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CONVERGENCE OF DERIVATIONS
ON NEST ALGEBRAS

TORBEN BYGBALLE JOHANSEN

1. Introduction.

The main result of this paper is that if a sequence of derivations on a nest
algebra converges in the strong topology, then it actually converges in
norm.

By proving a distance formula for an amplification of a nest algebra, the
result is extended to certain tensor products of operator algebras.

If the Hilbert spaces under consideration are separable the result can be
found without using a distance formula.

2. Notation.

We will let H denote a complex Hilbert space and let B(H) denote the
algebra of bounded operators on H.

Let 2 be a set of orthogonal projections in B(H), then AlgZ is the
algebra of operators which leave any closed subspace p(H) with p € &,
invariant. If N is an algebra of operators in B(H), then Lat N is the set of
invariant orthogonal projections.

An algebra N is said to be reflexive if N = Alg(Lat(N)). A reflexive
algebra N with Lat N commutative is called a CSL-algebra, and with
Lat N totally ordered it is called a nest algebra.

Let S be a subset of B(H), then S’ will denote the commutant of S in
B(H).

A linear map 6 : N — B(H) is called a derivation if

o6(nm) = né(m)+ o(n)ym for all nymin N.
If x € B(H) then ad(x): N — B(H) will denote the derivation n — xn — nx.

3. Sequences of derivations.
The following theorem is similar to some well known results [1], [5], [6]
for von Neumann algebras of type I, IIT and most algebras of type II.
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3.1. THEOREM. Let N & B(H) be a nest algebra, and let 6,: N — B(H) be
a sequence of derivations. If

lim I15,(x)|l =0 for each x € N,

then lim I8, 1l = 0.

n—oo

Proor. Let 6, be the restriction of 6, to the diagonal N N N*. Since this is
a type I von Neumann algebra, we have from [1, Theorem 3.1] that J,
converges to zero in norm. A standard fixed point argument [ 10, Theorem
4.1.6] shows that &, is implemented by an a,, with lla,l < 6,1

So by substituting §, with §, — ad (a,), we can assume that , vanishes on
the diagonal N N N*. We know from [2, Corollary 3.11] that §, is
implemented by a b,, and from above we have that b, e (N N N*)
= (Lat(N))". ,

For e € (Lat(N))” define d(e,n) = ad(b,e) on B(eH) = eB(H)e and let

P ={peLatN| }Lrg la(p,n)ll = 0}
and
2= {geLatN| jirg lo(1 — g,n)ll = 0}.
If p € Lat N then we can find a partial isometry u € N, such that either

u*u<l—p and uu*=p
or

uw*u=1—p and uu* < p.

If we aré in the first situation, then for each y € pB(H)p we have

o(p,n)(y) = p-0(p,n)(y) ' p = p - 0,(yu)u* — pyd,(u)u*

and since yu € N and u € N, we have that lim [d(p,n)(y)|l = 0.
Hence from [1, Theorem 3.1],

lim lo(p,n)ll =0, and pe P

n-*o

In the second situation we conclude in a similar way that p € 2, and hence
we have
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PUI=LatN.

Put
p=sup? and q=infd.

Let p,€ #, a€ A be an increasing subnet of (%, <), such that each
element p, has a successor p,.; > p, and such that p = supp,. If we let

€, = Pa+1— Da» We have that

lim 6(e,,n) =0,

and by [11, Theorem 4] we can find A(a,n) € C such that

I5uea— 2m < inf {Ibye, — de,I] A€ C} 4+ < Ia(uml + .

Let
to=lb,p— Y Ala,n)e,ll
aeA

and suppose that limsupt, =t > 0.
For fixed y € 4, we have

Y (/l(ac,n)—b,,)ea < ||8(py,n)|| +%—->0 for n >0,

asy

so we can choose n; > n,_; and o, > a,_, such that

(Ao, 1) — by )eg, Il 2 2, ke N.

