COVERINGS OF FOLIATIONS AND ASSOCIATED C*-ALGEBRAS

MOTO O'UCHI

This paper is dedicated to Professor O. Takenouchi on his sixtieth birthday

Introduction.

For an irrational number θ , let (V, F_{θ}) be the Kronecker foliation on $V = \mathbb{R}^2/\mathbb{Z}^2$ with the slope θ . For a natural number $n \ge 2$, it follows from a result of M. A. Rieffel [9, Theorem 2.7] that the associated C*-algebras $C^*(V, F_{\theta})$ and $C^*(V, F_{n\theta})$ are not isomorphic, but it is natural to think that there must be some relations between $C^*(V, F_{\theta})$ and $C^*(V, F_{n\theta})$. In this paper, generalizing this question, we study the relations between covering maps of foliations and associated C^* -algebras.

Let (V,F) and (V',F') be C^{∞} -foliations and $C^*(V,F)$ and $C^*(V',F')$ be associated C^* -algebras. In section 1, we introduce the notion of a homogeneous covering map of (V,F) onto (V',F') with the structure group Z, and show that, if such a map exists, then there exists an action β of Z on $C^*(V,F)$ such that the reduced crossed product of $C^*(V,F)$ by β is isomorphic to $C^*(V',F')$. To prove this, we use essentially a result of M. Hilsum and G. Skandalis [6].

In section 2, we consider two examples of Anosov foliations. One of them is the Kronecker foliation mentioned above. It follows from the result of section 1 that $C^*(V, F_{\theta})$ and $C^*(V, F_{n\theta})$ are crossed products of $C^*(V, F_{n\theta})$ and $C^*(V, F_{\theta})$ respectively by actions of Z_n . The other example is a foliation obtained from the constant time suspension of an element of SL(2, Z) acting on the two-torus, and we can show a similar result.

The author would like to express his hearty thanks to Professor O. Takenouchi for constant encouragement and helpful suggestions.

1. Coverings of foliations.

Let V and V' be C^{∞} -manifolds without boundary and (V,F) and (V',F') be $C^{\infty,0}$ -foliations [4, Chapter VII]. A C^{∞} -map ψ of V onto V' is called a map of (V,F) onto (V',F') if, for each leaf L of (V,F), $\psi(L)$ is a leaf of (V',F'). A diffeomorphism of (V,F) onto (V',F') is an injective map of (V,F) onto (V',F') such that the inverse map is a map of (V',F') onto (V,F). The group of all diffeomorphisms of (V,F) onto itself is denoted by Diffeo (V,F). A map ψ of (V,F) onto (V',F') is said to be a covering map of

(V,F) onto (V',F') if, for every point $x \in V'$, there exists an open neighborhood Ω of x such that the restriction of ψ to each connected component of $\psi^{-1}(\Omega)$ is a C^{∞} -diffeomorphism onto Ω .

Let G and G' be holonomy groupoids of (V,F) and (V',F') respectively [11, 5, §5]. If ψ is a covering map of (V,F) onto (V',F'), one can define a homomorphism Ψ of G onto G' by

$$\Psi(\gamma)(t) = \psi(\gamma(t))$$
 $t \in [0,1]$, for $\gamma \in G$.

It is clear that Ψ is locally a diffeomorphism. We shall say that Ψ is the homomorphism associated with ψ .

A submanifold T of V is said to be a transverse submanifold of (V,F) if, for every $x \in T$, there exists a local coordinate $\Omega \cong D^p \times D^q$ of x in (V,F)such that $T \cap \Omega \cong D^k \times D^q$, where D^p is a unit ball of \mathbb{R}^p and dim F = p, dim T = k + q, $0 \le k \le p$. A transverse submanifold T of (V, F) is said to be faithful if T meets every leaf of F. We define a subgroupoid G_T^T of G by $G_T^T = \{ \gamma \in G; \ s(\gamma), r(\gamma) \in T \}.$

Definition 1.1. A covering map ψ of (V,F) onto (V',F') is called a homogeneous covering map with the structure group Z if it satisfies the following properties:

