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Introduction.

For an irrational number 8, let (V,F,) be the Kronecker foliation on
V = R2/Z* with the slope 0. For a natural number n > 2, it follows from a
result of M. A. Rieffel [9, Theorem 2.7] that the associated C*-algebras
C*(V,Fg) and C*(V,F,,) are not isomorphic, but it is natural to think that
there must be some relations between C*(V,Fy) and C*(V,F,). In this
paper, generalizing this question, we study the relations between covering
maps of foliations and associated C*-algebras.

Let (V,F) and (V',F’) be C*-foliations and C*(V,F) and C*(V',F’) be
associated C*-algebras. In section 1, we introduce the notion of a
homogeneous covering map of (V, F) onto (V',F') with the structure group
Z,and show that, if such a map exists, then there exists an action f of Z on
C*(V,F) such that the reduced crossed product of C*(V,F) by f is
isomorphic to C*(V',F’). To prove this, we use essentially a result of
M. Hilsum and G. Skandalis [6].

In section 2, we consider two examples of Anosov foliations. One of
them is the Kronecker foliation mentioned above. It follows from the result
of section 1 that C*(V,F,) and C*(V,F,,) are crossed products of C*(V,F )
and C*(V,F,) respectively by actions of Z,. The other example is a foliation
obtained from the constant time suspension of an element of SL(2,2)
acting on the two-torus, and we can show a similar result.

The author would like to express his hearty thanks to Professor
O. Takenouchi for constant encouragement and helpful suggestions.

1. Coverings of foliations.

Let V and V’ be C®-manifolds without boundary and (V,F) and (V',F’)
be C*-%-foliations [4, Chapter VII]. A C®-map y of V onto V" is called a
map of (V,F) onto (V',F’) if, for each leaf L of (V,F), y(L) is a leaf of
(V',F’). A diffeomorphism of (V,F)onto (V',F')is an injective map of (V,F)
onto (V',F’) such that the inverse map is a map of (V',F’) onto (V,F). The
group of all diffeomorphisms of (V,F) onto itself is denoted by
Diffeo (V,F). A map y of (V,F)onto (V',F')is said to be a covering map of

Received June 5, 1984; in revised form February 5, 1985.



70 MOTO O’UCHI

(V,F) onto (V' F’) if, for every point x € V’, there exists an open
neighborhood 2 of x such that the restriction of y to each connected
component of Y ~ () is a C*-diffeomorphism onto €.

Let G and G’ be holonomy groupoids of (V,F) and (V',F’) respectively
[11,5,§5]. If ¢ is a covering map of (V,F) onto (V',F’), one can define a
homomorphism ¥ of G onto G’ by

P(y)(t) =y (@) te[0,1], fory e G.

It is clear that ¥ is locally a diffeomorphism. We shall say that ¥ is the
homomorphism associated with .

A submanifold T of V is said to be a transverse submanifold of (V,F)if,
for every x € T, there exists a local coordinate Q =~ D? x D? of x in (V,F)
such that T N Q =~ D*x D4, where D? is a unit ball of R? and dim F = p,
dimT =k+gq, 0 £ k < p. A transverse submanifold T of (V,F) is said to
be faithful if T meets every leaf of F. We define a subgroupoid G¥ of G by

Gt ={y€G; s(y),r(y) € T}.

DerintTioN 1.1. A covering map ¥ of (V,F) onto (V',F') is called a
homogeneous covering map with the structure group Z if it satisfies the
following properties:

(i) there exist faithfully transverse submanifolds T and T’ of (V,F) and
(V',F’) respectively such that the restriction WIT of ¢ to T is a
diffeomorphism onto T”,

(i1) there exists a homomorphism w of Z into Diffeo (V,F) such that
(a) this action is free, that is, if w;(x) = x for some x € V, then
j = e, where e is the unit of Z,
() ¥~ (Y (x) = {wj(x);j € Z},
©) w(MN [U} Wy ](T)] =g forallje Z,
(iii) let X = U w;(T) and let § be the homomorphism of G onto G’
associated with |// then forall x € X, the restriction ¥|(G%¥)* of ¥ to (G%)*
is one-to-one.

