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DUAL ALGEBRAS
MARTIN E. WALTER!

Abstract.

We formulate in a symmetric fashion a notion of duality within the
category of Banach algebras which generalizes the well known Pontriagin—
Van Kampen duality for abelian locally compact groups. This paper is
primarily devoted to the development of two concrete but reasonably
different examples of this duality which have served as motivation for the
more general theory. We show that 4(G), the Fourier algebra of locally
compact group G, is dual to I} (G), the group algebra of absolutely left Haar
integrable functions, in the sense that each occurs as a Banach algebra of
completely bounded maps of the C*-completion of the other. We also
exhibit a similar duality for n X n matrix algebras. Some of the material in
the original preprint of this paper has been deleted at the request of the
referee.

0. Introduction.

Some time ago we noted an analogy between the complex n X n matrices,
M, and certain complex-valued functions on the real line, R. In particular
there is a local, or pointwise, product defined for functions on R as well as
for M,. In the latter case it is called the componentwise, or the Schur (or
Schur-Hadamard) product. There is a global product, called convolution,
defined for absolutely Haar—Lebesgue integrable functions on R; and there
is a global product, the usual matrix product, defined on M,. There are also
local notions of positivity, namely pointwise non-negative functions and
componentwise non-negative matrices, as well as global notions of
positivity, namely positive definite functions on R and Hermitian positive
definite matrices.

Now in both situations the local product of globally positive objects is
globally positive. Also in both situations the global product of locally
positive objects is locally positive. Finally, at least in the case of R, thereis a
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well known Fourier transform which relates global products to local
products and global positivity to local positivity. We note in passing that
there is an involution associated with each notion of positivity.

This paper was in part inspired by the attempt to see this analogy from
the standpoint of a general theory that encompasses both examples. In this
we have succeeded, but now more questions have been raised — the answers
to which must be postponed to a subsequent publication. We note in
passing that Propositions 5 and 8, surprisingly enough, give apparently
new facts about M,. There are also, we believe, as yet unexplored
relationships between [17] and the contents of this paper.

1. Preliminaries.

The following paper can be motivated by the following discussion of
locally compact group G and some Banach algebras closely related to G.
Recall first of all that if G is abelian then G is the collection of all
continuous homomorphisms (called characters) of G into T, the “circle
group” of complex numbers of length one. A famous result (about abelian
locally compact group G) of Pontriagin and Van Kampen, cf. [7, p-378],
states that G, called the dual group of G, is itself a locally compact abelian
group (with pointwise multiplication of characters and the compact-
open topology) and that G is topologically isomorphic to the dual of G,
namely, G .

Now for G a locally compact group (abelian or not) we define M*(G) to
be the usual Banach algebra of (bounded) regular complex Borel measures
with the product in this algebra being the usual convolution of measures,
denoted p * v for u,v € M*(G), cf. [3, p. 252], [7, p. 266]. Recall also that
M'(G) = Co(G), i.e., as a Banach space M!(G) is isometrically
isomorphic to the Banach space of all continuous complex-valued linear
functionals on Cy(G), the continuous complex-valued functions on G
which vanish at infinity, cf. [15, p. 131]. We denote the value of u € M(G)
at f € Co(G) by {f,u>. In this notation we recall that M!(G) has an
isometric involution *, where {f,u*> = {f°,u> with f’(x) = f(x~1),
x € G, over-bar denotmg complex-conjugation.

Contained in M*(G)is a two-sided ideal (invariant under involution *) of
measures absolutely continuous with respect to left Haar measure 1. We
denote this ideal I!'(G), or I}(G,dA), which thus inherits its Banach
involution algebra structure from M!(G), with the usual formulas for
convolution and involution, viz. for x,y € G

f*ex)=[sf(e(y'x)dA(y) and f*(x)=4"1(x)f"(x),
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where f,g € I}(G), or more precisely fdA, gdi € L'(G). Note that 4 is the
modular function of G determined by the formula dA(x™!) = 4(x~!)dA(x).

Now for the sake of motivation return for the moment to the case where
G is abelian and let M!(G") be the Banach (convolution) algebra on the
dual group G . A theorem of Bochner, cf. [14,p.19], says that a continuous
complex-valued function p on G is the inverse Fourier transform of a
positive measure u € M*(G), thatis p = # " '(u), p 2 0, if and only if p is
positive definite. Letting C be the complex numbers, recall that p: G — C is
positive definite by definition if

Y AAp(xjtx) =0 foreachn=1,23,...
i,j=1

and each choice {x;,x,,...x,} = G and each choice of complex numbers
A1,22,...,4,. We shall denote by P(G) the collection of all continuous
positive definite functions on (abelian or nonabelian) G. Also recall that

F W)= j (x,p>duy), xeG
yeG"

where (x,p)> isthevalueof y € G~ at x € G. Note that the formula for &,

the Fourier transform, is

F W) = f

(xyydu(x) for ye G, pe M'(G).
xeG
Thus for abelian G we may define the Fourier—Stieltjes algebra of G,

B(G), to be #~(M'(G")), where

Alternatively, by Bochner’s theorem, B(G) is, as a commutative algebra,
the (finite) linear combinations of continuous positive definite functions
with the algebra product now being pointwise product on G. A theorem of
Wiener states that # ~ (L} (G")) = A(G), where A(G)is the norm closure in
B(G) of the functions in B(G) with compact support. The algebra 4(G) is
called the Fourier algebra of G.

Now by the above mentioned theorem of Pontriagin and Van Kampen
the dual group G~ of abelian group G is a complete invariant of G in the
sense that G can be recovered from G . By theorems of Wendel, cf. [26],
and Johnson, cf. [9], M*(G) and L'(G) are complete invariants of G and
MY(G™ ) and I}(G") are complete invariants of G . Afortiori, B(G)which is
isometrically isomorphic as a Banach algebra with M 1(GA) and A(G)
which is isometrically isomorphic as a Banach algebra with L!(G") are each
a complete invariant for G. [Note that A(G) and B(G) are complete
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invariants for nonabelian G as well, cf. [21].] Thus, at least in the case,
when G is abelian one might be led to make the statement that, for example,
A(G) and I!}(G) together are a Banach algebra version of Pontriagin
duality, in the sense that I!(G) takes the place of G and A4(G) takes the
place of G, and in some sense L1 (G) and A(G) are “dual” to each other. A
principal goal of this paper is to make precise the manner in which L' (G)
and A(G) are dual to each other.

