least one y;(z), r ¢ E
and z, = rei such that log*|y;(zo) > B(r) > 0. Therefore

logly;(zo)l > B(r) > B(r) — 2nre”™ > 0.
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Let now z; = re': be an arbitrary point on | z| = r distinct from z, and let
I; be the arc on |zl = r joining z, and z, counterclockwise. Since r ¢ E,
w(z) has no poles, no zeros and no branch points on |z| = r. Therefore,
y;(z) is analytic and nowhere zero on some simply-connected neigh-
bourhood of I';. Hence we can take an analytic branch of log y;(z) on this
neighbourhood and

log y;(zo) —log y;(z,) = j w;({)d¢
r

i

holds for this branch. Exponentiation now gives, together with (5),

J Wj(C)dCI
T;

<lyjlzy)l exp( J e'°g'Wf(0'd|C|>
r

f)
<l yj(zl)l exp (2nre’®)

|Yj(zo)| < IYj(Z1)I €Xp

and this holds for all z, on |z| = r. Therefore
logly;(z,)| = logly;(zo)l — 2nre"® > B(r) — 2nre’®
®)
= {5(2n(r,y) +re"") + 1o+ blogr >0
for all z, on |zl = r. Hence
m(r,y;) > B(r) — 2nre’®

and

< | =

) m(r,y) = i m(r,y;) > B(r) — 2nre*®.
i=1

Moreover, (8) implies that |y;(z)l =1 on |zl = r and therefore
1 v
m(ra l/y) = ; .Zl m(r’ 1/}’1) = 0
=

By the definitions of N(r,y) and &, we obtain

r 1
< ot
N(r,y) = 5e (r.y) +5n(0,y)logr
and

NG 1/5) S Zn(r,1/y) +n(0,1/y)logr.
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Let now C, denote the closed curve over |z| = r on the Riemann surface of
y(z). By the argument principle we get

n1fy) = n(ry) = g J W)L,
C,

r

In view of (5), we further obtain

v 2n ’
n(r, 1/y) S n(r,y) + 5 Y | oEOlarl < nir,y) +re”®.
2nv & o
Then
m(r,y) < N(r,y)+N(r,1/y)+m(r,1/y)+ 4o =N(r,y) + N(r,1/y)+ 4o

r 1 r 1
< - r 2
s 5on(ny) +5n(0.y)logr +—-n(r,1/y) +-n(0,1/y)logr + Ao
< ~r~2n(r y)+blogr+ Ao+ ﬁe”"’
=gV 0" ve

and this clearly contradicts (9). Therefore, (6) holds.
By (6), if r ¢ E, then

< | =

v 2n
(10) m,y) ==Y 51— f log* y;(z)l d6 < B(r).
=1 % Jg

By the definition of B(r), we find a r; > 0 such that

4r?
(11) B(r) £ < " n(r,y) + e’o.
Since

1 20 —1
12 =
(12) Sn(r.w) S T Nor,w)

the definition of V(r) gives positive constants C; and r, such that

V(r) § vT(ar w)+ v2 N(a r,w)log(2or) +
+ v02::11 N(o*r,w)log* N(a*r,w)+6 < C, ¥(d°r)
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holdsforall r = r,, r ¢ E. Adding N (r,y) to both sides of (10) and making
use of (11) and (12) we obtain positive constants C, and r; such that

2r 20 -1
< =

< C3(rN(or,y) + r* exp(C, ¥ (d?1)))

47’2 C.¥(s?
N(or,y) + N(r,y) + —eC:¥len)
(13) &

holds for all r 2 r3, r ¢ E. Since both sides of (13) are nondecreasing
functions, ¢ > 1, E is of finite linear measure and ¢° = a, a standard
reasoning (see again [2, § 2]) results in positive constants C and r such that

T(r,y) < C(rN(ar,y) +r*exp(C, ¥ (ar)))

holds for all values of r = r,,.

4. Proof of Theorem 3.
An immediate corollary to Lemma 2 is the following

LEemMA 6. Let y(z) be an algebroid function and denote w = y'/y. Then for
any o > 1, there exist positive constants A, B and ry such that for all r 2 rj,
T(r,y) £ A(rN(or,y) + r*exp(BTlar,w)log(r T (ar, w)))).

We may now proceed to prove Theorem 3 by observing first that w
satisfies
(14) y® =W+ P, (W))y,
where P,_;(w) is a polynomial in w and its derivatives of total degree at

most n—1 with constant coefficients. Substituting (14) into
Qi(z,y,...,y™) =0 we get

Qi(z,...,y™) = (4;@)W* + Q-1 (W)Y’ = 0

where

k := max il
il=j

and Q; _, (w)is a polynomial in w and its derivatives, of total degree at most
k —1, with coefficients which are linear combinations of the original
coefficients @;(z), lil = j. Clearly we may assume

Aj(Z)W + Qy— (W) =0,
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hence
(15) m(r,A;w) < K, ®(r) + o(T(r,w))

for some K, > 0 outside of a possible exceptional set of finite linear
measure. The estimate (15) follows as an application of the Clunie lemma,
see [4, Lemma 1], the remark on [6, p.278] and the original proof in [5] for
the meromorphic case. Obviously