Then we have the following theorem:

THEOREM 1.2. Suppose that there exists a homogeneous covering map of
(V,F) onto (V',F") with the structure group Z. Then there exists an action B of
Z on C*(V,F) such that C*(V,F) X 5, Z is isomorphic to C*(V',F’).

Let § be a homogeneous covering map of (V,F) onto (V',F’) with the
structure group Z. Note that Z is a countable group. For a holonomy
groupoid G, Aut (G) denotes the group of all diffeomorphisms p of G onto
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itself such that p and p~1! are algebraically homomorphisms. We define a
homomorphism W of Z into Aut (G) by

W;()(t) = wi(y(®)), te[0,1], for je Zandy e G.

We write j - y for W;(y). Note that ¥ (j - y) = ¥(y). The semi-direct product
G %y Z is defined as follows [cf. 8, Chapter I, Definition 1.7]; G X Z is
Gx Z as a set and (y,j) and (y',j') are composable if and only if y and
y, =Jj 7" are composable,

(ysj)(j—l .YI:jl) = (Wuj]"% (yJ)_l = (i_l 'y_19j_l)'

The unit space (G X 5 Z)® may be identified with V. In the following, we
set H=GY and H' = G'T. We may define the semi-direct product
H % Z. To prove the theorem we.prepare a lemma.

LemMma 1.3. Define a discrete groupoid 1, = Z X Z as follows: (j,,j,) and
(i1,J2) are composable if and only if

J2 =T G102)02:02) = G1:02)s G102) "1 = (G20d1)-

Then there exists a diffeomorphism ¥’ of H X y, Z onto the product groupoid
H'x I, which is algebraically an isomorphism, where Z is considered as a
discrete group.

Proor. Weset T(j) = w;(T). Define amap ¥’ of H X 3 Z into H' X I, by
‘P'(?,J) = (W(YL (il,j_ljZ))

for (y,j) € H X Z with r(y) € T(j,), s(y) € T(j,). From the condition (c)
of (i) in Definition 1.1, ¥’ is locally a diffeomorphism.

We show that ¥’ is surjective. For (', (j;,j,)) € H' % I, thereexistsy € H
such that ¥ (y) = y'. By taking j-y if necessary, we may suppose that
r(y) € T(j,). If s(y) € T(j,), then we have

V' (.22 1) = (v, (1:J2))-

The map ¥’ is a homomorphism. In fact, for ¥ = (,j), ¥ = (i~ 7.j) €
i",‘ewz with s(y) =r(y), r(y) € T(j1), s(y) € T(jz), and s(y') € T(j3), we
G YFT)=(P0), Grod G (G 9) (7 Y 2ed ™G4 02))
= (P@Y),(1, ) "72)

=¥@F7y),
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and we have
Yl’(‘}_’—-l) = (W(i_l .,))—1)’ (i_ljZ,jl))

= ('P('Y)_l, (j_ljZ’jl))

= v
Let (7.j), (/'.j) € H Xy Z be such that ¥'(,j) = ¥'(v',j) = (7, (1.)2))-
Then we have r(p), r(y') € T(j,) and ¥(r(y)) = Y(r(y")). From the condition
(i) in Definition 1.1, we have r(y) = r(y’), and then, from the condition (iii),
we have y = y'. It follows that ¥’ is one-to-one. Finally we show that ¥'~*
is a homomorphism. For ¥ = (Y, (j1,j2)), 7" = (¥", (i2,j3)) € H' x I, with
s(y') =r(y"), let (y,j) and (yo.J') be such that ¥'~ ' (7') = (y,j) and ¥'~' (")
= (yo,f'). Since we have s(y), (i 7o) € T(jj2) and Y(s(y)) = ¥(r(j - yo)), we
have s(y) = r(j o). It follows that (y,j) and (y,,j’) are composable and
that

PIF)V T = (0G - vo)ii)-
On the other hand, we have
(G 70),Ji) = (T ¥ 0o, G1:d2) =T 7"
This implies that
PUITY) = TG,
Since we have
PoIE) T =Gy
and
Gy = (PO G2a)) =T
we have
Py =)
Thus ¥’ ! is a homomorphism.