Let us summarize some of the above information in Diagram 1 that
makes sense at least, when G is abelian.

Co@ =M@ _  MEG)=CG

B(G) B(G)

Q) LG
F F1
Co(G) 2 A(G) /&G”) < Co(G")
Diagram 1.

So much for motivation. We now dispense totally with the abelian case.
In the above diagram the left hand column still makes sense when G is a
general locally compact group, in addition, CO(GA) from the right hand
column still has an analogue called C*(G), the universal enveloping C*-
algebra of L'(G), cf. [3, p. 40]. Also, as Banach spaces B(G) = C*(G),
where C*(G)’ is the collection of continuous linear functionals on C*(G),
cf. [6]. Note that B(G), the finite linear combinations of continuous
positive definite functions, is still a commutative Banach algebra, even if G
is not abelian. Also the Fourier transform & has an analogue, namely the
universal representation w: I!(G) - C*(G), cf. [3,§2.7,§13.9], [20].

The fundamental theory of B(G) and A(G) for general locally compact
G has been worked out in [6], [20], [21]. We must assume the reader will
familiarize himself/herself with those parts of these works which are
necessary to this paper. Actually a thorough reading of §13 of [3] and a
mastery of the definition of B(G) from [6] will be sufficient nontraditional
analysis background for much of the present paper. We will need to use
W*(G), the universal enveloping von Neumann algebra of C*(G), cf., [20,
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§12], [3]- Recall that C*(G) =~ B(G) and B(G) =~ W*(G) as Banach
spaces.
Finally, if 4 is a C*-algebra, and M, is the C*-algebra of n x n matrices
- with complex entries, then A ® M, isin a unique way a C*-algebra, cf. [1],
[18, p. 192]. We may think of 4 ® M, as the C*-algebra of n x n matrices
with entries from 4 and we have

) max lla,l, < Ia)l g < z layll,
1<ijsn

where (a;;)isan n X nmatrix and a;; € A fori,j = 1,2,...,n, cf.[18,p.192].
A linear map ¢: A — A is completely positive if

0RIL:AQM,—> AQ M,
is positive for n = 1,2,..., thatis

P In((aij)) = ((P (aij))

is positive for n = 1,2,... whenever (a;;) is a positive element in A ® M,.

DEeriniTION 1. We will denote by 2(A4) the collection of all completely
positive maps of a C*-algebra A into itself.

If V is a topological vector space let # (V) be the collection of all
continuous linear maps of ¥ into itself. We say that a linearmap ¢: 4 — 4
is a completely bounded map of C*-algebra A into itself if
sup lo ® 1,1l 4(4@ u, is finite.

DEFINITION 2. We denote by 2(A4) the collection of all completely
bounded maps of a C*-algebra A intoitself. Weset gl , = sup lo® Il
We will call 2(A) the dual algebra of C*-algebra A.

2. Duality for groups.

We start this section by proving that the dual algebra of a C*-algebra is
indeed a Banach algebra with an involution of sorts which we call here a
conjugation. This conjugation is described in the following definition.

DerintTioN 3. If A4 is an algebra (possibly not commutative) over C, a
conjugation ~, isamap a € A +—>a € A with the properties

1) @ =a

(2) (@+b)y"=a+b
() (a)y =17a

(4) (ab)~=ab

for a,b € 4, 1 € C, and T denotes the usual complex conjugate of A.
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ProvposITION 1. Let A be a C*-algebra. The dual algebra, 2 (A), with the
(-1 g-horm is a Banach algebra with an isometric conjugation.

Proor. The product in 2(A) is composition, denoted ¢, ° ¢, if
Q1,05 € D(A). We have

lpyo@illy=supllgcp,® LI =supli(p,® ) (¢ ® L)
=< "(plug ”(qug
Also
lo, +@ally=supl(@;+0,)@ LIl =suplo, @I, + 0, ® L,

< lgylg+lgsl,

Thus 2(A) is closed under addition and multiplication, viz. composition,
and the triangle inequalities hold. Moreover 2(4) = #(A), thus except
possibly for completeness 2(A4) is a Banach algebra.

We now show that 9(A) is complete in the || - | j-norm. Let {¢,} be a
Cauchy sequence in 2(A4), i.e., given ¢ > 0,

sup 1o, ®@I,— 9, @Il <

if k and l are sufficiently large. In the case n = 1, we get that {¢,} is Cauchy
in Z(A). By the completeness of #(A4) there exists a; € £ (A) such that
lim, ¢, = a, in Z(A4). Similarly {¢,® I,} is Cauchy in Z(4 ® M,) for
each n =1,2,3,.... Thus there exists an a, € £ (4 ® M,) for each n such
that o, = lim, ¢, ® I, in £ (A ® M,). In particular, if (a;) € AQ M,

I ((Pk(aij)) - (an((aij)))“A®M,, se¢ I (a;;) ”A®M,
for sufficiently large k. By inequality (1) above we get that

max o ;) — (@((@:))s, Il < el @)l g M,
1=ig,joSn

Thus «,(a; ;) = (2((@;));,;,- Thus &, = &y ® I, for n = 1,2,... and

liin(pk®1,,=ot1®1,,

uniformly in n. Thus lim ¢, = a, in the I - | 4, norm.
k

Finally if ae 4 éa* €A is the involution in A, we define the
conjugation ¢ € 2(4) ¢ € 2(A) as follows:

¢(@) = (p@*)*.
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We see that llgll, = l@ll,, and we are done with the proof of Proposi-
tion 1.

