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MARKOV RANDOM WALKS ON GROUPS

GORAN HOGNAS

Abstract.
Let X be a Markov chain on C and f a continuous function from C to a
topological group G. The process

So =e, Sn+1 =Snf(Xn+1), n= 1,2,..-

is called a Markov random walk on G. We investigate the set of possible
values taken by S and, under some regularity conditions on X, we also
study the recurrence/transcience properties of S by means of an embedded
ordinary random walk on G. We show, for instance, that if G is a transient
group then all Markov random walks on G are transient.

Let G be a multiplicatively written locally compact second countable
topological group. The object of this paper is to investigate the sequence of
successive products S;,S,,... of factors of the form f(X,),f(X,),...
where the X,’s form a Markov chain on some topological space C and fisa
continuous function from C to G. In particular, we are interested in the
possible values and the recurrence properties of the sequence (S,)% .

Muthsam [8] and Wolff [13] studied the problem for the case G a
discrete semigroup and G a compact semigroup, respectively. (In their
work CE G and S, is simply X, X, ...X,.) We will draw heavily on
these two papers.

Niemi and Nummelin [9] studied central limit properties of (S,)% o,
with G = R and f an arbitrary measurable function. In our investigation,
we will make use of their technique of introducing an artificial recurrent
atom for the Markov chain.

1.

Let C be a locally compact second countable Hausdorff space and
(X4)w2o a Markov chain on C with transition kernel P, which we will
assume to be Feller, cf. [12, p. 34]. P, will denote the probability on the
————
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canonical probability space (path space) C* induced by P and the initial
condition X, = x. Let f be a continuous function from C to G. The process

So=J]/Xp), n=12,...; So=e
k=1
will be called a Markov random walk on G.

ExampLE 1. Let X be a Markov chain on the integers Z, with transition
probability matrix P. Then

S, =X, +X,+...+X,, n=12,...

is a Markov random walk on Z. It reduces to ordinary random walk if the
rows of P are all identical (i.e. the X;’s are independent). If C = {1, —1}
with P(1,1) = P(—1,1) = }, then S is a symmetric simple random walk.

ExampLe 2. Let C = {0} U{n"!| 1,2,...} endowed with the topology
of the real line. Let P be defined as follows: P(0,1) =1

Pn~',(n+1)"Y)=a, P@ ',1)=1-q, n=12,...

where 0 <a, <1, n=1,2,.... If X is the random walk on C with the
transition probability matrix P, then

S,=X,+X,+...4+X,, n=12,...

is a Markov random walk on the real line R.

ExampLE 3. Let u be a probability distribution on the set of idempotent

matrices of the form
1 «
14+ap)™?
a+ap (5 )

where a,f € R, aff # —1. The behavior of a product
X X;..X,..1X,

of independent p-distributed random matrices is conveniently (for most
purposes) studied by considering the (1,1) entry of the product:

Sn = (1 + alﬁl)_1 (1 +a1ﬂ2)"- (1 +an—1 ﬁn)(l +anﬂn)_l

where the subscript i corresponds to the random matrix X ;. As we shall see
below S, is, under mild conditions on the probability 1, a Markov random
walk on the multiplicative group R \ {0}.
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In our analysis of the Markov random walks we will make extensive use
of the fact that the auxiliary process Z, = (X,,S,), n=0,1,2,..., is a
Markov chain on C x G with transition kernel

U((x,5), 4 x B) = { 1,(2)15(sf (2)) P(x,dz)
xeC, seG, Ac¥, Be¥%

where ¢ and ¥ are Borel o-algebras of C and G, respectively.

Following [13] we call a (n + 1)-tuple (x, Xy,...,X,) a chain of length n
from x to y if x = x¢, y = Xx,,, and x;,, is in the support of the measure
P(x;, ), i=0,1,...,n—1. Denote the chain by k, and define the functions
p and q by

p(ky) = f(x1) f(x3)...f(x,) and
q(kx) = Xp.

Suppose a sequence (k});-, of chains has the property that g(k},) converges
to u. If wis a limit point of the sequence p(k%}), it is necessarily of the form
w=vf (u), since p(k%)=v,f(q(k%) for some v, e G. Note that the
assumptions that G is a group and f a continuous function are used in this
argument.

For x,u € G consider the set of all sequences of chains (k%) starting from
x such that q (k%) converges to u (the sequence may be finite if there is a chain
from x to u).

DEerintTion. 11 (x,u) is the set of all limit points of the sequences p(k%)
such that g(k) converges to u.

If q(k%) — u, then we say that x leads to u, x ~u. If x~u implies
u~x, we say that x is essential. Note that x ~u is equivalent to

ue closure( D supp (P"(x, - ))>,

n=1

where P" is the n-step transition kernel for X.

We will make the following general assumption about the Markov chain
X (cf. [13]),

(A) Cis an irreducible class and all elements of C are essential.