Proor or THE THEOREM. We consider the foliation (H, %) defined as in
[11, 4, Chapter VII]. We also consider the foliation (X, Fy), where Fy is the
set of connected components of X N L for L € F. Let Q"2 be the half
density bundle of the tangent bundle of (H,#) [5,§5]. Since w; can be
considered as an element of Diffeo (X, Fy), there is an isomorphism I'(j,y)
of Q}/2 onto 2}/? associated with w; for all y € H. For j,j' € Z, we have

F(l,?)r(l'sj)’) = F(],]"Y)
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Let C.(H,Q"?) be the involutive normed algebra defined asin [5,§5, §6].
For j € Z, we define a map o; of C.(H,Q"/?) into itself by

(@) =G LG )

for f € C.(H,Q'?) and y € H. The completion of C,(H,Q'?) is denoted
by C¥(H) [see 6]. The above map «; is extended to a *-automorphism
of C¥(H), which is denoted again by a; Then the map
asj € Z—ra; € Aut (C¥(H))is an action of Z on C}(H).

We consider foliations (H Xy Z, F,) and (H' X I, F,), where leaves of
F, are connected components of {(y,jo) € H Xy Z;r(y) € L} for L € Fy,
and leaves of F, are defined by a similar way. We denote again by 2!/2 the
half density bundles of the tangent bundles of these foliations. We form
C.(H Xy Z, 2'?%)and C.(H' x I, 2'/?), and then define C*(H Xy Z) and
C¥(H' x I) as before. It follows from Lemma 1.3 that C¥(H Xy Z) and
C¥(H' x 1) are isomorphic. It is c¢lear that the reduced crossed product
CHH) X, Z of C¥H) by a is isomorphic to C}(H Xy Z). By [6,
Corollary 6], C*(V,F) (respectively C*(V',F')) is isomorphic to
CH(H) @ X (respectively C¥(H') @ #°). We define an action f of Z on
C*(V,F) by B; = a; ®1, where ¢is the trivial automorphism of . Since we
have

Cr(H' xI;) = CXxH') QX (*(2)),

C*(V,F) x4, Z is isomorphic to C*(V',F’).

2. Examples.
In this section, we consider two examples of Anosov foliations.

1°. For an irrational nimber 6, let (V,F,) be the Kronecker foliation on
V = R?/Z2, that is, the leaf through (x,y)is {(x +¢t, y+0t) € V;t € R}.
For a natural number n € N, we define a map y of (V,F,e) onto (V,F,) by
Y(x,y) = (nx,y). A submanifold T ={0}xR/Z of V is faithfully
transverse to both (V, F,,) and (V,F,). We define a homomorphism w of Z,
into Diffeo (V,F,) by

Wj(x’y) = (x +j/n5 }’) (’ € Zn)

T}len ¥ is a homogeneous covering map with the structure group Z,.
Similarly, if we define a map Y’ of (V,F,) onto (V,F,) by ¥'(x,y) = (x,ny),
then ' is a homogeneous covering map with the structure group Z,. Thus
we have:
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TueoreM 2.1. (a) There exists an action f of Z, on C*(V,F,4) such that
C*(V,F ) X g Z, is isomorphic to C*(V,F).

(b) There exists an action B’ of Z, on C*(V,F,) such that C*(V,Fg) X prLn
is isomorphic to C*(V,F ).