- (i) there exist faithfully transverse submanifolds T and T' of (V,F) and (V',F') respectively such that the restriction $\psi \mid T$ of ψ to T is a diffeomorphism onto T',
 - (ii) there exists a homomorphism w of Z into Diffeo (V,F) such that
 - (a) this action is free, that is, if $w_i(x) = x$ for some $x \in V$, then j = e, where e is the unit of Z,

 - $\begin{array}{l} \text{(b)}\, \underline{\psi}^{-1}\big(\underline{\psi}(x)\big) = \big\{w_j(x); j \in Z\big\}, \\ \text{(c)}\,\, \overline{w_j(T)} \bigcap \left[\, \bigcup_{j' \neq j} w_{j'}(T) \, \right]^- = \varnothing \ \text{ for all } j \in Z, \end{array}$
- (iii) let $X = \bigcup_{j \in \mathbb{Z}} w_j(T)$ and let ψ be the homomorphism of G onto G' associated with ψ , then for all $x \in X$, the restriction $\Psi|(G_X^X)^x$ of Ψ to $(G_X^X)^x$ is one-to-one.

Then we have the following theorem:

THEOREM 1.2. Suppose that there exists a homogeneous covering map of (V,F) onto (V',F') with the structure group Z. Then there exists an action β of Z on $C^*(V,F)$ such that $C^*(V,F) \times_{\theta r} Z$ is isomorphic to $C^*(V',F')$.

Let ψ be a homogeneous covering map of (V,F) onto (V',F') with the structure group Z. Note that Z is a countable group. For a holonomy groupoid G, Aut (G) denotes the group of all diffeomorphisms ρ of G onto

itself such that ρ and ρ^{-1} are algebraically homomorphisms. We define a homomorphism W of Z into Aut (G) by

$$W_j(\gamma)(t) = w_j(\gamma(t)), t \in [0,1], \text{ for } j \in \mathbb{Z} \text{ and } \gamma \in \mathbb{G}.$$

We write $j \cdot \gamma$ for $W_j(\gamma)$. Note that $\Psi(j \cdot \gamma) = \Psi(\gamma)$. The semi-direct product $G \times_W Z$ is defined as follows [cf. 8, Chapter I, Definition 1.7]; $G \times_W Z$ is $G \times Z$ as a set and (γ, j) and (γ', j') are composable if and only if γ and $\gamma_1 = j \cdot \gamma'$ are composable,

$$(\gamma,j)(j^{-1}\cdot\gamma_1,j')=(\gamma\gamma_1,jj'),\ \ (\gamma,j)^{-1}=(j^{-1}\cdot\gamma^{-1},j^{-1}).$$

The unit space $(G \times_W Z)^{(0)}$ may be identified with V. In the following, we set $H = G_X^X$ and $H' = G_T^{T'}$. We may define the semi-direct product $H \times_W Z$. To prove the theorem we prepare a lemma.

Lemma 1.3. Define a discrete groupoid $I_Z = Z \times Z$ as follows: (j_1, j_2) and (j'_1, j'_2) are composable if and only if

$$j_2 = j'_1, \quad (j_1, j_2)(j_2, j'_2) = (j_1, j'_2), \quad (j_1, j_2)^{-1} = (j_2, j_1).$$

Then there exists a diffeomorphism Ψ' of $H \times_W Z$ onto the product groupoid $H' \times I_z$ which is algebraically an isomorphism, where Z is considered as a discrete group.

PROOF. We set $T(j) = w_j(T)$. Define a map Ψ' of $H \times_W Z$ into $H' \times I_Z$ by $\Psi'(\gamma, j) = (\Psi(\gamma), (j_1, j^{-1} j_2))$

for $(\gamma, j) \in H \times_W Z$ with $r(\gamma) \in T(j_1)$, $s(\gamma) \in T(j_2)$. From the condition (c) of (ii) in Definition 1.1, Ψ' is locally a diffeomorphism.