(A) guarantees that all elements of C communicate. I.e. for every x,u € G
there exists a sequence (k") of chains starting from x such that q(k})
converges to u.

In our Example 1 above I1(0,0) is the set of all sums x; + X, +...
+X,—1+0 such that the transition probabilities P(0,x,), P(x;,X3), ...,
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P(x,-,0) are all positive. If, for example, P(0,nd), P(nd,0), P(0, —md),
P(—md,0) > 0 for some relatively prime positive integers m, n, and d, then
11(0,0) 2dZ.

In Example 2, I1(1,1) is a subset of the real interval [1,00). Note that
I(1,1) is necessarily a semigroup and that it is asymptotically dense. It is
also easily seen that I71(0,1) = I1(1,1) but I1(0,0) is empty because all
chains with g (k) close to 0 have

p(kg);1+%+%+...+—’hl—”
for some large positive integer m,,.

II(x,x) is either empty or a closed subsemigroup of G, the invariance
semigroup of the element x € C. To see this, notice that (x,g) can be
reached by the Z-chain from (x,e), ifand only if g € IT(x,x), cf. [13]. Soif
(x,e)~ (x,h) ((x,e) leads to (x,h)) as well we get (x,e)~(x,g) and
(x,g) ~ (x,gh) whence, by the transitivity of the relation ~, we obtain the
desired result (x,e)~ (x,gh).

R EeMaArk. The intuitively obvious transitivity of ~can be seen as follows,
cf. [13]: If g is a bounded measurable function on C % G, then we can
define

Ug(x,s) = { g(z,s/ (2)) P(x,dz) (x,s)e C*xG

(U((x,s), N) is to be interpreted as Uly(x,s) for aset N € € X ).

Using the assumption that P is Feller, the local compactness of C and the
continuity of the multiplication in G we can show that U and all its iterates
U" are Feller. Note that the functions U"(:,N) are then lower
semicontinuous for open sets N. Suppose (x,s)—~(x,s’) and
(x',8") ~ (x”,s”). This means, by definition, that for any neighborhoods N’
and N” of (x',s’) and (x”,s”), respectively, there are n' and n” with
U"((x,5),N’), U"((x',s"), N”) > 0. Choose N’ to be such that U"" (-, N”)
>0 on N’ to obtain U"*"((x,s), N”) > 0.

Suppose that there is an essential element (c,g) € C x G for the Z-chain.
Clearly, (c,g)~(c,g) so e e II(c,c). If he I(c,c), then (c,g)~ (c,gh)
and, by essentiality, (c,gh)~ (c,g), that is h™! e II(c,c). All elements
communicating with (c,g) are essential (as well as all (c,h), he G) so

I1(u,u) is also a group for all those u € C for which IT(c,u) # &. Thisis,
for instance, the case for all

ue |J support(P"(c, -)),
nz1l
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a set which is dense in C by assumption (A). The set of essential elements
thus contains the set

{u} x G,
O(c,u)# &
cf. [8], [13].

The groups II(c,c) and II(u,u) are, in fact, conjugate. To see this,
consider the transitions (#,e) ~ (c,l) ~ (u,e) or, equivalently, (u,e)~ (c,l)
and (c,e) ~ (u,l™1). If g € I (c,c), we get lgl~! € IT(u,u) and, conversely,
every element of IT(u,u) can be represented in this way. Hence 1 (c,c)l™*
= II(u,u).

REMARK. A slight modification of Example 2 will make [1(1,1) a group
(= R): Introduce a negative element —2, say, and a transition probability
P(1,-2)>0 and let P(—2,1)=1. Then II(x,y)=R for all x,y € C.
Note that the assumption (B) below is not satisfied by the Markov chain in
Example 2 even in its modified form.

For any (Feller) Markov chain, the essential classes are closed. If, for
example, the group G is compact or II(c,c) = G, we can then conclude that
all elements of C x G are essential. This also holds, of course, for the case
when
(B) C = {J support(P"(c, - )).

nz1

Conversely, if (B)is true for all ¢ € C we can argue as in [8] to prove that
II(c,c) is a group (for one and thus for all ¢ € C) if and only if (c,g) is
essential for the Z-chain (for some g € G).

We summarize the preceding discussion in

THEOREM 1. Under assumption (A), if there is an essential element (c,g) for
the Z-chain the set of essential elements contains the set

{u} xG.
O(cuw)# @

The invariance semigroup II(c,c) is a closed subgroup of G. Furthermore,
Jor u such that I(c,u) # &, II(u,u) is a group conjugate to II(c,c).

CoroLLARry 1. If, in addition, condition (B) holds for all ¢ € C, either all or
none of the invariance semigroups II1(c,c) are groups. Then all or none,
respectively, of the elements of C X G are essential for the Z-chain.
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CoroLLARY 2. If II(c,c) = G or if G is compact, then the same holds for
any u € C and all elements of C X G are essential.

For compact C and G we refer to the thorough discussion in [13].