We note that 2#(4) is a semigroup, since the composition of two
completely positive maps is completely positive. Thus (£ (A)), the finite
linear combinations of 2(A) is a subalgebra of 2(A), since #(A4) = 2(A).
Define #(A) to be the closure of (2(A4))> in 2(A). We observe that #(A) is
the analogue of a Fourier—Stieltjes algebra of A. We have

BA) = D(A) = L(A).
Our first main result is that there is a copy of B(G) contained in
(P(C*(G))) = #(C*(G)). Before proving this we need to establish some
preliminary notation and facts.
First, if ¢:C*(G)— C*(G) and ¢ € £(C*(G)), we can “lift” ¢ to
B(G) =@ C*(G), and then to W*(G) =~ C*(G)” by taking transposes, i.e.

'¢:B(G)— B(G) and

o W*(G) - W*(G)
where

Co(b),ay = <{b,p(a)) for b e B(G) and a € C*(G).
Similarly
o(x),b) = {x,"p(b)) for x e W*(G), b € B(G).

We wish to have a similar apparatus available for C*(G)® M,,
B(G)®@ M,, W*(G)® M,. To this end think of C*(G) as concretely
represented on H,,, its universal representation Hilbert space. Then in a
natural way, cf. [18, p. 192],

C*G)® M, 2(H,Q H,),

where H, is an n-dimensional complex Hilbert space. Since (C*(G) ® M,)
algebraically identifies with B(G) @ M, via

i,j=

{a,f) = il <aij’f;’j>

where a = (a,) € CG)® M,, f€(C*G)®M,), (f,)eBG)® M,
(and hence we identify B(G) ® M, and (C*(G)® M,) as Banach spaces),
by [3, 12.1.1], we can identify (C*(G)® M,)" with the weak closure of
C*(G)® M,, which is none other than W*(G) ® M,, viewed in this case
concretely as a subalgebra of Z(H,® H,).
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Thus for each ¢ ® I, € £(C*(G) ® M,) we have
0 ®I, . C*(G)®@ M, » C*(G)® M,
w®I, ='(@®1,): B(G)® M, - B(G)® M,
QI ="(¢p&I,): W*G)&® M, > W*(G)&® M,

cf. [18, p. 200], and one of the above maps is completely bounded,
respectively, completely positive, if and only if all three maps are. Note
these notions make sense for duals of C*-algebras, cf. [18, p. 200].

We are concerned now primarily with the ‘“generalized translation”
operators T, ® I, (introduced and studied in [24]) which are defined as
follows.

Derintion 4. If b € B(G), T, € #(C*(G)) is determined by (T,a,d)
= {a,bd) for all a € C*(G), d € B(G).

Remark. The fact that T, e £(C*(G)), indeed, T, e #(C*(G))
< 9(C*(G)) follows from the fact that

4
=) AT,
i=1
where
4
b = Z lipis
i=1

p; positive definite for i = 1,2,3,4, and Tp‘ € QP(C*(G)), i=1,2,3,4, cf.
[24, p. 502].
We are now ready to state our first main result:

THeOREM 1. If B(G) is the Fourier—Stieltjes algebra of locally compact
group G, then the map b e B(G)— T, € #(C*(G)) = 2(C*(G)) is an
isometric Banach algebra isomorphism of B(G) onto a maximal abelian
subalgebra B of 9(C*(G)). The algebra B is in fact maximal abelian in
Z£(C*(G)), and

” b ”B(G) = " T;, ”9((:'(6)) = " T;, " 2(C*(G)) for be B(G)
Proor. The facts that
Ly, =T, T, and T, ;5 =4, T, +4, T,

for by,b, € B(G), and complex numbers A;,4, are immediate. Their
verification is left to the reader.
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We will show first that b € B(G)+— T, € #(C*(G)) is an isometry, that
iS “ b”B(G) = ” n”_gz(cm((;”. First

IT 0 g o6y = sup {I Toxll ooy 1 x N ug) < 13
= sup {I[KTyx,d)l: I xllcug) < 1, ldllgg) < 1}
2 sup{[<Tx, D1 : Ixllcuigy < 1}
= sup {{(x,b)]: 1xll ey < 1} = 1Bl gg.

Second
I 7%l cx ) = sup {I<x,bd)|: Il < 1}
< sup {llxll ¢ Ibdli gy : Ildllpg < 1}
é II X ” C*(G) ” b ”B(G)'
Hence

and thus finally

” b ”B(G) = ” T;”S’(C*(G))

This also shows that

” 'I},"_@ = Sup “ TL ® In " L(C*G)® M,) g " T‘b".gj(ca-(c)) = " b ”B(G)

for all b € B(G). Thus we have left to demonstrate that | Tl 5 < 15l g,
for b € B(G). We show that

and we accomplish this by analyzing the structure of the map T; in much the
same fashion that completely positive generalized translations were
analyzed in [24].

Given nonzero b € B(G) without loss of generality assume [l = 1.
Let b = v. p be the polar decomposition of b with p € P(G), v € W*(G),
6l <llpll=1. Let p(-)=(n n,()E,lE,). where m, is the G.N.S.
representation of G induced by p on Hilbert space H, . View W*(G) as
concretely represented via the universal representation o on H,. Then for
f € L'(G) we have, for &é,ne H,,
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(To(f)Eln) = (@®s)¢ln)
=j (0, (m, @), €) S ()4 )

= J G((w ® 7,)(x)¢ ® 7, (v)&,In ® &) f (x)dA(x)

= (@@ 1, )(N)E® m,)¢,In® &)
= Q@ ® n,)(/)I ® =,(v)Q*¢ly).
Thus
To(f) = Q@ ® mn,)(f)I ® m,()Q*,
where Q is the projection of
Hw®H,,p—>Hw® C¢{,=H,
foHowed by the identification
x®¢,eH,QC¢ —>xeH,

Note C denotes the complex numbers, C£,, the 1-dimensional span of £,
Also by continuity f can be replaced by any x in C*(G) in the above
equation.

