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CLASSIFICATION OF
FIBRED GROUP EXTENSIONS AND H!

B. G. SEIFERT

Abstract.

Let G be a group, 4 an abelian group. We study the equivalence classes of
“fibred group extensions” defined by a certain compatible system of
actions of G and 4 ((G, 4)-bundle (see below)), which had been introduced
in [3] and further studied in [4], [S]. Given a (G, A)-bundle X and a G-
action ¢ on A, we define a G-module 4’ (X,¢). We show that the set of
equivalence classes of fibred extensions corresponding to the given bundle,
with its natural group structure (which had already been introduced in [3])
is naturally isomorphic to H!(G, 4'(Z,¢)).

Résume.

Soit G un group et A un groupe abélien. On étudie les classes
d’équivalence d’extensions de groupes fibrées d’un groupe G par un groupe
A qui se définissent par rapport 4 un systéme d’actions de groupes (les
(G, A)-fibrés, voir ci-dessous) introduit dans [3] et éduié aussi dans [4], [5].
Soit 2 un (G, A)-fibré et ¢ un G-action sur A. Alors nous introduisons un G-
module 4'(Z,e). On démontre que I’ensemble des classes d’équivalence
d’extensions fibrées correspondant au (G, A)-fibré et une action de G sur A
donné, avec sa structure de groupe (introduite antérieurement dans [ 3]) est
naturellement isomorphe au groupe de cohomologie H'(G, A’ (Z,¢)).

0. Introduction.

It is well known from the classical theory of group extensions, founded
by Schreier [1], [2], that, with respect to a very natural notion of
equivalence, the set of equivalence classes of extensions of a group G by a
group A, with prescribed homomorphism from G to the group of outer
automorphisms of A, is classified by the set of equivalence classes of
solutions of certain “cohomological” functional equations. When the
kernel A is abelian, these equivalence classes form an abelian group, the
second cohomology group of G with values in the G-module 4 defined by
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the prescribed action of G. In practice.it is often extremely difficult to
compute these cohomology groups and, even when this is possible, to find
natural realizations of the extensions corresponding to the elements of
these cohomology groups. However, often the problem of finding and
describing group extensions is posed in the more concrete setting of
transformation groups, i.e. the groups G and A4 are realized as
transformation groups, and the extensions to be constructed are to actin a
certain way compatible with these actions. In [3], we had formalized this
situation by introducing the notions of a “(G, 4)-bundle” and a “fibred
group extension” defined with respect to such a bundle (see below). We
showed there that there is a natural notion of equivalence in this setting.
Furthermore, like in the classical case, one can define “relative cohomology
groups” defined not only by G, A, and the action of G on 4, but by those
data plus the (G, A)-bundle; the elements of this cohomology group classify
the equivalence classes of fibred group extensions. In fact, the classical
theorem was derived as a special case of our result [3].

However, the problem of computing these “relative” cohomology
groups, while often simpler than that of computing the ordinary
cohomology group H?(G, A), remains difficult. It is the purpose of the
present paper to facilitate the study of fibred extensions by means of the
following construction. From a (G, A)-bundle ¥ and an action of G- on’
A,¢, we construct a new G-module A'(Z,¢), which has the property that the
equivalence classes of fibred extensions corresponding to 2 and the given
G-action on A are parametrized by the group H'(G,A4'(Z,¢)). In some
interesting examples (see below), the module 4'(Z,¢) will be a trivial G-
module, so that the equivalence classes of fibred extensions are
parametrized by the group of characters of G with values in that trivial
module.

The author thanks the IHES and the Mathematics Department of the
University of Paris-Nord for their hospitality while this research was
carried out. He also thanks the referée for some helpful suggestions.

