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ANALYTIC CROSSED PRODUCTS AND
OUTER CONJUGACY CLAS$ES OF AUTOMORPHISMS
OF VON NEUMANN ALGEBRAS

PAUL S. MUHLY* AND KICHI-SUKE SAITO**

1. Introduction.

_In [1] Arveson associated a non-self-adjoint operator algebra,
U (X, m,t), with each ergodic measure preserving transformation, 7, on a
probability measure space, (X,m), and he showed that the unitary
equivalence class of U (X, m,t) determines the conjugacy class of T and vice
versa. That is, he showed that U(X,m,7) and A(X',m’,7’) are unitarily
equivalent if and only if 7 and 7’ are conjugate. The algebra A (X, m,t) is
closely related to a subalgebra of the group-measure von Neumann algebra
W*(X,m,t) constructed from L[°(X) and . This subalgebra of
W*(X,m,t) was formally defined in [7] and subsequently was studied
systematically by McAsey and the authors [8-10] (and by others) under
the name “‘non-self-adjoint crossed product”; nowadays, for a variety of
reasons, we call it an “analytic crossed product’’ The important thing to
keep in mind is that while the unitary equivalence class of (X, m,t)
constitutes a complete set of conjugacy invariants for 7, as does the related
analytic crossed product, W*(X,m,t) contains no information about the
conjugacy class of 7. The reason, quite simply, is that for each such 7,
W*(X,m,t) is a hyperfinite II, factor and all such factors are isomorphic
(under the appropriate separability assumption, of course).

In a subsequent paper [2], Arveson and Josephson improved on [1] by
showing that the isomorphism class of U(X,m,t) determined t up to
conjugacy. Our objective in this paper is to extend their analysis and to
relate the outer conjugacy class of an automorphism of a von Neumann
algebra to the isomorphism class of the analytic crossed product
constructed from the automorphism. More precisely, let M (respectively
N) be a von Neumann algebra, let « (respectively f) be a x-automorphism
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of M (respectively N), and let M x,Z, (respectively N X;Z.) be the
analytic crossed product determined by M and a (respectively N and ) (see
section 2 for the definition of analytic crossed product). One says that « and
B are outer conjugate if there is a x-isomorphism y of M onto N and an inner
x-automorphism o of M such that yo g°a = foy. It is not difficult to see
that if « and B are outer conjugate, then M><,Z, and N><,Z, are
isometrically isomorphically by an isomorphism that is a o-weak
homeomorphism. Consequently, our interest centers on the converse
assertion. In section 3, we show that if « is properly outer on M, if B is
aperiodic on N, and if there exists an isomorphisin @ of M><,Z, onto
N><gZ, such that the restriction of @ (respectively &~ 1) to the self-adjoint
part of M><,Z,) (respectively N > Z ., ) is »-preserving (respectively o-
weakly continuous), then o and f are outer conjugate. (Recall that to say
that a is properly outer on M is to say that for no a-invariant projection p in
M is o|pMp inner; « is aperiodic if o" is properly outer for every neZ.)
We note that the notions of being properly outer and aperiodic are the
proper replacements for the ergodic theoretic assumptions on 7 in [1] and
[2] although it should be emphasized that in the result just stated no
assumptions concerning invariant normal states are made or used, as they
are in [1] and [2]. We note, too, that if o is inner, then M><,Z, is
isomorphic to M @ H*(T), where H®(T) is the usual Hardy space of
boundary values of bounded analytic functions on the unit disc viewed as a
subalgebra of L*(T), and in this case, while it is possible to describe the
automorphisms of M><,Z ., the preceding result does not hold. The
general case, where o« and B are arbitrary, turns out to be rather
complicated, and we hope to investigate it at another time. Finally, we note
that the continuity assumptions 6n @ are quite minimal. We do not assume
that @ is globally continuous in any topology, rather, we assume only that
the restriction of @ to the self-adjoint part of M><,Z, is star preserving,
and therefore isometric there, and that the restriction of @ ! to the self-
adjoint part of N>«,zZ, is -weakly continuous. While this last assumption
may appear a bit strange, we need it for our arguments. Nevertheless, we
expect that it is superfluous. It turns out that it is superfluous both in the
case when N is a type II, factor and in the case when N is a type III factor.
Our most complete generalization of [1] and [2] occurs in section 4,
where we assume that M is injective and N carries a faithful, normal, g-
invariant state. Under these assumptions we prove that if « is properly
outer and Bis aperiodic, then a and f are outer conjugate if and only if there
exists an isomorphism @ of M><,Z, onto N >iZ, such that the
restriction of @ (respectively #~1) to the self-adjoint part of M >, Z.,



ANALYTIC CROSSED PRODUCTS AND OUTER CONJUGACY CLASSES ... 57

(respectively N><zZ.) is o-strongly continuous (respectively o-weakly
continuous).