Thus we have the following where (w(x;;)) € w(C*(G)) ® M, (often
written C*(G) ® M, for simplicity)

T,® In«w(xij))) = (wa(x.-j))

0 0 - - 0]
= |0 Q .0 o 0 ((0® 7y (xi))
_() 0 . .. Q‘
1Q® n,(v) 0 0 ] o* 0 .. 0]

0 IQ 7,(v) : 0 0* 0
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(® 7, (v) 0 0
= 7;,® I, ((w ® "p)(xij)) 0 I® np(u) o - 0
L 0 I® np(vl

Now consider what happens to the norm of the matrix
(w(xij)) € C*(G) ® Mn < g(Hw) ® ’g}(Hn),

when it is acted on by T, ® I,. Viewing the action of T,® I, as a
composition (as above), we see that first

0o®n,® I,: (w(x;) € £(H,)® £(H,)
(0 ® m,(x;) € £(H,)® L(H,)® £ (H,)

where o & 7, ® I, is a *-representation of a C*-algebrainto a C*-algebra
hence

e ® m,)(xi)Il < Hixpll.
Now

1Q n,(v) 0 0 ]

[weney | o 1one Ll

0 . 1®m,(v)]

4
Sl 11Q myw)ll
= ol 11l gy )"n‘,(v)"y(” )
=l x)ll,

since 7,(v) is a partial isometry. Finally, conjugating by Q and Q* is the
same as applying the positive operator T, ® I,, which takes its norm at
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that is,
“ T;,@ I,," = "p"B(G) - ”b”B(G) =1.
Thus we have for each b € B(G), that

By the first part of our proof we see that
” T;, ® I,, ”_gz(c*(c)@ M,) = " b ”B(G)

for all b € B(G) and all n, hence | Tyl 5 = bl gg).
We now establish that

B = {T, € 9(C*(G)): b € B(G)}

is maximal abelian in 9(C*(G)), in fact, maximal abelian in % (C*(G)).
For technical reasons we wish to work not with T, ® I, € Z(C*(G)® M,)
but with the double transpose

“T,® L) ="T,® I, € Z,(W*(G)® M,)

where the subscript ¢ indicates the o-weakly continuous linear operators.
Note that

I "T,® I, I ZWHG)OM,) = I LI, I 2(C*6)V1,)

since the unit ball of C*(G)® M, is o-weakly dense in that of
W*(G)® M,. Thus the map

b € B(G) —"T, € 2,(W*(G))

is an isometric isomorphism of B(G) into the o-weakly continuous,
completely bounded maps of W*(G) into itself.

Now let & € Z(C*(G)), thatis "® € Z,(W*(G)). Suppose T, = @T,
for all b € B(G), thatis *T,"® = "®"T,. From now on in this proof we
will drop the double pre-superscript “, thus abusing notation and
identifying an operation with its double transpose. For g € G =« W*(G) we
have

T,(2(g) = T, 2(g) = 2(T,8) = b(g) P(g).

Thus @(g) is an eigenvector of T, for all b € B(G), with eigenvalue b(g).
At this point we insert a lemma in the proof of Theorem 1. Recall that

o(B(G)) = W*(G) is the set of non zero multiplicative linear functionals of

B(G), i.e., the spectrum of commutative Banach algebra B(G), cf. [20].
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LeMMA. For x € W*(G), x # 0, we have T,x = {b,x)>x forall b € B(G)
if and only if x € a(B(G)).

Proor oF LEmMA. For b,d € B(G)
bd,x) = {d,<b,xyx) = <b,x)<d,x),

if T,x = <b,x>x;hence x € a(B(G)). Conversely, if x € 6(B(G)), then
<b,x){d,x) ={d,Tyx) and <(b,x)<d,x) = {d,{b,xpx) for all
d € B(G). Thus T,x = (b,x)x and the lemma is proved.

We now claim that for each g, ®(g) is a scalar multiple of an element
in the spectrum of B(G). First we observe that {I,®(g)> = 0 or {I,P(g)>
# 0. In the latter case we have that

@) \_ ,, %G \_ 2@
77’<<1,c1>(g)>> O Goey? Tomy

2(g)
<1,9@)>

<b,2(g)) =<1, T,2(g)> =<1,b(g) P(g)> = b(g){1,P(g)> =0

hence by the lemma € o(B(G)). In the former case,

for all b € B(G). Thus &(g) = 0.

We now claim that &(g)= ®,g, where &, C for each geG.
Suppose not, then P(g)#0, hence <I,P(g)>+#0, hence
?(g)/<1,9(g)) € 6(B(G)). Now recall that any x € o(B(G)) \ G satisfies
{x,a) =0 for all a € A(G), cf. [20]. Thus if &(g) ¢ Cg, there exists an
ae A(G) such that a(g)=1, and <a,®(g)> =0. Thus <{I,T,P(g)
= {a,®P(g))> = 0. Hence

0=<1,a(g)P(g)> = a(@)<1,P(g)> = 1,2g)>
a contradiction. Thus &(g) = ?,¢ for all g,&,€ C. In fact, d(g)
= (1,9(g))g for all g. But recall that ¢ € £,(W*(G)), that is, @ is o-

weakly continuous, hence @, = (I, ®(g)) is a continuous function on G.
We claim that & = Ti1,0(-), and that <1,®(-)) € B(G). First

o( 5, 4e) = 5, act.060m

for g,,...,8,€ G, 1,,...,4, € C. Thus



90 MARTIN E. WALTER
}i lf<1,<1>(g.-)>‘ = <1’ i '1i<1,‘p(gi)>gi>‘
i=1 i=1

= (1,<1><i2":1 /1,.g,.> >;

n
' Z ligi “ " (] IIQ’(C‘(G))’
i=1 W*(G)

IIA

By [6, 2.24], <1,9(‘)) € B(G). Since ® and T, 4., agree on
G = W*(G), and @ and T, ,.), are both g-weakly continuous

D(x) = Ty p(.yyx forall x e W*(G).

This is because linear combinations of G are o-weakly densein W*(G). The
proof of Theorem 1 is thus done.