If &(e,,,m) denotes the restriction of §, to the nest algebras e, Ne, ,

have from [2, Lemma 3.7], that

I3(esym)ll = $int {Ib, e, e, | 1€ C} 2 2~ 1.
k
Hence we can find x; € e, Ne, with x|l <1, such that

t 2
” 5(8%, nk)(xk) " = 5 - n—k’

and if we define x = ) x, € N, we have lxll <1 and

16,091 2 10teqme) 2 5 - 2,

k
contradicting the fact that lim | §,(x)Il = 0.

we
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We conclude that we can assume that b, = Y. A(a,n)e,. Let
aeA

1o = sup{ld(a,n) — A(B,n)l| a,f € A}

and assume that lim supr, = r > 0.
Now choose ny € N and a, < f§;, in A such that

|2, m) = 2(B1m)l > 5.
For fixed y € A we have that
r.(y) = sup{lA(@,n) — A(B,n)l| ¢, <7} < l0(p,, m)|l + %—+0 for n— oo,

so we can choose n, > n; and f, > a, > f; > a, such that

|4(02,m2) = 4Bz, ma)] > 3.

By induction we obtain
n;>nj_y,

Bi>a;>Bi—1 >y, and
|4y m) = 2By m)l > 7.

Now we can choose rank one partial isometries w; € N which maps from
eg,H to e, H. Then

w= Y w
i=1
is a partial isometry in N, and we observe that
16, )l = 15(,m))I 2 12(a;,m;) — 2(B;,mp)| > %

contradicting the fact that lim 6, (w)ll = 0.
.Since limr, = 0, we conclude that for an arbitrary o, € A we have
lim 16, p — A(ag,n) - pll =0

and hence that p € 2.
Similarly we conclude that q € 2, and we are in one of the following
cases:

j)p<gqg or i)gq=p.
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In the case i) ¢ —p must be an atom, since 2 U2 = Lat(N). Since
(g—p)B(H)(q — p) € N, we can assume that there exists 4,,u, € C such
that

lim 1b,q — (4,0 + ua(g — p)Il = 0.
By a rank one partial isometry v € N from (q — p)H to pH we conclude
that
limlA, —pu,l =0

and hence g € #, contradicting i) so we must be in caseii)sincepe Z N 2
we can assume that there exists 4,, 4, € C such that

lim b, — (A,p + pa (1 — p)) Il = 0.

Again by a rank one partial isometry in N from (1 — p)H to pH we conclude
that

liml4,—p,l =0
and hence 1 € £, and we have obtained the conclusion of the theorem.

For two weakly closed algebras N & B(H) and M & B(K), we have a
representation of the algebraic tensorproduct N(O M on B(H® K), by
N ® M we understand the weak closure of NO M in B(H® K).

Before considering sequences of derivations on tensorproducts, we need
some lemmas. The first is a distance formula, which is a generalization of
[2, Lemma 3.7] in content and in proof.

3.2 LEMMA. Let N@® M S B(H ® K), where N is a nest algebra in B(H)
and M an injective von Neumann subalgebra of B(K), Then for any operator
x € BHQ® K)

d(x, (N® MY) < 4lad (x)l
where ad(x): N® M - B(H® K).

Proor. Let x € B(H® K) be fixed. We can assume that Lat (N) is not
trivial, since otherwise it would be a consequence of [3, Theorem 2.3]. So
let p be a nontrivial projection in Lat (N).

Define the injective von Neumann algebras

o =(Lat(N))® M, o' =(NNN*)® M.



CONVERGENCE OF DERIVATIONS ON NEST ALGEBRAS 51

From [4] and [7] we have that &/ and &/’ have Schwartz property P, so as
in [2] there is a point y in the intersection of &/ and the ultraweakly closed
convex hull of the set {uxu*| u unitary in 2/'}, and it satisfies

lad(y) < k = lad(x)ll
and
x—yll <k.

For ¢,n € H, let T;, denote the operator
Tea@) = 01E)n, yeH
and let w,, denote the functional
wg,q(x) = (xEln), x € B(H).