The theory of isomorphisms of function algebras has been an actively
studied area since the appearance of Nagasawa’s paper [12]. An analytic
crossed product may be viewed as a certain type of noncommutative
function algebra determined by a one-parameter subgroup of the
automorphism group of a von Neumann algebra. This is the perspective
developed in [ 7] where such algebras are called analytic subalgebras of von
Neumann algebras. In [11], the first author determined the isomorphisms
between analytic subalgebras of abelian von Neumann algebras. It is our
hope that the present study will point the way to finding the isomorphisms
between analytic subalgebras of arbitrary von Neumann algebras.

2. Preliminaries: Analytic crossed products.

Throughout this paper, M will be a von Neumann algebra on a Hilbert
space H and « will be a x-automorphism of M. Recall that the crossed
product M>a,Z of M by the automorphism group {«"},.; is the von
Neumann algebra on the Hilbert space 1*(Z,H) generated by the operators
n*(x), xe M, and L, defined by the equations

(r*(x)¢)(n) = ™" (x)¢(n), CeP(Z,H), neZ,

and
(Lb)(m)=¢(n—1), £eP(Z,H), nel

The automorphism group {&,},.g of M><,Z dual to {«"},.,in the sense of
Takesaki [16] is implemented by the unitary representation of R, {¥},cg,
defined by the formula

(&) () = 2™ (n), CeP(Z,H);

thatis, a,(T) = V,TV¥, Te M><,Z. For every ne Z, we define a o-weakly
continuous linear map &% on M ><,Z by the integral

&(T) = [ge™2"™4,(T)dt, Te M><,Z.

Recall that ¢§ is a faithful, normal, {4} ginvariant conditional
expectation of M>q,Z onto n*(M). We define M><,Z, to be
{TeM >, Z:¢4(T)=0, for all n <0}, and call M><,Z, the analytic
crossed product determined by M and «. (In previous papers, we called this
algebra a non-self-adjoint crossed product.) It is clear that M><,Z, is a a-
weakly closed subalgebra of M >«,Z which is generated by #n*(M) and L,.
Asisshownin [7]and [13], the algebra M ><,Z . is a maximal subdiagonal
algebra in N><,Z with respect to &5 and so, in particular, & is a
homomorphism of M>«,Z, onto n*(M).
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3. Isomorphisms.

We continue with the notation of section 2, and we let N be a von
Neumann algebra with a x-automorphism f. Suppose that o« and f are
outer conjugate, that is, suppose that there is a »-isomorphism y of M onto
N and an inner automorphism Ad(u) of M, for some unitary operator u in
M, such that y © (Ad(u)) ° « = B ° . Then, by [16, Propositions 3.4 and 3.5]
or [17], there exists a unique x-isomorphism @ of M >,Z onto N >zZ such
that

o(n*(x)) = n(y(x)), for xe M,
and

P(L,) = n(y(u*)) L.

Further, @ takes M >,Z, isometrically and isomorphically on N><,zZ ..
Therefore, we have the following

ProposiTiON 3.1. If o and B are outer conjugate, then there exists an
isometric isomorphism from M><,Z, onto N><zZ, that is a homeomor-
phism with respect to the o-weak topologies on M><,Z . and N><,Z ., .

Our aim in this section is to prove a converse to this proposition. We
assume, unless otherwise stated, that @ is an algebraic isomorphism from
M><,Z, onto N><zZ, such that the restriction, @)y, Of @ to n*(M) is
*-preserving and that the restriction, @~ !| sy, of @~ ton’ (N) is s-weakly
continuous.

LeMMma 3.2

”fjo L' (M><,Z,) = {0}.

Proor. Let
Xe () Li(M><,Z,,).
n=0

Then for each neZ, there is an element Y,e€ M ><,Z, such that
X =LY, Thus it is clear that ¢5(X) = 0 for all ne Z. By [13, Theorem
3.1], we have X = 0. This completes the proof.