RemArRk. We were able to compute an explicit upper bound on the
completely bounded norm of T, by exhibiting the formula

To(f) = Qe ® m,)(f I ® m,()Q*.

If T:A, > A, is a linear map of C*-algebra A, into C*-algebra
A, < Z(H), H a Hilbert space, we shall define a polar decomposition
of T'to be a formula of the form T(-) = Qn(-)R*, where 7 is a *-repre-
sentation of 4, into .#(K), K a Hilbert space,and Q: K - H, R: K - H
are bounded linear operators. Given such a polar decomposition,
ITlg<IIQIIRI. We know of no general theory of polar decomp-
ositions in the literature which includes the case where A, is an arbitrary
C*-algebra. i

Now we make a simple statement about the conjugation of 2(C*(G))
restricted to B.

ProposITION 2. For all be B(G), (T,)” = Ty, thus Bisinvariant under the
conjugation operation on 9(C*(G)). The map b € B(G) — T, € 2(C*(G))
“preserves” the conjugation * on B(G).

Proor. Again working with the double transpose of T, on W*(G), we
have

T,g = (g™ ')* = (blg™")g~")* =blg g
=Tyg forall geG.

We are done.
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There is a dual version of Theorem 1 which is easier to prove. First note
that we replace the C*(G), B(G) pair with Cy(G), M'(G). We denote

Ifl, = suglf(x)l, for f € Co(G).
X€E
Then M*(G) acts on Cy(G) as “generalized translation” operators. In this
case we have
e M (G) » T,f € Co(G), for f € Co(G),

where T,f = u* f, i.e. convolution by u on the left. There is an optional
action,

ne M'(G) -T2,
where T f = f* u, convolution by x on the right.
m

THEOREM 2. If M'(G) is the Banach convolution algebra of (bounded)
regular complex Borel measures on G, then the map

i e M(G) ~ T, € B(Co(G)) = D(Co(G))

is an isometric Banach algebra isomorphism of M*(G) onto a subalgebra M*
of 9(Co(G)).

Proor. We first observe that Cy(G) is a commutative C* algebra in
which the notion of positivity is simply pointwise positivity of functions.
Also

where

4
U= Z )“I'l“ti’ Hi g 0, i= 1,2,3,4.
i=1
Nowif y; =2 0 and f =20, f € Co(G), we see that

TS ()= Lf(y‘ 1)d, () 2 0.

Note that T,/ € Co(G) as can be verified easily by the reader. Thus T, isa
positive, hence, completely positive operator on the commutative C*-
algebra Co(G), cf. [18, p. 199]. It also follows immediately from the
convolution formula above that
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The equations

Tuvws = T Ty 30d Ty, = AT+ 25T,

for py,u, € M'(G) and 1,4, € C are clear.
We now show that

” T;‘ ”g)(co(c)) = n u ”M'(G)'

From the polar decomposition for a measure, [15, p. 126], there is a Borel
measurable function h on G such that hdlul = du, and |h(x)l = 1 for all
x € G. Thus

f Fodu(x) = gy and Il = 1.
G

By Lusin’s Theorem [15, p. 53], there exists a net {k,} S Co(G), Ik,
< llhll, = 1, such that

llm Jka(x)dﬂ(x) = ” H ”Ml(G)'
Hence

460 = [ k0~ 0ty = [ L O0)

Thus | T, 1l gc 6y = 1l 1) Note that we used k¥(y) = k(y~*).

We haveleft to show that | T, Il 5 = Il ull 1 5. We can show this by using
the technique employed in Theorem 1, i.e., by computing an appropriate
polar decomposition formula. However, as Jun Tomiyama pointed out to
us, it follows from [11, Lemma 1], that if 4 is a commutative C*-algebra,
and Te ¥ (A), then

" T IIS’(CO(G)) = ” T ® In ”.T(CO(G)® M,)

for n=1,2,.... Thus Theorem 2 is proved.

We now verify that M is invariant under the conjugation in 9(C,(G)).
Note that {f,i> = f,ud~ for f € C,(G).

Prorosition 3. For all pe M'(G), (T,)” = T, thus M" is invariant.
under the conjugation operation in  9(Co(G)). The map
1 € MY (G) — T, € 9(Cy(G)) preserves the conjugation ~ on M'(G).
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Proor. We have

T.(f)=T.f) =p*f=p*f=Tf
for f € Co(G). We are done.

REMARK. A similar investigation of T, convolution on the right, may be
done.

3. Duality for M,

Our chief reference for this section is [13], although we will give an
almost selfcontained discussion. Roughly a groupoid is much like a group
except that group multiplication is not necessarily defined for every pair of
elements and the unit (or identity) is not necessarily unique. See [13, p. 5]
for a more precise definition. In this paper we will concern ourselves only
with the principal transitive groupoid G on n-elements, where n is finite in
most of this section. As a set we label

G={e;:1=1i, j<n}.

The units of G, labelled G°, are {e;:1 <i < n}. Multiplication in G is
defined by e;;e; = ¢; ifand only if j = k for 1 <i,j,k,l < n, otherwise we
say the product is undefined. Also inverses are given by e;' = ej;, 1 <4,
j < n. For G there are two maps, the range map r and domain map d, of G
into G°. We define these maps as follows:

d(eij) = €j;€;; = ¢€jj, r(e;) = €;j€ji = €jj.

For G there is a left-Haar system, [13, p. 16], which in this case is simply a
discrete measure, i.e., A{e;;} =1, 1< i,j < n. The continuous functions
with compact support on G, which we denote simply as C(G) in this case,
form an algebra with product taken to be convolution with respect to the
discrete left-Haar system A, [13, p.48]. Note first thatif f € C(G), then f;;
isthe value of f at ¢, thatis f(e;;), 1 < i,j < n. Inthis caseitis easy to see
that f e C(G) <> (f;;) € M, is a one-one correspondence between C(G)
and the n X n matrices with complex entries, M,. With this correspondence
in mind, the formula for convolution of f,g € C (G) is

f*glex) = ff(eikekj)g(ejk)dle”(ekj)
J
= Zf(eij)g(ejk)

= Zfijgjk-
J
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Note that in the first equality dA®« is the measure in the Haar system with
support r~!(ey). Also we note that convolution of f,ge C(G)
corresponds exactly to the matrix product of f and g, when f and g are
viewed as matrices. Thus C(G) with convolution will be written (M, *);
that is n X n complex matrices with the usual matrix product. We will write
the matrix product of x,y € M" as xy, rarely as x * y.

