THE ROSETTES

WALDEMAR CIEŚLAK AND JÓZEF ZAJAC

1.

In this paper we will consider a class of plane closed curves.

We will assume throughout this paper that they are positively oriented.

DEFINITION 1. C^2 , plane closed curves of positive curvature will be called rosettes.

A rosette can cut itself.

By s, L and k we will denote the arc length, the length and the curvature of a fixed rosette respectively.

Let us consider the rosette C, $s \mapsto z(s) = x(s) + iy(s)$, $s \in [0, L]$. The tangent and normal vectors to C at the point z(s) are denoted by T(s) and N(s), respectively. Let us fix $a \in (0, L)$ and $\alpha \in (0, 2\pi)$ such that $T(a) = e^{i\alpha}T(0)$.

Let

$$K(s) = \int_0^s k(r)dr.$$

Thus we have $K(s) = \arg T(s) - \arg T(0)$.

The following conditions are equivalent

(1)
$$K(\varphi(s)) = K(s) + K(a),$$

(2)
$$\begin{cases} K'(\varphi(s))\varphi'(s) = K'(s) \\ K(\varphi(0)) = K(a), \end{cases}$$

(3)
$$\begin{cases} k \circ \varphi \cdot \varphi' = k \\ \varphi(0) = a. \end{cases}$$

Let us note that the condition (1) is equivalent to

$$\arg T(\varphi(s)) - \arg T(s) = \arg T(a) - \arg T(0) = \alpha.$$

Hence we have

(4)
$$T(\varphi(s)) = e^{i\alpha} T(s) \text{ for } s \in [0, L].$$

With respect to this relation we will say that φ does not change the angle α .

2. Orthodiameter pairs.

Let ψ denote the solution of (3) where a is the smallest number which satisfies the condition T(a) = -T(0). Thus we have

$$(5) T \circ \psi = -T.$$

We introduce the functions and vectors:

$$p = z - z \circ \psi$$

$$\delta = -\langle p, N \rangle,$$

$$\Delta = \langle p, T \rangle,$$

$$2\lambda = \frac{1}{k} + \frac{1}{k \circ \psi},$$

where $\langle \cdot, \cdot \rangle$ denotes the euclidean scalar product in the plane. The function λ will be called a mean radius of curvature. From the formulas (6) we immediately get the conditions

$$(7) p' = 2\lambda kT,$$

$$\delta' = \mathbf{k} \Delta.$$

DEFINITION 2. A pair of points of a rosette which lie on the same normal line will be called an orthodiameter pair.

THEOREM 1. Each rosette has at least one orthodiameter pair.

Proof. We have

$$\oint k\Delta ds = \oint \delta' ds = 0.$$

Thus the function Δ has at least two zeros. They determine the orthodiameter pair.

REMARK. The above result is known for convex figures (see [4, Problem 6]).

The ellipse with unequal axes has exactly two orthodiameter pairs.

The formula (8) implies the following characterization of ovals with constant width (see [2], [3], [4]). We have

constant width
$$\Leftrightarrow \langle p, N \rangle = \text{const} \Leftrightarrow \delta' = 0 \Leftrightarrow \Delta = 0$$
.

Thus we obtain

THEOREM 2. If each point of an oval C belongs to an orthodiameter pair, then C has a constant width.

The inverse statement is well known (see [4]).

3. The α -podic points.

DEFINITION 3. A pair of points of a rosette such that

- tangent lines at these points form the oriented angle α ,
- curvatures at these points are equal,

will be called the α -podic pair.

Thus an antipodal pair of an oval (see [2]) is a π -podic pair.

Let φ denote the solution of (3) which does not change the angle α and let

(9)
$$\varphi^{n} = \varphi \circ \dots \circ \varphi \qquad n = 1, 2, \dots$$
$$\sigma = \frac{1}{k} - \frac{1}{k \circ \varphi},$$
$$\xi = \varphi - \mathrm{id}.$$

We have

(10)
$$\int k(s)\sigma(s)ds = s - \varphi(s) + \text{const},$$

(11)
$$\int k(s)\sigma(\varphi^{n}(s))ds = \varphi^{n}(s) - \varphi^{n+1}(s) + \text{const}, \quad n = 1, 2, 3, \dots$$

Really, let $s = \varphi(t)$. Then with respect to (3) we have k(s)ds = k(t)dt. Hence we get

(12)
$$\int f(s)k(s)ds = \int f(\varphi(t))k(t)dt$$

for an arbitrary continuous function f.