We show that Ψ' is surjective. For $(\gamma', (j_1, j_2)) \in H' \times I_Z$, there exists $\gamma \in H$ such that $\Psi(\gamma) = \gamma'$. By taking $j \cdot \gamma$ if necessary, we may suppose that $r(\gamma) \in T(j_1)$. If $s(\gamma) \in T(j_2')$, then we have

$$\Psi'(\gamma, j_2', j_2^{-1}) = (\gamma', (j_1, j_2)).$$

The map Ψ' is a homomorphism. In fact, for $\overline{\gamma} = (\gamma, j)$, $\overline{\gamma}' = (j^{-1} \cdot \gamma', j') \in H \times_W Z$ with $s(\gamma) = r(\gamma')$, $r(\gamma) \in T(j_1)$, $s(\gamma) \in T(j_2)$, and $s(\gamma') \in T(j_2')$, we have

$$\begin{split} \Psi'(\overline{\gamma}) \, \Psi'(\overline{\gamma}') &= \left(\Psi(\gamma), \, (j_1, j^{-1} j_2) \right) \left(\Psi(j^{-1} \cdot \gamma'), \, (j^{-1} j_2, j'^{-1} (j^{-1} j_2')) \right) \\ &= \left(\Psi(\gamma \gamma'), \left(j_1, (jj')^{-1} j_2' \right) \right) \\ &= \Psi'(\overline{\gamma} \, \overline{\gamma}'), \end{split}$$

and we have

$$\Psi'(\overline{\gamma}^{-1}) = (\Psi(j^{-1} \cdot \gamma^{-1}), (j^{-1}j_2, j_1))$$

= $(\Psi(\gamma)^{-1}, (j^{-1}j_2, j_1))$
= $\Psi'(\overline{\gamma})^{-1}$.

Let (γ,j) , $(\gamma',j') \in H \times_W Z$ be such that $\Psi'(\gamma,j) = \Psi'(\gamma',j') = (\widetilde{\gamma},(j_1,j_2))$. Then we have $r(\gamma)$, $r(\gamma') \in T(j_1)$ and $\psi(r(\gamma)) = \psi(r(\gamma'))$. From the condition (i) in Definition 1.1, we have $r(\gamma) = r(\gamma')$, and then, from the condition (iii), we have $\gamma = \gamma'$. It follows that Ψ' is one-to-one. Finally we show that Ψ'^{-1} is a homomorphism. For $\widetilde{\gamma}' = (\gamma', (j_1,j_2))$, $\widetilde{\gamma}'' = (\gamma'', (j_2,j_3)) \in H' \times I_Z$ with $s(\gamma') = r(\gamma'')$, let (γ,j) and (γ_0,j') be such that $\Psi'^{-1}(\widetilde{\gamma}') = (\gamma,j)$ and $\Psi'^{-1}(\widetilde{\gamma}'') = (\gamma_0,j')$. Since we have $s(\gamma)$, $r(j \cdot \gamma_0) \in T(jj_2)$ and $\psi(s(\gamma)) = \psi(r(j \cdot \gamma_0))$, we have $s(\gamma) = r(j \cdot \gamma_0)$. It follows that (γ,j) and (γ_0,j') are composable and that

$$\Psi'^{-1}(\bar{\gamma}')\Psi'^{-1}(\bar{\gamma}'') = (\gamma(j\cdot\gamma_0),jj').$$

On the other hand, we have

$$\Psi'(\gamma(j\cdot\gamma_0),jj')=(\Psi(\gamma)\Psi(\gamma_0),(j_1,j_3))=\bar{\gamma}'\bar{\gamma}''.$$

This implies that

$$\Psi'^{-1}(\overline{\gamma}'\overline{\gamma}'') = \Psi'^{-1}(\overline{\gamma}')\Psi'^{-1}(\overline{\gamma}'').$$

Since we have

$$\Psi'^{-1}(\overline{y}')^{-1} = (j^{-1} \cdot y^{-1}, j^{-1})$$

and

$$\Psi'(j^{-1}\cdot\gamma^{-1},j^{-1})=(\Psi(\gamma)^{-1},(j_2,j_1))=\bar{\gamma}'^{-1},$$

we have

$$\Psi'^{-1}(\overline{\gamma}'^{-1}) = \Psi'^{-1}(\overline{\gamma}')^{-1}.$$

Thus Ψ'^{-1} is a homomorphism.