There is another product in C(G), namely, the pointwise product

(fg)(eij) = f(eij)g(eij)-

In the matrix context we have (f;;) ° (g;;) = (f;;gi;), where © has been called
the Schur product in the literature. We will write this algebra as (M,,°).
There are several norms of interest on M,. Let us define some of these

norms now.

DerintTion 5. If (x;;) € M, then

@) I ez, = sup ;lx,.,.l

(i) Ix) g = sup Tl

Gi) Dl =max{l o)l I (eg)llra)

@ el =Yl

Il = S’lllp{|((x,~j)é|n)|: tnecnlElas1, gl
o) 1)l ey = Nl = supl,

i) leealq, = Tr(l o) = Trlx)* ()]

ReMaRrk. In (v), C" = the n-dimensional Hilbert space of n-tuples of
complex numbers, and ¢l is the Euclidean norm in C". Thus
I Gxij)l oo is the well known operator norm on M, Also in (vii), Tr is the
traceand | (x;;)| is the square root with respect to the matrix product of the
matrix product (x;;)* (x;;), where (x;;)* = (x;).

We will denote by (M,, *,ll-ll;,) the nx n matrices with the matrix
product, and Il -l;, norm; (M,, o, ll-ll.;) denotes the n x n matrices with
Schur product and |- |, norm. Other similar notations will appear.

PROPﬁ)SlliHON 4. The following are Banach algebras (M,,*,ll-I,,),
(Mm *’ ‘ I,r)) (Mm *; " ' "I)s (Mm *’ " ' " l)’ (Mm *a " : " * ’
™M, o, -1l ). " e
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Proor. For example

I (xij)(yij) I Lr= H (;xik ij)

Lr

Z ink}’kj
7k

= (sqp leikl) (S‘:p ZIijl)
i 'k j
= ” (Xu) ” Lr ” (y”) " Lre

We leave the rest of the proofs to the reader.

REMARK. (M,,, ¥, [| - | cs ) is the C*-algebra C*(G); (M,, °, I -1l,) is the
C*-algebra C,(G).

PROPOSITION 5. We have that (M, °, |l -|1,) is a Banach algebra.

== sup

< squk:lx,-kl Yl
t i

In the proof of Proposition 5, we use the following lemma which is
probably folklore, but we learned it first from H. Araki.

Let C"beasabove. Let e; = (0,...,0,1,0,...,0) with 1 in the ith position,
andlet K =span{e;®e;:i =1,...,n} in C"&® C".

LEMMA. Let k: C"® C" — K, be the orthogonal projection; the following
commutative diagram of maps gives an alternative description of the Schur
product

(@a,b)e M"XM" +> acbe M"
a®Q®be M"Q M" (equality)
k(a® b)k € (M"® M"), > B(k(a® b)k) € M

Where ¢(Za”b”(eu® e,-j)) = Zaijb,-jeij, a,-j,bij € Cand e,—j is the element
of M" with a 1 in the ith row, jth column, zeros elsewhere. In the above
diagram we have ®(k(a ® b)k) =a°b.

PROOF OF LEMMA. Let a = Y a;;e;5, b =) bj;e;), then
a®b= ) Z, a,-,-b,,,,e,-,-@ € -
LJstm

Reducing by k we get

k(a® b)k =) a;;b;;e; ® e;;.
i,j
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Furthermore

®(k(a® b)k) = Zau j=acb

PROOF OF ProPOSITION 5. The map: Z/l, i€ ® e~ Z/l, j€; 1s an
isomorphism of k(M"® M™)k with M". Thus

Tr(lk(a ® b)kl) = Tr(la bl).
Hence
laobly, = Tr(lk(@® b)kl) = Tr(k(a ® b)kv)
= Tr((a ® b)ka) _S_ " a ® b”Tr ” kvk IIC"'(G) = = ”a”Tr ” b ”Tl"

Note v is a suitable partial isometry arising from the polar
decomposition. This ends the proof of Proposition 5.

The above discussion can easily be generalized to the infinite case, i.e.,
the case where G is the countably infinite, discrete principal transitive
groupoid. In fact we have for a separable Hilbert space H:

ProposITION 5'. The collection of trace class operators on H, denoted
A(G), forms a commutative Banach algebra with Schur product and norm

gy

Remark. Note that 4(G) is the |l - | ;-norm closure of the finite rank
operators. Note also that 4(G) does not have an identity.

ReMark. From the Hopf-von Neumann algebra point of view the
Schur product is the multiplication determined by the co-multiplication
c:M,— M,® M, which is determined by c(e;;)) =¢;®e;, 1 <ij<n.
This point of view also leads to an alternative proof of Proposition 5,
wherein the Schur product is defined using the transpose of ¢ in the obvious
manner.

Returning to the ﬁnite dimensional case, define the map

ae( ” ”I,)HTG,Q}(M", ,” ”C(G))

by T,:x e Cy(G) — ax € Cy(G). Note ax is the matrix product of
a,x € M,. We thus have

PROPOSITION 6. The map T, defined above is completely bounded and
ITllg=lal,,. Thus

ae (My,*,l-1;,) - T, e 9(M,, °, 1l ¢,

is an isometric isomorphism onto a subalgebra N of D(M,, o, |l - | o(G))
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Proor. We show first that | T,ll o 6, = lall;,. Thus

< (sqp Zlaikl) <sup|x,‘,,~|)
i k k,j

c= (ai,-)“m I (i) I Co(GY

” (a,-j)(xij) II C G) = Sup Za“‘ xkj
of i 1%

Hence | T,ll 4 ) < laly,. For the reverse inequality let a;; = u,;layl,
|u,~j| =1 for 1 £i,j £n. Then

I (aij) (ui)* ”CO(G) = S}IJP ; lagl uy Ujy

(let =) = sup O ag) ug ity
L k
= Sup Zlaik' = ”a”I’,.
i k

Since Cy(G) is a commutative C*-algebra, as in Theorem 2 we have by
lemma 1, in [11], that

IT® Ll ycy0my= 1T o6y
n=12,.... Thus

” T; ”9 = ” T“ ZL(Co(G)) = ua “ Ire
Again we could have obtained this result directly by explicitly computing

an appropriate polar decomposition. The proof of Proposition 6 is
complete.