For an ultraweakly continuous functional ¢ on B(H), we define the slice
map (see [12])

R,: B(H)® B(K) - B(K)
by

Ro( L x®m) = 5 otcom

Let{ € (1—p)H and n € pH, then T,,® 1 € N ® M, and we observe that
1) IR, (ad(y)(Ty, ® 1)1l < kN2 2.
If &l = Iyl =1 we find the formula

R, (ad(¢)(T;,® 1)) =R, ()= R, ),

with R, ,0)s R, (v) € M. The formula is valid for elements in the
algebralc tensor product, and hence for y, since the slice maps are
ultraweakly continuous.

So we obtain

2) IR, ) — Ry, W < k.

Let m, = wg,, ), Where £, € (1 p)H with €, =1 is fixed. Then for
yeH arbxtrary with a = py we have

R, (yp®1)-p®my) =R, (yp®1)-p&m).
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Hence we get from [2], that
3) IR, (y@®1)—p@m)ll <k

WY

for all y € H with |yl = 1.
Since (Lat(N))” is commutative, elements in &/ can be approximated by
simple step functions on the spectrum of (Lat(N))” with values in M.
For a simple step function z, we can find y € H with llyll = 1, such that

Izl = |l me(z) I,
hence (3) implies
4) lyo®1)—pQmll k.

Similarly we get for fixed , € pH with Iy, =1 and n, = R, (y)eM,
that "

) lyQd-p)®1-1-p)®n,ll k.
Then from (2), (4) and (5) we get that
ly—1®m,l < 3k.
Finally we conclude that
d(x,M') < 4k
as wished.

From [2] we know that the continuous and the algebraic cohomology
groups are identical for CSL-algebras, i.e.

H2(N, B(H)) = H"(N, B(H)).

By proofs identical with those of [8], [9], except for obvious changes one
obtains that if N=N,® ...® N, S B(H) is a tensor product of nest
algebras, then

"(N, B(H)) = 0.

Especially derivations on these algebras are implemented by bounded
operators.

The following lemma shows that also derivations on an amplification of
a nest algebra are inner.

3.3. LeMMA. Let N & B(H) be a nest algebra, then
H'(N®C-1,BH®K))=0.
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Proor. Let & be a bounded derivation. For any finite dimensional
projection g € B(K), we can define the derivation

3,;;N®C-I-BH®K)
by
0,(x) = (18 q)6(x)(1® q).

Since HN,B(H))=0 and g is finite dimensional there is an
b, € B(H® K), such that

6, = ad(b,).
From Lemma 3.2 we can assume that
Ib,l < 5- 6, <5- 11l
Let b be a weak limit point of (b,),, thensince 1® g € (N& C-I), wehave
5 = ad(b)
which finishes the proof.

3.4. PropoSITION. Let N be a nest algebra, and let 6,:N@C-I
— B(H ® K) be a sequence of derivations which converges pointwise to zero,
then lim 16,1 = 0.

Proor. With the aid of Lemma 3.2 and Lemma 3.3, the proof of
Theorem 3.1 carries over ad verbitum, except for the obvious changes, i.e.
instead of p we consider p@® 1, we find A(n,) € M’, and the'absolute value
is to be interpreted as the norm. Instead of [9, Theorem 4] we need [3,
Theorem 2.4].

Let now M be an ultraweakly closed subalgebra of B(K) with unit, and
with the property that if a sequence of derivations converges pointwise it
converges in norm.

3.5 CoroLLARY. With M as above and N a nest algebra, then if a sequence
of ultraweakly continuous derivations on N & M converges pointwise, it
converges in norm.

Proor. Let 6,: N® M - B(H® K) be the sequence of ultraweakly
continuous derivations converging pointwise to zero. From Lemma 3.3
and Proposition 3.4 we can assume that J, vanishes on N& C-1I. The
derivation property and the fact that N’ = C - I, then yields that &, maps
C-I® M into C-I® B(K). Since d, is ultraweakly continuous it is of the
form 1® p,, where p,: M — B(K) is a derivation, and the corollary
follows.
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3.6. CorOLLARY. The tensor products N;® ...Q N&® C-I1< B(H),
where Ny, ..., N, are nest algebras, have the above property.

It is easy to give examples of CSL-algebras N with H¢(N, B(H)) + 0, but
in the cases I know of the derivations are ultraweakly continuous, and
every sequence of derivations which converges pointwise will also converge
in norm.
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