Let us take $f(s) = 1/k(\varphi^n(s))$. Then we obtain

$$\int \frac{k(s)}{k(\varphi^n(s))} ds = \int \frac{k(t)}{k(\varphi^{n+1}(t))} dt.$$

Hence we get

$$\int \frac{k(s)}{k(\varphi^n(s))} ds = \varphi^n(s) + \text{const.}$$

It immediately implies (10) and (11).

Theorem 3. Each rosette has at least three α -podic pairs for an arbitrary $\alpha \in (0, \pi)$.

PROOF. The formula (10) implies the equality $\oint k(s)\sigma(s)ds = 0$. σ has at least two zeros $a,b \in [0,L]$ with a < b. Let us assume that σ has exactly two zeros. Making use of (11) we obtain $\oint k(s)\sigma(\varphi(s))ds = 0$. Thus $\varphi(a) = b$ and $\varphi(b) = a + L$. It means that the tangent lines at the points a,b are parallel. In this way we obtain a contradiction.

The above theorem can be considered as a prolongation of Blaschke–Süss theorem (see [2]).

Now, we will give a characterization of points of an α -podic pair.

Let us note that $\xi(s)$ denotes the length of an arc contained between the points s and $\varphi(s)$. The formulas (3) and (9) imply the relation

(13)
$$\xi' = -k\sigma.$$

Thus the extremes of ξ can only be at points of an α -podic pair.

THEOREM 4. For an oval the following conditions are equivalent:

1° an oval has a center of symmetry,

 $2^{\circ} \xi(s) = \psi(s) - s \equiv \frac{1}{2}L$

 3° each of its points belongs to a π -podic pair.

Proof. Let $2w = z \circ \psi + z$.

 $3^{\circ} \Rightarrow 2^{\circ}$. $\sigma \equiv 0$ implies $\xi' \equiv 0$. Thus we have

$$0 = \int_a^{\psi(a)} \xi'(s)ds = L - 2\xi(a)$$

for an arbitrary $a \in [0, L]$.

 $1^{\circ} \Rightarrow 2^{\circ}$. We have $0 = 2w' = T \circ \psi \cdot \psi' + T$. Hence we get $\psi' \equiv 1$ and $\psi(s) = s + \frac{1}{2}L$.

 $2^{\circ} \Rightarrow 1^{\circ}$. w reduces to a point because w' = 0.

 $2^{\circ} \Rightarrow 3^{\circ}$. $\xi' \equiv 0$ implies $\sigma \equiv 0$.

4. Rosettes with a constant mean radius of curvature.

We will prove some integral formula for rosettes.

THEOREM 5. The following formula holds for a rosette:

(14)
$$\oint k(s)\lambda(s)ds = L.$$

Proof. Making use of (3) and (6) we obtain

$$\oint k(s)\lambda(s)ds = \frac{1}{2}\oint (1+\psi'(s))ds = L.$$

The relation (14) implies

Theorem 6. The perimeter of a rosette which has a constant mean radius of curvature $\lambda(s) \equiv c$ and the index j is equal to πcj .

Remark. Index $j = 1/2\pi(K(L))$, (see [1]).

With respect to the relation $\Delta' = 2k\lambda - k\delta$ we get the following implication

constant width
$$\Leftrightarrow \Delta = 0 \Rightarrow \Delta' = 0 \Leftrightarrow \delta = 2\lambda$$
.

Thus in the particular case Theorem 6 reduces to the Barbier theorem (see [2]).

ACKNOWLEDGEMENT. The authors wish to thank the referee for his helpful advise concerning this paper.

REFERENCES

- M. P. do Carmo, Differential geometry of curves and surfaces, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1976.
- D. Laugwitz, Differential and Riemannian geometry, Academic Press, New York -London, 1965.
- 3. R. L. Tennison, Smooth curves of constant width, Math. Gaz. 60 (1976), 270-272.
- 4. I. M. Yaglom and V. G. Boltyanskii, *Convex figures*, Holt, Rinehart and Winston, New York, 1961.

INSTYTUT MATEMATYKI UMCS 20-031 LUBLIN PL. M.C. SKŁODOWSKIEJ 1 POLAND