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THE ROSETTES
WALDEMAR CIESLAK AND JOZEF ZAJAC

1.
In this paper we will consider a class of plane closed curves.
We will assume throughout this paper that they are positively oriented.

DEriNtTION 1. C?, plane closed curves of positive curvature will be called
rosettes.

A rosette can cut itself.

By s, L and k we will denote the arc length, the length and the curvature
of a fixed rosette respectively. .

Let us consider the rosette C, s> z(s) = x(s) + iy(s), s € [0, L]. The
tangent and normal vectors to C at the point z(s) are denoted by T(s)
and N(s), respectively. Let us fix ae (0,L) and « € (0,2n) such that
T(a) = *T(0).

Let

K(s) = r k(r)dr.

0

Thus we have K(s) = arg T(s) — arg T(0).
The following conditions are equivalent

@) K(¢(s) = K(s) + K (@),
@) {K’(q’(s))«p’(s) =K'(s)
K(p(0)) = K(a),
3) {kf’ @@=k
©(0)=a.

Let us note that the condition (1) is equivalent to

arg T(¢(s)) — arg T(s) = arg T(a) — arg T(0) = a.
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Hence we have
(4) T(p(s)) = €*T(s) for se [0,L].

With respect to this relation we will say that ¢ does not change the angle a.

2. Orthodiameter pairs.
Let ¥ denote the solution of (3) where a is the smallest number which
satisfies the condition T(a) = — T'(0). Thus we have

) Toy=-T

We introduce the functions and vectors:

p =z—z°Yy

0 ="<p’N>9

©) 4 ={p, T,
1 1

21—E+W,

where (-,-) denotes the euclidean scalar product in the plane. The
_ function A will be called a mean radius of curvature. From the formulas (6)
we immediately get the conditions

™ p' = 24kT,
@®) o' =kd4.

DEeFINITION 2. A pair of points of a rosette which lie on the same normal
line will be called an orthodiameter pair.

THeOREM 1. Each rosette has at least one orthodiameter pair.

§kAds =§5’ds = 0.

Thus the function 4 has at least two zeros. They determine the
orthodiameter pair.

PRroor. We have

REMARk. The above result is known for convex figures (see [4, Problem

6]).

The ellipse with unequal axes has exactly two orthodiameter pairs.
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The formula (8) implies the following characterization of ovals with
constant width (see [2], [3], [4]). We have

constant width <> (p,N) =const <> 6'=0 < 4=0.
Thus we obtain

THEOREM 2. If each point of an oval C belongs to an orthodiameter pair,
then C has a constant width.

The inverse statement is well known (see [4]).

3. The a-podic points.
DerintTiON 3. A pair of points of a rosette such that
— tangent lines at these points form the oriented angle o,
— curvatures at these points are equal,
will be called the a-podic pair.
Thus an antipodal pair of an oval (see [2]) is a 7-podic pair.
Let ¢ denote the solution of (3) which does not change the angle « and let

"=¢°..c90 n=12,
1 1
©) S =g
¢ =¢—id.
We have
(10) Jk(s)a(s)ds = s — @(s) + const,

@11 Jk(s)a((p"(s))ds = @"(s)— "t (s)+const, n=1,2,3,...

Really, let s = ¢(t). Then with respect to (3) we have k(s)ds = k(t)dt.
Hence we get

12) J S (5)k(s)ds = If (@ ®)k(t)dt

/

for an arbitrary continuous function f.
Let us take f(s) = 1/k(¢"(s)). Then we obtain

Ks) [ k@
ﬁww“‘ﬁW“w“
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Hence we get

H%ds = ¢@"(s) + const.

It immediately implies (10) and (11).

THEOREM 3. Each rosette has at least three a-podic pairs for an arbitrary
a € (0,7).

Proor. The formula (10) implies the equality § k(s)o(s)ds = 0. ¢ hasat
least two zeros a,b € [0,L] with a < b. Let us assume that o has exactly
two zeros. Making use of (11) we obtain §k(s)o(¢(s))ds = 0. Thus
¢(a) =b and ¢@(b) = a+ L. It means that the tangent lines at the points
a,b are parallel. In this way we obtain a contradiction.

The above theorem can be considered as a prolongation of Blaschke—
Siiss theorem (see [2]).

Now, we will give a characterization of points of an a-podic pair.

Let us note that £(s) denotes the length of an arc contained between the
points s and ¢(s). The formulas (3) and (9) imply the relation

(13) &' = —ko.
Thus the extremes of ¢ can only be at points of an a-podic pair.

THEOREM 4. For an oval the following conditions are equivalent:

1° an oval has a center of symmetry,
2° &(s) =y(s)—s =1L,
3° each of its points belongs to a n-podic pair.

Proor. Let 2w = zo ¢ + z.
3°=2° ¢ = 0 implies ¢’ = 0. Thus we have
V(@
0= &' (s)ds = L —2¢(a)

for an arbitrary a € [0,L].

1°=2°. Wehave 0 =2w' = Toy-y’'+ T. Hence we get ¥’ =1 and
Y(s)=s+3L.

2° = 1°. w reduces to a point because w' = 0.

2°=3°, ¢ =0 implies ¢ = 0.
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4. Rosettes with a constant mean radius of curvature.
We will prove some integral formula for rosettes.

THEOREM 5. The following formula holds for a rosette:
(14) ?ﬁk(s),l(s)ds -L
Proor. Making use of (3) and (6) we obtain
§k(s)l(s)ds = %#(1 +y/'(s))ds = L.

The relation (14) implies

THEOREM 6. The perimeter of a rosette which has a constant mean radius of
curvature A(s) = ¢ and the index j is equal to mcj.

Remark. Index j = 1/2n(K (L)), (see [1]).

With respect to the relation A4’ =2kA—ké we get the following
implication

constant width < 4 =0 = 4'=0 <« 6 =24

Thus in the particular case Theorem 6 reduces to the Barbier theorem (see

[2D.
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