If 6 is rational, the above y and ' are not in general homogeneous
covering maps. The C*-algebras discussed here are completely classified by
M. A. Rieffel [9, Theorem 2.7]. It follows from his result that C*(V,F,) and
C*(V,F,q) are not isomorphic if n # 1.

2°. Let
Am,.=(1 ")
’ m mn+1

be an element of SL (2,Z) and 4,,4, be eigenvalues of 4,,, such that
0 < 4, <1 < A,. We define a Riemannian metric on T2 x R by

ds? = A7 ?[mAdx + (1 = A,)dy]* + A5 [mA,dx + (1 — 1,)dy]* + du?
for (x,y,u) € T* x R. Let {¢,;t € R} be a flow on T? x R such that

¢ (x,y,u) = (x,y,u+1t)

and o be an action of Z on T? X R such that
ak(xsys“) = (Afn,n(xay)’ u-— k),

where A,,,(x,y) = (x +ny,mx + (mn+1)y). We define an equivalence
relation ~ on T? x R asfollows: a ~ b if and only if there exists k € Z such
that b = o, (a), and we set V,,, = T? X R/~. As the metric ds? is invariant
under «, we consider it as a metric on ¥, ,. We also consider (¢,) as a flow
on V,, .. We define subspaces X,,Y,,Z, of the tangent space T,(V,,,) at
aeV,, as follows: X, is generated by n(0/0x),+ (1, —1)(0/0y),, Y, is
generated by n(0/0x),+ (A, —1)(0/0y)., Z, is generated by (6/0u),. Then
we have

Tn(Vm,n) =X,® Y, ®Z,
l(@)*El2 = A7 2 1EN2 for € € X,
I(@)*El2 = A72MEl2 for Ee Y,.
Let (V. F™) (respectively (V,,,.,F**)) be the foliation such that the

tangent space of the leaf through ais X, ® Z, (respectively Y, @ Z,). For
the distance d on V,, , associated with ds?, we set
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E(a) ={be V,,;d(¢,(a),d,(b)—0 ast—o0},
L) ={beV,,;d(¢,a),d,(b)—0 ast— — o0},
(@) = J{LE(¢:(@);t € (— o0, +0)},

L) = (J{L&($.(a));t € (— 0, +00)}.

Then we have F'={L(a);a€V,,} i=ws,wu. As for the above
discussion, see [1,§13, 3, §2].

Let p be a divisor of m. We define a map ¥ of (V,, ,, F’) onto (Vp.np, F')
by ¥ (x,y,u) = (px,y,u). Let T (respectively T’) be a submanifold of V, ,
(respectively V,,, .,) Which is the image of {0} x T x {0} under the quotient
map T? % R - V,,, (respectively T? x R — Vuip.np)- We define a homomor-
phism w of Z, into Diffeo (V,,,, F’) by

wi(x,y,u) = (x +j/p,y,u) (G €Z,).

Then one can prove that y is a"homogeneous covering map with the
structure group Z,. Let g be a divisor of n. If we define a map Y’ of (V,,,,,, F’)
onto (Vg wes F') by ¥'(x,y,u) = (x,qy,u), then y’ is a homogeneous
covering map with the structure group Z,. Then we have:

THEOREM 2.2. (a) If p is a divisor of m, then there exists an action B of Z,
on C*(V,, ., F?) such that C*(V,, ,,F*) Xy, Z,, is isomorphic to C* (V. np» F)
(i = ws,wu).

(b) If q is a divisor of n, then there exists an action ' of Z, on C*(V,, ., F’)
such that C*(V,,,, F') X 3, Z, is isomorphic to C*(V, FY) (i = ws,wu).

P

mq,n/q>

It follows from a result of H. Takai [10, Theorem 4.2] that
KK(C*(V,, 0, F')) (m,n = 1,2,...) are isomorphic to one another, but it is
not known whether C*(V,, ,, F') (m,n =1,2,...) are isomorphic to one
another.
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