PROOF OF THE THEOREM. We consider the foliation (H,\mathcal{F}) defined as in [11, 4, Chapter VII]. We also consider the foliation (X, F_X) , where F_X is the set of connected components of $X \cap L$ for $L \in F$. Let $\Omega^{1/2}$ be the half density bundle of the tangent bundle of (H,\mathcal{F}) [5, § 5]. Since w_j can be considered as an element of Diffeo (X, F_X) , there is an isomorphism $\Gamma(j, \gamma)$ of $\Omega_j^{1/2}$, onto $\Omega_j^{1/2}$ associated with w_j for all $\gamma \in H$. For $j, j' \in Z$, we have

$$\Gamma(j,\gamma)\,\Gamma(j',j\cdot\gamma)=\Gamma(j'j,\gamma).$$

Let $C_c(H,\Omega^{1/2})$ be the involutive normed algebra defined as in [5, § 5, § 6]. For $j \in \mathbb{Z}$, we define a map α_j of $C_c(H,\Omega^{1/2})$ into itself by

$$\alpha_i(f)(\gamma) = \Gamma(j^{-1}, \gamma) (f(j^{-1} \cdot \gamma))$$

for $f \in C_c(H, \Omega^{1/2})$ and $\gamma \in H$. The completion of $C_c(H, \Omega^{1/2})$ is denoted by $C_r^*(H)$ [see 6]. The above map α_j is extended to a *-automorphism of $C_r^*(H)$, which is denoted again by α_j . Then the map $\alpha, j \in Z \mapsto \alpha_j \in \operatorname{Aut}(C_r^*(H))$ is an action of Z on $C_r^*(H)$.

We consider foliations $(H \times_W Z, F_1)$ and $(H' \times I_Z, F_2)$, where leaves of F_1 are connected components of $\{(\gamma, j_0) \in H \times_W Z; r(\gamma) \in L\}$ for $L \in F_X$, and leaves of F_2 are defined by a similar way. We denote again by $\Omega^{1/2}$ the half density bundles of the tangent bundles of these foliations. We form $C_c(H \times_W Z, \Omega^{1/2})$ and $C_c(H' \times I_Z, \Omega^{1/2})$, and then define $C_r^*(H \times_W Z)$ and $C_r^*(H' \times I_Z)$ as before. It follows from Lemma 1.3 that $C_r^*(H \times_W Z)$ and $C_r^*(H' \times I_Z)$ are isomorphic. It is clear that the reduced crossed product $C_r^*(H) \times_{\alpha r} Z$ of $C_r^*(H)$ by α is isomorphic to $C_r^*(H \times_W Z)$. By [6, Corollary 6], $C_r^*(V,F)$ (respectively $C_r^*(V',F')$) is isomorphic to $C_r^*(H) \otimes \mathcal{K}$ (respectively $C_r^*(H') \otimes \mathcal{K}$). We define an action β of Z on $C_r^*(V,F)$ by $\beta_j = \alpha_j \otimes \iota$, where ι is the trivial automorphism of \mathcal{K} . Since we have

$$C_r^*(H' \times I_Z) \cong C_r^*(H') \otimes \mathcal{K}(l^2(Z)),$$

 $C^*(V,F) \times_{\beta_r} Z$ is isomorphic to $C^*(V',F')$.

2. Examples.

In this section, we consider two examples of Anosov foliations.

1°. For an irrational nimber θ , let (V, F_{θ}) be the Kronecker foliation on $V = \mathbb{R}^2/\mathbb{Z}^2$, that is, the leaf through (x,y) is $\{(x+t,y+\theta t) \in V; t \in \mathbb{R}\}$. For a natural number $n \in \mathbb{N}$, we define a map ψ of $(V, F_{n\theta})$ onto (V, F_{θ}) by $\psi(x,y) = (nx,y)$. A submanifold $T = \{0\} \times \mathbb{R}/\mathbb{Z}$ of V is faithfully transverse to both $(V, F_{n\theta})$ and (V, F_{θ}) . We define a homomorphism w of \mathbb{Z}_n into Diffeo $(V, F_{n\theta})$ by

$$w_j(x,y) = (x+j/n,y) \quad (j \in \mathsf{Z}_n).$$

Then ψ is a homogeneous covering map with the structure group Z_n . Similarly, if we define a map ψ' of (V, F_{θ}) onto $(V, F_{n\theta})$ by $\psi'(x, y) = (x, ny)$, then ψ' is a homogeneous covering map with the structure group Z_n . Thus we have:

THEOREM 2.1. (a) There exists an action β of Z_n on $C^*(V, F_{n\theta})$ such that $C^*(V, F_{n\theta}) \times_{\beta_T} Z_n$ is isomorphic to $C^*(V, F_{\theta})$.