1.
We first repeat the definition of a “fibred group extension” first
introduced in [3] (see also [4], [5]). We start with a (faithful)
transformation group A acting on a set X, for which we shall use the
notation (X, A), and denote the set of A-orbits in X by L. We then assume
given a second transformation group (L, G). We call the quadruple (X,4,L
= X/A,G) satisfying these conditions a (G, 4)-bundle (in [3] we used the
term “compatible system of transformation groups”). We denote the
natural map from X to L by P. A map s from L to X for which P(s(l)) = !
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for all /in L will be called a section for P. We shall denote by & the set of all
such sections. The normalizer of A4 in the group S(X) of all bijections of X
will be denoted by N. Given n in N, Int(n) will denote the inner
automorphism defined by n restricted to 4. Since N permutes the A-orbits
in X, we obtain a natural homomorphism

p:N-S(L).

We are now ready to define what we mean by a fibred group extension.
We start with a (G,A)-bundle 2 = (X,A4,L,G) as above. Then a fibred
extension corresponding to X is an element of the following set:

DEriniTION 1. Ext(2) = the set of pairs (E,q), where E is a subgroup of N
for which the following conditions hold:
a) 1) ENKer(p) = A4.
ii) p(E) =G,
b) g is the extension of G by A arising from the restriction of p to E:
1oA-E-%5G-1.

Obviously a group E satisfying a) determines the fibred extension.
However, we find it convenient to include the extension g defined by E in
our definition.

In [3] we have introduced the following equivalence relation in Ext(X).

DeFintTioN 2. Let 2 = (X,A4,L,G) and 2" = (X', A,L,G) be two (G, A)-
bundles, E and E’ fibred extensions with respect to X, respectively 2.
a) An equivalence between E and E’ is given by a pair of bijections
R: X-X
r. E—-E
such that the following conditions are satisfied:
1) forallxin X, ein E, R(x.e) = R(x).r(e).
ii) ris an equivalence of abstract group extensions.
b) Ext'(2) is Ext(Z)/~, where ~ is the equivalence relation defined
above. [ E] will denote the equivalence class of E.

We shall assume throughout this paper that 4 is abelian (one can obtain
similar results without this assumption (see also [3], where 4 was allowed
to be non-abelian). Given an action ¢ of G on 4, we shall denote by
Ext(Z'; ¢) the set of fibred extensions which induce the action ¢ of G on 4 by
conjugation. It is possible that Ext(Z,¢)is empty. If it is not empty, then it is
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known [3] that for each (G,A)-bundle X, and each action ¢ of G on A, the
set Ext’'(2;¢) of equivalence classes of fibred extensions defined by elements
in Ext(Z,¢) is an abelian group.

We shall now study this group from a new viewpoint, as explained in the
introduction. First we characterize those pairs (2,¢) for which Ext(X,¢) is
not empty.

We let A(]) to be the (common) stabilizer of any point x in P~ (/) and
A ()= A/A().

DeEerInNITION 3. An action ¢ of G on A is called 2-admissible, iff for each g
in G and for each lin L, ¢(g) maps A(l) to A(l. g).

Lemwma 1. ¢ is Z-admissible iff Ext(Z,¢) is non-empty.

Proor. It is a simple exercise to verify that for any extension E in
Ext(Z,¢), ¢ is Z-admissible. To prove the converse, we show that, for ¢ Z-
admissible, the semi-direct product 4 >, G has a realisation as a fibred
extension for ~. We consider the given action of 4 on X. We choose a
section s for P. We then define an action of G on X by the formulae
1) s().g=s(.8)

2) s().a.g=s(.g).e(g)a).

One verifies that these actions of G and A4 uniquely define an action of the
semi-direct product A >4, G on X which is in Ext(X,¢), which proves the
lemma.

Above we had defined the projection p: N — S(L). We consider the
following subgroup of p~!(G) defined by &:

N(e) = {n] e(p(m) = Int(n)},

where Int(n) is conjugation by n restricted to 4. We now let s be a section
’for P as above, and p(g) the restriction of p to N(g). We let A(X) to be

4@y = 140,

linL

We let A(Z) act on X by the formula
x.(a())eL=x.a(l), for xin P~1(l).

We can now describe the structure of N (e):
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Lemma 2. i) Ker(p(e)) = A(2).
ii) Let G be embedded in N (g) by means of formulae 1) and 2) in the proof of
Lemma 1. Then there exists a natural isomorphism \, (which depends on s!)