We put M><,Z,¢ = L,(M><,Z,) and N>gZ, o= Lg(N><4Z,). Then
we have the following lemma whose proof is the primary place our
continuity hypotheses are used.
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Lemma 3.3. If o is properly outer on M, then ¢§(®(L,)) = 0.

Proor. Sinte @ is x-preserving on n*(M), we have
&(n*(M)) = P(n*(M)) N D(n*(M))* = (N> Z4) N (N >4 2, )*
= P (N).
Thus we have ®(n*(M)) S nf(N). For all xe M, we have
& (@(L.n*(x))) = &8 (<D (r*(a(x)) La))
and so
&8(P(L,) D(n*(x)) = &(n*((x)))h(D(L,)).
Sin¢e @ is isomorphic, we have
@1 (B(P(Ly))n* (x) ="n*((x)) @~ 1 (E5(P(La)))-
Since &§ is a conditional expectation of M >«,Z onto n*(M),
&8(@ 1 (B(P (L)))n* (x) = n*(ee(x)) &3 (P~ (£5(D(LL))).
Since « is properly outer on M, by [15, Proposition 17.4],
(0 (eh(#(L)) = 0
and so @~ (eh(®(L,))) € M><,Z . It is clear that
eb(P(M>a,Z 1)) = eb(P(Lo))n’ (N) = n (N)ef(®(L,)).

Thus ef(® (M ><,Z . ) is a two-sided ideal of nf (N). Put B equal to the o-
weak closure of &f(P(M><,Z o)) in nP(N). Then there exists a central
projection p in N such that B = nf (p)n? (N). Since B is the o-weak closure
of 7 (N)ef(®P(L,)), there exists a net {z,},. , in N such that the -weak limit
of {n”(2,)ef(P(L,))} 14 is n# (p). Since the restriction, @~ *| (), of ! to
n’(N) is s-weakly continuous, we see that &~ (n? (p)) is the o-weak limit of
{@71(n?(2,)e8(®(L4)))} ze- Since

- ! (ég(¢(l‘a))) € M><aZ+ 0>
P~ (nf(z,)¢h(P(L,)) belongs to M><,Z,, and so

@~ Y(nf(p)) € M><,Z.

Since p is a projection in N, p" = p for all n > 0. Thus, for n > 0,

O~ (ad(p) = &~ (P ()Y € (Lu(M><,Z,)) = Li(M>,Z,).
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Thus,
O~ (P () € () LM < Z.).
n=0

By Lemma 3.2, ™ !(n*(p)) = 0 and so p = 0. This implies that &§(®(L,))
= 0 and completes the proof.
ProrosiTioN 3.4. Suppose thqt o is properly outer on M. Then

@) eb(P(La(M ><,24))) = {0}

(il) efod=Pock on M x,Z,.
(iii) @(n*(M)) = n#(N).

(iv) @M ><,Z, )= N>4Z,.

Proor. (i) is clear from Lemma 3.3.
(ii)) Let Te M >, Z, and put n*(x) = &}(T) e n*(M). Then there is an
element T} in M >, Z, such that T = n*(x) + L, T;. So, by (i),

&8(®(T)) = &5 (P(n*(x))) + (@ (L, T1))
= @(n*(x)) + 0 = B(e5(T).
Therefore, ehod = Poel on M >, Z,.
(iii) From (ii),
P(n*(M)) = D(e5(M >, Z..)) = &§(P(M ><, Z,,))
= e (N> Z,)=n?(N).

Hence we have (iii).

(iv) From (i), we have @(M >, Z.,) = N > Z,,. Conversely, for every
TeN > Z,, there exists an element S in M >, Z, such that &(S) = T.
From (ii),

®(e5(S)) = £6(2(S)) = &§(T) =0

and so &5(S) =0. This implies that Se M >, Z,,. Hence we have
®(M >4, Z,4) = N >y Z,,. This completes the proof.

Every s-automorphism p e Aut(M) defines an action of Z on M:
n— ¢" e Aut(M). Clearly, this action is ergodic if and only if the *-
automorphism o is ergodic. We shall say that the x-automorphism o is
aperiodic if the action o is properly outer, i.e., ¢" is properly outer on N for
all n # 0. Then, by [15, Proposition 17.7], if M is a von Neumann algebra
without minimal projections, and ¢ is ergodic, then o is aperiodic. The
following lemma is well known as the relative commutant theorem (cf. [15,
Theorem 22.3]).
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LeMMA 3.5. Let B be a x-automorphism of N. Then B is aperiodic on N if
and only if
T (N) N (N >4 Z) = n*(3(N)),
where 3(N) is the center of N.