(b) There exists an action β' of Z_n on $C^*(V, F_\theta)$ such that $C^*(V, F_\theta) \times_{\beta'r} Z_n$ is isomorphic to $C^*(V, F_{n\theta})$.

If θ is rational, the above ψ and ψ' are not in general homogeneous covering maps. The C*-algebras discussed here are completely classified by M. A. Rieffel [9, Theorem 2.7]. It follows from his result that $C^*(V, F_{\theta})$ and $C^*(V, F_{n\theta})$ are not isomorphic if $n \neq 1$.

2°. Let

$$A_{m,n} = \begin{pmatrix} 1 & n \\ m & mn+1 \end{pmatrix}$$

be an element of SL (2, Z) and λ_1, λ_2 be eigenvalues of $A_{m,n}$ such that $0 < \lambda_2 < 1 < \lambda_1$. We define a Riemannian metric on $T^2 \times R$ by

$$ds^{2} = \lambda_{1}^{-2u} [m\lambda_{1} dx + (1 - \lambda_{1}) dy]^{2} + \lambda_{2}^{-2u} [m\lambda_{2} dx + (1 - \lambda_{2}) dy]^{2} + du^{2}$$

for $(x,y,u) \in T^2 \times \mathbb{R}$. Let $\{\phi_t; t \in \mathbb{R}\}$ be a flow on $T^2 \times \mathbb{R}$ such that

$$\phi_t(x,y,u) = (x,y,u+t)$$

and α be an action of Z on $T^2 \times R$ such that

$$\alpha_k(x,y,u) = (A_{m,n}^k(x,y), u - k),$$

where $A_{m,n}(x,y)=(x+ny,mx+(mn+1)y)$. We define an equivalence relation \sim on $T^2\times R$ as follows: $a\sim b$ if and only if there exists $k\in Z$ such that $b=\alpha_k(a)$, and we set $V_{m,n}=T^2\times R/\sim$. As the metric ds^2 is invariant under α , we consider it as a metric on $V_{m,n}$. We also consider (ϕ_t) as a flow on $V_{m,n}$. We define subspaces X_a, Y_a, Z_a of the tangent space $T_a(V_{m,n})$ at $a\in V_{m,n}$ as follows: X_a is generated by $n(\partial/\partial x)_a+(\lambda_2-1)(\partial/\partial y)_a$, Y_a is generated by $n(\partial/\partial x)_a+(\lambda_1-1)(\partial/\partial y)_a$, Z_a is generated by $(\partial/\partial u)_a$. Then we have

$$T_{a}(V_{m,n}) = X_{a} \oplus Y_{a} \oplus Z_{a},$$

$$\| (\varphi_{t})^{*} \xi \|^{2} = \lambda_{1}^{-2t} \| \xi \|^{2} \quad \text{for } \xi \in X_{a},$$

$$\| (\varphi_{t})^{*} \xi \|^{2} = \lambda_{2}^{-2t} \| \xi \|^{2} \quad \text{for } \xi \in Y_{a}.$$

Let $(V_{m,n}, F^{ws})$ (respectively $(V_{m,n}, F^{wu})$) be the foliation such that the tangent space of the leaf through a is $X_a \oplus Z_a$ (respectively $Y_a \oplus Z_a$). For the distance d on $V_{m,n}$ associated with ds^2 , we set

$$L^{s}(a) = \{b \in V_{m,n}; d(\phi_{t}(a), \phi_{t}(b)) \to 0 \quad \text{as } t \to \infty\},$$

$$L^{u}(a) = \{b \in V_{m,n}; d(\phi_{t}(a), \phi_{t}(b)) \to 0 \quad \text{as } t \to \infty\},$$

$$L^{ws}(a) = \bigcup \{L^{s}(\phi_{t}(a)); t \in (-\infty, +\infty)\},$$

$$L^{wu}(a) = \bigcup \{L^{u}(\phi_{t}(a)); t \in (-\infty, +\infty)\}.$$

Then we have $F^i = \{L^i(a); a \in V_{m,n}\}$ i = ws, wu. As for the above discussion, see $[1, \S 13, 3, \S 2]$.