Remark. If we let (M, *, [l -1;,) acton (M,, o, 1l ;) on the right,
ie.,

xeM,,o,l-I c.,(G)) — Xxa € WM, °, Il CO(G))

we would again get a completely bounded map but with completely
bounded norm lall .

Prorosirion 7. For all ae M, *,Il-1;,), (T,)" =T, thus N is
invariant under the conjugation operation in D(M,, °, ||l ¢ ). The map

ae M, % 1-1.,)—»T,eN

“preserves” the conjugation ~ on (M,, *,| - "1,,)-
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Proor. We have (T)) x=(T,X)" =ax=ax=T,x for
x € (Mp, °, Il ))- Note that the complex conjugation is the isometric
involution of C*-algebra (M,, °, |l - ¢, () and that

ae My % l-1,,) —>ae M, Il
is also an isometric conjugation.

ReMARK. The above discussion, Proposition 6 in particular, gives a
fundamental reason for considering the norms Il - ll,,, II -1, ,.

We are now ready to investigate the dual version of Proposition 6. We
note first that if we are to eventually have a duality in the sense of section 4,
then we must find a C*-completion of (M,,*,[l-l;,). This is a Banach
algebra, in which the usual Hermitian conjugate involution is not
isometric, since Il x*I;, = I xIl; ;. Nevertheless, with this involution we get
a C*-completion in the sense of Definition 5, namely (M,, *, [l - [l cvg), i.e.
usual n X n matrices with operator norm. Now we wish to compute the
norm of a “Schur action’’). Namely, consider the map

ae (Mn, o, ?) > T", € Z(Mn, *, " : ”C'(G))’

where T,x =ac°x for a,x e M,. We want to compute the completely
bounded norm || Tl .

Let us first look at T,, where p is a Hermitian positive matrix. Thus
T,x = pecx;and if x is positive in C*(G), then so is p° x. The norm of
such a positive map is attained at the identity, I, so

" Tp " PC*G) = ” p° 1 ” C*G) = Slilplpﬁl = miax Dii

where the diagonal entries of p are p;, 1 <i<n. Note that T, is a
completely positive map. We can see this by considering Hermitian positive
matrix

x(m) = (x;(m)) € C*(G) ® M,,

[18, p.192]. The m x m matrix
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is positive definite, since given £, € C", 1 <i<m we have (let p=gqq
= ¢* q, (matrix product))
2

(Aé’g)'_‘Z(péiléj):”.:ilqéi 2 0.
Thus
p p p]
(T, L)x(m)= | - e (xii(m))
_p p e p_-

is positive since the Schur product of Hermitian positive matrices is
Hermitian positive.
Now

SR
" O
(=]

N

Thus for p = (p;;) a positive hermitian matrix in M, we have

I 7;"9 = S:'l’plpijl = S‘:PIPiiI-

Now for a € M,,

n
laly, = 3 o (al)
i=1

where {¢,,¢,,..., ¢,} is an orthonormal basis of C”, lal = . /a*a, and
wg(a) = (a&l¢), the inner product of a¢ and ¢. Exploiting an analogy with
Proposition 7 we can interpret we( - ) as the sum on the “ith row” and get
SUp,; <<, @ (lal) as an analogue of lal,,.

There are two places where this analogy fails to be precise. First |al is not
unambiguous, there are “left and right” absolute values.

DEFINITION 6. If @ € M, we define the right absolute value of a to be
lal, = \/a*a and the left absolute value of a to be lal, = /aa*.
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- Remark. If no subscript is given, the right absolute value is under-
stood, i.e., lal =lal,. Also there are corresponding right and left
polar decompositions for a, that is a = ulal, = lal,u for suitable partial
isometry u.

The second source of imprecision in the analogy is that it is not always
clear which orthonormal basis should be chosen as the “rows’ in a given
setting. Thus we make the following definition.

DeriniTion 7. Given a  positive Hermitian matrix p € M,, and
orthonormal basis & = {{,,&,,...,&,} of C", we define the Haarek norm
of p with respect to basis % to be

Ipll ., o= sup w,(p).
Pl Gaeg gi(P)

REemark. If matrix p is written in terms of basis %, or equivalently
¢ =e,i=1,2,...,n is the standard basis, then we drop the & in the above
definition and have

Iplly = supw,(p) = suplp;l = supp;
1 1 1

The above analogy leads us to an estimate for the completely bounded
norm of T,: x € M, — a° x € M, which is good enough for our purposes
but not the best possible. See the second remark following Proposition 8.

ProposiTioN 8. The map T,e &M, *,ll-Icy) defined above is
completely bounded with

lall,=suplayl < I Tl < /Mal Ty /Tal, Ty = \/suppi; /supgqj;
i,J J J

where q = lal, = /a*a and p =lal, = Jaa*. The subscript 9, indicates
the completely bounded norm with regard to the Schur product. T hus the map

ae (M”, o, “ : "gs) > T; € Q(M", *, ” : ”C'(G))
is an isometric isomorphism onto a subalgebra Q of D (M,, *, 1l - | ca(g).

REeMARk. For the proof of this result see [25].