LeEMMA 3.6. Suppose that o is properly outer on M and f is aperiodic on N.
Then
P(L,) *®(L,) € 1 (3(N)).

Proor. For all xe M,
®(L,)P(n*(x)) = B(L,n*(x)) = &(n%(x(x))) B(L,).

Thus we have

" O(nt(x)) *B(L,)* = B(L,)* B(n*(x(x)))*.
Since @)y is *-preserving,

(% (x)) B(Ly)* = D(L,)* P(n*(x(x)))

and so

" (a%(D7 (%)) B(Ly)* = B(L,)* B(n*(x)).

Therefore we have
D (L,)* (L,) B(n*(x) = S(L,)* d(n*(x(x))) S(L,)
= @(n*(x)) (L,)* P(L,).
This implies that @(L,)* ®(L,) € n’(N) N (N >4 Z). By Lemma 3.5,
P(L)* B(L,) € (3(N)).
This completes the proof.
LeMMA 3.7. Suppose that o is properly outer on M and B is aperiodic on N.
Then
&(n*(M)L,) = nf(N) L.
Proor. By Proposition 3.4 (iv), we have
Lﬂ(N ><p Z+) = N ><ﬁ Z+0 = ¢(M >y Z+0) = ¢(Ld)(N ><p Z+).
Thus
Lﬁ *¢(L¢)(N ><ﬁ Z+) = N ><)ﬂ Z+
and so
Lﬁ *¢(L¢) eN > Z+.
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On the other hand, since Lg(N > Z,) = ®(L,)(N > Z. ), there exists an
element Sin N > Z, such that L; = @(L,)S. Then we have

B(L,)*Ly = B(L)* B(L,)S € t(3(N))(N >4 Z,) < N >4 Z..
Thus
Ly*®(L,) € (N > 2, )*.
This implies that L; *®(L,) € n#(N) and so
" @(n*(M)L,) < n*(N)L,.
Since Ly'e (M >, Z.,,), there exists an element T in M ><, Z,, such that
Ly = ®(L,T). Since Ly *®(L,) € n*(N), we have
Ly ®(L,)P(e5(T)) = Ly B(L,)e4(P(T))
= sg(L,,*«p(L,)@(T)) = sﬁ(L}',‘Lp) = 1.
Thus
Ly = &(L,)®(e5(T)) '€ B(L,n*(M)),
which implies that &(n*(M)L,) = n(N)L,. This completes the proof.
By Lemma 3.7, ®&(L,)L} € n?(N). Thus there exists an element b in N

such that &(L,)L} = n’(b). This observation leads to the following
lemma.

LemMma 3.8. With the notation and assumptions as above, b is invertible in
N. .

Proor. Sinte @~ (L;) L} € n*(M) by Lemma 3.7, there exists an element
cin N such that

nf(c) = ®(®~ ' (Ly)L¥) e nf(N).

Then

T (b)n?(c) = D(L,)L} D(S~ 1 (L;)LY).
Applying &~ 1, we have

P ‘(n”(b)n”(c)) =@~ 1(‘P(L,)L'}‘)<P' Y(Lg)L¥
= @} (B(L,)LEL)LE =1,

and so nf(b)n?(c) = 1. On the other hand,

m(c)nf (b) = B(P ! (L,)L’;“)¢(L,)L3‘

= (@ (Ly)LAL,)LE = 1.
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Therefore bc = cb = 1. This implies that b is invertible in N, and completes
the proof.

We consider the polar decomposition of b in N. That is, write b = v|bl.
Since b is invertible in N, v is a unitary operator in N and |bl
= (b*b)''? € J(N), because

nf(b*b) = nf (b)*n? (b)
= Ly®(L,)*®P(L,)L} € Lyn?(3(N)) L} = nf(3(N)).
Therefore there exists a unitary operator v, in M such that &(n*(v,))
= n(v*), and we have
" @(n*(vp) L) = ®(n*(vg)) B(L,) = nP (v*)nf (b) L,
= nf(1bl)L,.
Our goal in this section is the following theorem.

THEOREM 3.9. Suppose that o is properly outer on M and f is aperiodic on
N. If there is an isomorphism ® of M ><,Z, onto N > Z . such that the
restriction, @, 0f @ to n*(M) is s-preserving and the restriction,
- 1|,,n(N), of @~ ! to nP(N) is o-weakly continuous, then  is outer conjugate
to B, that is, there exist a »-isomorphism y of M onto N and an inner
automorphism o of M such that y° 6o o = f°y.