¥, : N&) = A(Z) >, G.

Proor. i) It is clear that A(Z) is contained in Ker(p(e)). On the other
hand, by definition of N (¢), Ker(p(¢)) is contained in the centralizer of 4 in
N(Z). Furthermore, an element of Ker(p(¢)) is determined by its action on
each P~ 1(l). Since A4 acts transitively on each of these, i) follows from the
known fact (which is a special case of the theorem (4) of [3]) that any
abelian group B is its own centralizer in S(B).

i1) is immediately verified.

From the lemma we see that, for ¢ as above, A(2) is a G-module which
contains A as a G-submodule. Henceforth we shall fix an e-admissible
action. : ,

We denote A(X), viewed as a G-module, with action defined by ¢, by
A(Z,e).

The G-module 4'(Z,e) = A(X,e)/A will play the key role in what is to
follow.

It isimmediate from the definition that any E in Ext(E,¢) is contained in
N(e). .

We now remind the reader of the definition of the group H(G, B), for
any G-module B (writing the action of G on the right).

DEeFINITION 3.
i) CYG,B)={f:G—-B|f(g.8)=r(g).(f(g).g) forall g,¢"in G}.
ii) BY(G,B)={f(g)=b—b.g|bin B}.
iii) H!(G,B) = C!(G,B)/B!(G, B).
iv) Welet [ /] be the element in H! (G, B) defined by f in B.
When G, B are understood, we shall write H', B*, C! for H!(G, B), etc.

We are now ready to state the principal result of this paper:

THEOREM. Let X be any (G, A)-bundle, ¢ any Z-admissible action of G on A.
Then Ext'(X,e) carries the structure of an abelian group. Moreover, this
group is naturally isomorphic with H'(G, A’ (Z,¢)).

Proor. The proof will involve the following steps:
i) Construction of a map

th: Ext(Z,e) » H'(G, 4’ (Z,¢)).
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by means of auxiliary maps
th°: Ext(Z,e) x & — B'(G,A'(Z,¢)).

(& is the set of sections for P, as above).
ii) Prove that the map th defines a map from Ext'(Z,¢) to H'(G, A’ (Z,¢))
by passing to equivalence classes. That map will be denoted by th .
iii) Prove that th is a bijection from Ext'(Z,¢) onto H'(G,A4'(Z,¢)).
iv) Define the group structure on Ext'(Z,¢), and prove that th as above

is a homomorphism of groups.

Step i). We first define an auxiliary map
th°: Ext(Z,e) x & — B!,

We shall prove that the class of th° is in fact independent of s and hence
yields the map

th: Ext(Z,e) » H'(G,A4'(Z,¢))
which we wish to define. For a given section s we had the identification
Vs: N() = A(2)><, G.

We have already remarked that any extension in Ext(X,¢) is contained in
N (). Hence we can write any such extension as follows:

E = {(a,g)| a = f(g) mod 4},

where f is some function G — A’'(Z,e). In view of the formula
(a,8) . (@,g)=(a.(@.g),g.g) in A(Z)><, G, we obtain immediately

Lemma 3. f is an element of B'(G, A’ (Z,¢)).
We now define the maps

th°: Ext(Z,e) X & — BY(G, A’ (Z,¢))
by the formula th°(E,s) = f, f asin Lemma 3, and the map
th: Ext(Z,e) > H'(G,4'(Z,¢)),

by th(E) = [ f]. The only thing that needs to be checked is that the class of
fin H(G, A'(Z,¢)) is independent of the section s.