REMARK. In the proof of Proposition 8 if one replacespbyp*, 0 S a < 1,
one can obtain the following better estimate:

ITl, < o;;fgz{\/mafx (P /max(q”=)y;}.
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PROPOSITION 9. For all ae (M,,°, I lg), (T,)” =T, thus Q is
invariant under the conjugation in @M, *, |- "C‘(G))' The map
ae M, o,l-1.)— T, e Q preserves the conjugation * on (M,, o, Il - ”9,)'

ProoF. We  have (T.) " x =(aox*)* =a*ox = Tux for
X € (Mm *, ” . ”C‘(G))' We are done.

4. A general notion of duality for Banach algebras.

As mentioned in the introduction we have been motivated by a search for
an “‘explanation” of the similarities between certain duality structures that
exist for groups and the n X n matrices. The existing duality theories of
Tannaka, Stinespring, Tatsuuma, Takesaki, Enock and Schwartz, and
others, do not conveniently lend themselves to the “explanation” we are
looking for. Briefly, the theory of Takesaki may be referred to as the Hopf—
von Neumann algebra approach to non-commutative (group) duality, and
that of Enock and Schwartz may be referred to as the Kac algebra
approach, cf. [19], [S]. One thing to be learned from these and other non-
commutative generalizations of Pontriagin—Van Kampen duality is that
one must leave the category of groups and enter the category of algebras to
formulate an extension of Pontriagin—Van Kampen duality that includes
nonabelian groups. Once this principle has been realized, an inveterate
mathematician is forced to ponder the existence of a duality principle for
algebrasin general. For example, given an algebra 4, how can one create an
algebra B which is “dual to A”’? How can one tell if two algebras are “dual”
to one another? What might it mean for two algebras to be dual to one
another?

As a step on this direction, we summarize the foregoing theorems by
giving a definition of duality such that duality for group algebras and
duality for matrices (as studied above) become special cases.

In the following 4 and B will be two Banach algebras each of which has
an involution as well as a conjugation. The involutions (involved in part (1)
below) are not required to be isometric here; neither, a priori are the
conjugations (involved in part (2) below) required to be isometric.

DerINiTION 8. Banach algebras A4 and B with involutions *4 and *B,
respectively, and conjugations ~4 and ~ B, respectively, are said to be dual
if the following two conditions are satisfied:

(1) There exist Banach algebra homomorphisms i4, iz, and C*-algebras
C*(4), C*(B) where

i: A— C*(A)
ig: B— C*(B),
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i, and i, are one-one, onto dense subalgebras of C*(4), C*(B)
respectively, and i,, iz each preserve involutions *4, *B, respectively.

(2) There exist norm-decreasing Banach algebra isomorphisms j,, jg
where

ja: A D(C*(B))
js: B— 92(C*(4))

Jj4> jp beinginto the dual algebras of C*(B), C*(A) respectively; and j,, jp
preserve conjugations ~ A, ~ B, respectively. If the involutions *4, *B and
the conjugations ~ A, ~ B are all isometric, we say that the duality between
A and B is semi-rigid. If the duality between 4 and B is semi-rigid and the
maps j 4, jp are isometric; we say that the duality between 4 and B is rigid.

ReMARK. The C*-algebras occurring in part (1) above are called C*-
completions. For example, C*(4) is a C*-completion of 4. In our work
thus far all the Banach algebras involved have universal enveloping C*-
algebras, cf. [3]. If one does not insist on universality, then one does not
have uniqueness of the C*-completion. For example, if G is a non-
amenable group, then the universal enveloping algebra, C*(G), is not
isomorphic with C¥(G), the C*-algebra generated by the left-regular
representation 4 of G. Yet C*(G) and C%(G) are C*-completions of L (G).

REMARK. We use the term norm-decreasing to mean ‘“‘not norm
increasing”, thus isometries are norm-decreasing. Also if 4 is dual to B we
will say that *B is dual to ~ A and that *A is dual to ~ B. Also, we do not a
priori require that *A be distinct from ~ A4, nor *B be distinct from ~B. The
reader will note a slight redundancy in the definition of rigid. This
redundancy being that if j, and jg are isometries, then ~ 4 and ~ B must be
isometric since the corresponding commutative involutions on 2(C*(G))
and 9(C*(G)) are isometric by Proposition 1. Finally we see that dualities
for group algebras A(G) and L' (G), using their universal C*-completions,
are rigid, while the corresponding dualities for groupoids are not.

REemMARK. Corresponding to each conjugation and/or involution thereis a
notion of positivity. Our notion of duality can be given an alternate
formulation in terms of these notions of positivity.

ExampLE. It follows from Theorem 1, Theorem 2, Proposition 2, and
Proposition 3 that for locally compact group G, A(G) and L} (G) are dual in
the sense of Definition 8. We note that I! (G) has a universal C*-completion,
C*(G), which serves as C*(L'(G)); and C,(G), the continuous, complex-
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valued functions that vanish at infinity on G, is the C*-completion of 4A(G),
that is, C*(A4(G)). Also L(G) has an isometric involution,

fe}G) s fi=A"1f" € I}(G)
and an isometric conjugation
feL(G)— feL(G),

while 4(G) has isometric involution a € A(G) —ae A(G) and isometric
conjugation a € A(G) — a’ € A(G).

ExampLE. It follows from Proposition 5, Proposition 6, Proposition 7,
Proposition 8, and Proposition 9 that for G the n-transitive principle
groupoid,

AG) =M, °, [ - IITr)
is dual to .
LNG) = M, *, 1 -1 )

in the sense of Definition 8. Also (M,, °, Il - ”9,) is dual to (M,, *, I - ”,,,).

ExaMmpLE. For G the countably infinite, discrete, principal transitive
groupoid, let A(G) be the trace class operators and I!(G) be the matrices
satisfying ) la;;| < oo. Then A(G) and L' (G) are dual (semi-rigidly).

REMARK. In the last two examples there is a Fourier—Plancherel
transform which completes the analogy with the group case.

REMARK. In [4] the “dual” of a certain group arises as a set of
endomorphisms of a certain C*-algebra. We take this as evidence that
defining dual objects via completely bounded transformations promises to
be a fruitful approach.
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