Proor. Since &(n*(M)) = n?(N), there exists a x-isomorphism y of M
onto N such that @(n*(x)) = n(y(x)), xe M. Put a(x) = voxv§, xe M,
where v, is defined above. Then ¢ is an inner automorphism of M. For
every xe M, we have

(1% (vo) L) P(n*(x)) = ®(n°(vo) L,m*(x))
= O(n*(vo)n*(x(x)) L) = ®(n*(0 ° a(x))n*(vo) L,)
= @ (n*(o ° a(x))P(n*(vo) L,) = P(n*(0 o x(x))n? (Ib]) L.
On the other hand, since |bl e 3(N),
®(n*(vo) L) B(n*(x)) = nP (bl ) Ly d(n*(x))
= nf(Ibl)Ly®(n®(x)) L} Ly = Ly®(n*(x)) Ly nP(Ibl)L,.
Therefore,
" (®(n*(0 ° a(x))) — Ly®(n*(x))L§)n* (bl )Ly = 0.
Since bl is an invertible element of N, we have

®(n*(0 ° a(x))) = Ly ®(n*(x))L}.
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This implies that yo oo a = oy, and completes the proof.

CoroLLARY 3.10. Suppose that o is properly outer on M and B is aperiodic
on N. If there exists an isomorphism ® of M >, Z, onto N > Z, suchthat
@) is *-preserving and @~ d vy IS 0-weakly continuous, then o is
aperiodic on M.

Combining Proposition 3.1 and Theorem 3.9, we have the following
corollary.

COROLLARY 3.11. Suppose that o is aperiodic on M and f is aperiodicon N.
Then o is outer conjugate to B if and only if there exists an isomorphism @ of
M ><,Z, ontoN > Z, suchthat @, is x-preserving and ®~* | , ) is o-
weakly continuous.

If N is a type II, factor or a type III factor, then we do not need the
assumption that ¢! (M) is o-weakly continuous. In fact, we have

THEOREM 3.12. Let N be a type 11, factor or a type III factor, let o be
properly outer on M, and let B be aperiodic on N. If there exists an
isomorphism ® of M >4, Z . onto N >4 Z,. such that ®| x=(M) IS *-preserving,
then a is outer conjugate to f.

Proor. It suffices to prove that Lemma 3.3 holds under our hypotheses.
In the proof of Lemma 3.3 we observed that é§(@(M x,Z,,)) is a two-
sided ideal in ## (N). Since finite and purely infinite factors are algebraically
simple, we conclude that either this ideal is the zero ideal, in which case we
are done, or that it is all of n#(N). In this case, there is a ze€ N such that
7 (2)éh(P(L,)) = nf(1) showing that 1= @ !(n(1)) e M >4, Z,,. This
contradiction shows that ¢5(®(L,)) = 0, which is what we wanted to prove.

4. Injective von Neumann algebras.

Throughout this section we suppose that M is an injective von Neumann
algebra on a Hilbert space H and that there exists a faithful normal state y
on N such that o f = . Our objective is to prove.

THEOREM 4.1. Suppose that o is properly outer on M and B is aperiodic on
N. Then o is outer conjugate to f if and only if there exists an isomorphism &
of M >4, Z, onto N > Z, such that ®| (M) IS 0-strongly continuous and
@ !| sy is 0-weakly continuous.

The following proposition is the key to the proof of Theorem 4.1, and is
modelled on some arguments in [2].
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ProposiTION 4. 2 If there exists an isomorphism ® of M ><1,Z+ onto
) 1S o-strongly continuous and @~ *| ., is o-
weakly continuous, then there exists an isomorphism ¥ of M >, Z . onto
N> Z, such that W]".(M) is x-preserving and ¥™'|., is o-weakly
continuous.

To prove this proposition, we use the amenability of the group U (M) of
all unitary operators in M. In [6], dela Harpe proved that a von Neumann
algebra M on a separable Hilbert space is injective if and only if U(M) is
amenable in the sense that the space, CH(U(M)), of left uniformly
continuous functions on U (M) admits a right invariant mean. Here U (M)
is considered as a topological group in the strong operator topology. The
separability condition on H is not essential (cf. [5, Remark]).

LEMMA 4.3. For any &,n € I*(Z,H), we define a function f;, on U(M) by
fen@®) = (B(n*@))* D(n*(v))¢,m), v e UM).
Then f , is left uniformly continuous on U(M).