Let p be a divisor of m. We define a map ψ of $(V_{m,n}, F^i)$ onto $(V_{m/p,np}, F^i)$ by $\psi(x,y,u)=(px,y,u)$. Let T (respectively T') be a submanifold of $V_{m,n}$ (respectively $V_{m/p,np}$) which is the image of $\{0\} \times T \times \{0\}$ under the quotient map $T^2 \times \mathbb{R} \to V_{m,n}$ (respectively $T^2 \times \mathbb{R} \to V_{m/p,np}$). We define a homomorphism w of Z_p into Diffeo $(V_{m,n}, F^i)$ by

$$w_i(x, y, u) = (x + j/p, y, u) \quad (j \in \mathbb{Z}_n).$$

Then one can prove that ψ is a homogeneous covering map with the structure group Z_p . Let q be a divisor of n. If we define a map ψ' of $(V_{m,n}, F^i)$ onto $(V_{mq,n/q}, F^i)$ by $\psi'(x,y,u) = (x,qy,u)$, then ψ' is a homogeneous covering map with the structure group Z_q . Then we have:

THEOREM 2.2. (a) If p is a divisor of m, then there exists an action β of Z_p on $C^*(V_{m,n},F^i)$ such that $C^*(V_{m,n},F^i)\times_{\beta r}Z_p$ is isomorphic to $C^*(V_{m/p,np},F^i)$ (i=ws,wu).

(b) If q is a divisor of n, then there exists an action β' of Z_q on $C^*(V_{m,n}, F^i)$ such that $C^*(V_{m,n}, F^i) \times_{\beta'r} Z_q$ is isomorphic to $C^*(V_{mq,n/q}, F^i)$ (i = ws, wu).

It follows from a result of H. Takai [10, Theorem 4.2] that $KK(C^*(V_{m,n},F^i))$ (m,n=1,2,...) are isomorphic to one another, but it is not known whether $C^*(V_{m,n},F^i)$ (m,n=1,2,...) are isomorphic to one another.

REFERENCES

- V. I. Arnold and A. Avez, Ergodic problems of classical mechanics, W. A. Benjamin, Inc., 1968.
- R. J. Blattner, Quantization and representation theory, Proc. Sympos. Pure Math. 26 (1974), 147-165.
- 3. R. Bowen, Anosov foliations are hyperfinite, Ann. of Math. 106 (1977), 549-565.
- 4. A. Connes, Sur la théorie non commutative de l'integration in Algèbres d'operateurs (Seminaire, Les Plans-sur-Bex, Suisse, 1978), ed. P. de la Harpe, (Lecture Notes in Math. 725), pp. 19-143. Springer-Verlag, Berlin Heidelberg New York, 1979.
- A. Connes, A survey of foliations and operator algebras, Proc. Sympos. Pure Math. 38 (1982), 521-628.
- M. Hilsum and G. Skandalis, Stabilité des C*-algèbres de feuilletages, Ann. Inst. Fourier (Grenoble) 33 (1983), 201–208.

- 7. G. K. Pedersen, C*-algebras and their automorphism groups (London Math. Soc. Monographs 14), Academic Press, London, 1979.
- 8. J. Renault, A groupoid approach to C*-algebras (Lecture Notes in Math. 793), Springer-Verlag, Berlin Heidelberg New York, 1980.
- 9. M. A. Rieffel, C*-algebras associated with irrational rotations, Pacific J. Math. 93 (1981), 415-429.
- 10. H. Takai, C*-algebras of Anosov foliations, preprint, University of Warwick, 1983.
- 11. H. E. Winkelnkemper, The graph of a foliation, preprint.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE EHIME UNIVERSITY MATSUYAMA, 790 JAPAN