N(rsAjw) é N(r,Aj)+N(r,w) ..S_ K2¢(r)+N~(r9 1/)’)+N(",y)+N3(r,y)
for some K, > 0. Hence
T(r,w) é K3<p(r)+N.(r5 1/}’)+N(r,y)+N3("aJ’)+O(T(",W))

for some K; > 0 outside of a possible exceptional set of finite linear
measure. Therefore there exist- K > 0 and r, = ry (from Lemma 6) such
that, given f > 1,

T(r,w) < K®(Br) + N(Br,1/y) + N(Br,y) + N3 (Br,y)

holds for all r > r,. The conclusion of Theorem 3 now follows from
Lemma 6 by choosing C = A, C, conveniently = 2BK, r, =r,, and
oaff < o.

S. Proof of Theorem 4.

Before proceeding to prove Theorem 4 we should perhaps present some
examples to show that algebroid functions may satisfy homogeneous linear
differential equations with meromorphic coefficients. We list here four
such examples:

(1) The 2-valued algebraic function defined by
zy?—=1=0
satisfies the linear differential equation
2zy'+y=0.
(2) The v-valued algebroid function defined by
(sinz)y*—1=0

satisfies the linear differential equation

y+ %(cotz)y = 0.
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(3) The v-valued algebroid function defined by
y—sinz=0
satisfies the linear differential equation

y + %(1 + (1 —1/v)cot?*z)y = 0.

(4) The Bessel function y = J,,(z) with rational order m = j/v, wherej, v
are mutually prime, is a v-valued algebroid function satisfying
22y’ +zy' + (22 — 2 )y =0,
see [6, p. 277].

To prove now Theorem 4, we observe at once that y(z) cannot have a
pole at point z, where all coefficients f;(z) take finite, non-zero values.
Therefore there exist positive constants K’ and r’ such that

N(r,y) < K'®(r)

for all r = r'. The assertion (A) (respectively (B)) follows from Theorem 1
(respectively Theorem 3) by adjusting if needed, the positive constants 4
and r, in Theorem 1 (respectively C, C, and r, in Theorem 3).

6. Proof of Theorem 5.

Writing
_ _ Py
Q(z,y) = R(z,y) 0G.y)
in the form
(16) Q(z,y)Q(z,y) = P(z,y)

we see at once by the Clunie lemma and the assumption p > g + 4 that
m(r,y) = O(Z(r)) + S(r,y).

On the other hand, poles of P(z,y(z)) may rise from the poles of y(z) and of
the coefficients of P(z,y(z)) only. By (16), the same conclusion is true for
the poles of Q(z,y(2)) 2(z,y(z)), i.e. they may rise from the poles of y(z) and
the poles of the coefficients of Q(z,y(z)) and of ©(z,y(z)) only. Clearly the
poles of 2(z,y(z)) which rise from the poles of a;(z) contribute <
Y.t N(@,a;) to N(r,Q(z,y(z))). Moreover, the poles of €(z,y(z)) which rise
from the poles of y(z) contribute < AN (r,y) + @vN(r,y) to N (r,Q(z,y(2))),
where
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n
fi=max | Y ai, ).
iel a=1

To prove this fact, let z, be a pole of y(z), where y determinations of y(z)
have a pole at z, of multiplicity n(z,, y), i.e.

{ y@) = —z0) "5 g(2), g(z0) # 0,00
YO@) = (z—zo) 8 e (2), ga(zo) # 0,00

holds. Therefore, the multiplicity of the pole of Q(z,y(z)) at z, is
n(z0,2(z,y(2))) =
rrilglx (ion(zo,y) + is(n(zo,y) +9) + ... +in(n(z0,y) + ny))
< An(zg,y) +iv .
and therefore
17) N(r,2(z,y(2))) < AN(r,y) + ivN (r,y) + O(Z(r)).
From [6, p.278] and (17) we now obtain
pN(r,y) + O(Z(r)) = N(r,P(z,y)) = N(r,Q(2,)) Q(z,y))

S N(,Q(Ey) +N(r.Q(.y))
< (@+AN(r,y) +avN(r,y) + O(Z(r))

andsince p—qg—A21,

o=
(18) N(r,y) £ mN(’,Y) +0(2(r)).

From (16) and (17) we further get
T(r,y) = m(r,y) + N(r,y) < I—):%N(r,y) +K'Z(r) +5(r,y)

for some K’ > 0. The assertion of Theorem 5 now follows by standard
reasoning [2, §2].

7. A final remark.

In the same way as in [4, p. 125] we may determine the quantities which
are needed to get a uniform estimate for the growth of algebroid solutions
of algebraic differential equations (1). By Theorem 1 and Theorem 3, this
concerns that case only, where y(z) satisfies all homogeneous equations
Q)(z,y) = 0 and where 4;(z) =0 forall j =0,...,n.
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