Proor. Suppose that ¢ and 5 are non-zero. Since @
continuous, ®|,..y, is bounded. For any ¢ > 0, put

W, ={ve UM) : I(®(n*(v)) - 1)l <e/2 1@l Inl)

(M) 18 o-strongly

and

1@(rew) - )nll < g/21al2 el

where | @1l is the norm of @), We shall prove that | f; ,(u) — f;.,(v)l
<eif v*ue W,. If v*ue W,, then we have

| fen@) = fi o 0)]
< | (@{x*0)* D(r=(0), 1) (B(w*(0)* (W) )l +
+ (@ (n* (v))* P(n* ()€, n) — (B(r* (w))* D(n*W))E, )l

< lo(n* )¢ — d(n* W) &Nl I d(r*@))nll +

+ll@o(r* @) el | (n*(w))n — (r* @)y |
<o)l lo@r*@*w)é -l e @)qll +

+ (@)l o) 1 @(n*@*u)n —nll
sl gl lo(r*@*u)e -l +

+l@l2 el o @w*u)n —nll <e.

This completes the proof.
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Proor oF ProrosiTION 4.2. Put
R =sup{ll®(n*())l: v e UM)}.
Then from Lemma 4.3, R < oo and we have
R7ZIEN? £ (0(n* ()¢, #(n*(v))€) < R2 NI N2,
Since (®(n*(v))¢, @(n*(v))n) is left-uniformly continuous on U(M) by
Lemma 4.3, we may define

[&.1] = Suan (@ )€, &(7*©))n)dm(v),
where m is a right invariant mean on U(M) (such a mean exists by
assumption). By a lemma of Riesz, there exists an invertible positive
operator T such that [£,n] = (T¢&,n). Then T belongs to the weakly closed
convex hull of {&(n*(u))* ®(n* ()} ,cyny Thus T € N > Z. Since T is an
invertible positive operator in N ><; Z, we may apply [10, Corollary 5.3],
to conclude that there exists an element A in (N> Z4) N (N >Z,)7 !
such that T = A* A. Then, by the right invariance of m, we see that for all
(e PZ,K),
I Ad(n* ()4~ 1¢ll2

= (A*A®(n*(v)) A E, B(n*(v)) A7 1¢)

=y (@(r*v) A~ E, &(n* (uv)) A~ &)dm (u)

= fvan (B(r* ) A~ 1E, D(n*(u)) A~ E)dm(u)

= (TA YE,A71E) = (A*AA™LE A7 E) =€l

This implies that 'A®(n*(v))4~" is a unitary operator. Therefore, as in
[2, Corollary of Theorem 2.4], we may define ¥ by the equation
Y(S)=AP(S)A"!, SeM>qZ,. Then ¥ is clearly an isomorph-
ism of M >4, Z, onto N >3 Z,, such that the restriction, ¥|«) of ¥ to
n*(M) is »-preserving. Further, since

Y UT)=d 1 (A" ) Y (T)® '(A), TeN>xZ,,
¥~ | v is o-weakly continuous. This completes the proof.

Combining Proposition 4.2 and Theorem 3.9 proves Theorem 4.1.
Moreover, we have the following corollary.

COROLLARY 4.4. If a is properly outer on M, if B is aperiodic on N, and if
there is an isomorphism @ of M ><, Z . onto N > Z .. such that @|,..y, is o-
strongly continuous arid &~ |y, is a-weakly continuous, then o is aperiodic
on M and N is injective.
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Since an ergodic automorphism on a von Neumann algebra without
minimal projections is aperiodic, we have the following proposition.

ProrosiTiON 4.5. Suppose that M and N are von Neumann algebras
without minimal projections. If o and B are ergodic, then o is outer conjugate
to B if and only if there exists an isomorphism @ of M >, Z, onto N> Z,
such that | is o-strongly continuous and @~ *|,y, is o-weakly
continuous.

If N is either a II;-factor, or a factor of type III, then the following
theorem is a consequence of Theorems 3.12 and 4.1.

THEOREM 4.5. Let N be all,-factor or a factor of type I11. Suppose that o is
properly outer on M, that f is aperiodic on N, and that there exists a faithful
normal state y on N such that \ ° B = . Then a is outer conjugate to  if and
only if there exists an isomorphism ® of M >, Z, onto N > Z, such that
P () is o-strongly continuous.
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