We note that A(Z) acts freely and transitively on &. We suppose given
two sections s and s’ and write s’ = 5. a for some (unique) ain A(X). Itis
clear that the automorphism y, © ;! of the group A(Z)><, G is given by
conjugation by the element a. Hence, we have the following commutative
diagram:
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N(e)
.l/s' l//a

A(Z)><,G gy AE)>=<G

and Y,°y;"((a,g)) = (—a+a.g.g). Hence the cocycles f and f” differ
by the coboundary a’'—a’. g, where a’ is the image of a in A'(X,¢). This
completes the proof that the map

th: Ext(Z,e) > H'(G,A'(Z,¢))

as above is well defined.

ii)) We need to verify that, if E’is equivalent to E, then th(E) = th(E’).
Suppose (R,r) is an equivalence (Definition 2), s a section for P. By
means of R, s defines a unique section s’ in X', and it is easy to see that
th®(E,s) = th°(E',s’), and hence that th(E) = th(E’).

iii) To show that th is indeed a bijection as claimed, we construct its
inverse. As above, we fix a section s. We define a map ¢, from B*(G,4(Z,¢))
to Ext(Z,e) as follows: let f be an element of B!, and let s be in &. As
above, we have the isomorphism

V,: N() = A(Z)><,G.
Welet E = ¢,(f) be the following subgroup of N(¢) = A(X)><, G:

E={(a,g)| a= f(g) mod A}.

Since in A(X)><, G, (a,g).(d.g)=(a.(@.g)g.g), it follows im-
mediately from the functional equation defining B! that E is a subgroup of
N (¢). Indeed we have the following

LeMMa 4. E is in Ext(Z,¢).

Proor. Condition ii) of Definition 1 is immediate. To verify i), we must
show that E N A(X) = A. This is equivalent to showing f(lg) =1 AEep
which is clearly true since f(1) = f(1.1) = f(1). f(1).1, which proves
the lemma. Writing th(s)(E) = th°(E,s), it is also clear that ¢, is
(th(s))~* as a map from B* onto Ext(Z,e). Since we have just seen that th_
defines a map from equivalence classes in Ext(Z,¢) to elements in H!, g,
defines a bijection from H'(G,4'(Z,¢) onto Ext'(Z,¢). This proves iii).

iv) We shall fix a section s, as above, and use the expression for E, via y,:

E={(ag)| a= f(g) modA}.
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We shall write E = E(f). Now we define multiplication in Ext’'(Z,¢) as
follows:
1) E(N)]+E)] = [E(f+ 1]

To see that this multiplication is well defined, one needs to verify
that [E(f)]=[E(®)] and [E(f)]=[E(®)] implies [E(f+/")]
= [E(h+ h')]. But this is so since, as we have seen in the proof of iii),
[E(f)] =[E(f)] iff f and [’ define the same element in H'. By

construction (formula (1)), the map th is a homomorphism of groups. This
proves the theorem.

An interesting special case arises when G acts trivially on 4’ (Z,¢). In this
case, there are no non-trivial co-boundaries, and H*(G, A’ (Z,¢)) is just the
group of characters of G with values in A’.

CoRrOLLARY 1. If the action of G on A'(Z,¢) is trivial, then Ext'(Z,¢)
= Hom(G, 4’).

An important example of this situation is the following. We let W be the
symmetric group on n letters,and L = {1,...,n} with the standard action
of W. We let {X(i)},, be a system of linearly independent lines with 0
deleted in an n-dimensional vector space over K, X be the union of the
X (i), A the diagonal subgroup of SL(n,K) defined by the system X (i),
acting on X by restriction, and ¢ the permutation action of W on A. We
have a natural projection from X onto L,and 2 = (X,4,L,W) isa (W, A)-
bundle. Furthermore we have the exact sequence of W-modules as above

() —>A4-[[KF—K*—> (1),
leL
and W acts trivially on A'(2,¢) = K*. Hence, by Corollary 1, we have

COROLLARY 2. Ext'(X,¢) = Hom (W,K*)~ Z/2Z.

We note that N, the normalizer of 4 in SL(n,K) defines the (unique) non-
trivial extension in Ext’(Z,¢). It is easy to see that its subgroup

N
{(f,a)l T= (‘01 . ?) ceW, t;= =1, l'[1 t;= sign(a)}
is the smallest subgroup of N projecting onto W. Itis Tits’ “‘extended Weyl
group” for SL(n,K) (see [6] for the definition and role of the “‘extended
Weyl group” for the theory of semi-simple Lie algebras).

Analogous situations arising for more general groups will be studied in a
later paper.
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