REMARK. It might be worth while to note that the (relative) compactness
of II(c,c) will automatically make it a group, since a compact
subsemigroup of a group is, in fact, a subgroup.

2,

If X is stationary, i.e. X has an invariant probability measure 7 as its
initial distribution, then S is a special case of what we could call a
generalized random walk on G, cf. [3], [7]. For a stationary X on a
countable state space to admit a unique invariant probability distribution it
is necessary and sufficient that X be ergodic, cf. [13, p. 136]. In the case of a
general state space we will use the sufficient condition that X be positive
Harris, see [12]. In this section, we will study the recurrence properties of
such a walk. For the case G = R the criterion for recurrence is particularly
simple [3]:

S is recurrent if and only if E, f(X,)(=E,S;)=0
(E, is expectation with respect to P, and E,(-) = SEx(- n(dx).)

If G is the direct product of a compact group K and R, we have a similar
criterion, namely E, f,(X,) = 0, where f; is the second component of f: If
f(x)=(k,r) e KxR, then f,(x)=r. This result follows from the
preceding, since the walk on the compact factor is automatically recurrent
and the walk on the second factor R is itself nothing but a generalized
random walk on R. For G = C*, the multiplicative group of non-zero
complex numbers ~ T X R, where T is the circle group, we thus have the
following recurrence criterion

E,,log'Sll = 0.

Consider a group G. If all (ordinary) random walks generated by
probability measures whose supports are not contained in any proper
closed subgroups of G are transient, the group itself is called a transient
group. It is well-known that R™ is transient for m = 3. Under mild
conditions Markov random walks are also transient on R™, m = 3, see [4].
Our aim is to show that the same holds true for all transient groups
provided that some additional assumptions are satisfied.

Introduce the following condition on the transition kernel P of the
Markov chain X, cf. [9, (1.7)]

1) P(x,A) = h(x)v(4), xeC, A€,
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where v is a measure on (C,%) and h 2 0 a function on C with | h(x)n(dx)
> 0.

Using the splitting technique described in [9], cf. also [1], we can
decompose the chain X = (X,X,,...) by (a.s. finite) random times
7(1),7(2),... in such a way that the blocks X,;_ ;)4;,...,X,; and
Xup+15---»Xsi+1) are independent and identically distributed (i.i.d.).
(For a thorough exposition of the technique the reader should consult the
fundamental [10]).

REMARK. For a Harris recurrent chain, P* is minorized as in (1) for some
positive integer k, see [9]. The choice of k =1 is necessary in order to
ensure the decomposition of X,X,,... into independent blocks.

Suppose first that C is discrete and that X is positive recurrent and
aperiodic. (1) is automatically satisfied with h(x) =1 c}(x), v=P(,"),
where c is an arbitrary fixed element of C. The times rél), 7(2),... are the
successive returns of X to c. They are all a.s. finite: E,t(1) = (n(c)) ™ .

- Q-1 =
XT(1)+1 X‘t(’.)+2 "'X‘t('l) - St(l) St(n) n= 1,2,...

are products of i.i.d. random elements of II(c,c) & G. In other words,
(S:8) Som)> 1 isarandom walk on I1(c,c), generatingall of I1(c,c). Hence
if IT(c,c) is a transient group the random walk is transient. If IT(c,c) is a
subsemigroup of G which is not a group, then the random walk must be
transient, too (because any recurrent random walk automatically generates
a group, see [ 12]). The same holds for the process (S,,)s=, which differs
from (S;{) S.)i=, only by its initial distribution. Now, by (an extension
to the group case of ) the Main Lemma of [1], we can conclude that the
Markov random walk (S,)®, itselfis transient. Hence the desired result —
II(c,c) transient or no group at all =S transient — holds for discrete C.
(From the discussion in Section 1 we know that the invariance semigroups
II(c,c) are all isomorphic if they are groups).

In the general case the times 7(i) are return times to the set, where the
function h is positive, but, in general, not all of them. The difficulty lies in
the problem of characterizing the set (subgroup), where the random walk
(S21) Sem) 1 “lives™, i.e. the smallest closed subgroup containing all the
random variables S} S, 7 =1,2,.... Under certain conditions on f
and v, a characterization of this subgroup can be obtained. Suppose, for
example, that the support of v has non-empty interior and that the function
f is an open mapping. Then the smallest closed subgroup that could
possibly contain f(supp(v)) is the identity component of G. If G is
Connected and transient it follows that S is transient.

We can formulate this sufficient condition for transience slightly more
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generally. The distribution of the random group element f(Z), where Z is
distributed according to v, is a measure vf ~! on the Borel sets of G. If the
support of vf ~! generates all of G, then (Sy3) S,z 1 lives on G proper,
i.e. there is no closed subgroup a.s. containing all the products. Hence this
random walk is transient if G is a transient group. As before, it follows that
(S,)% ; is transient, too.

We summarize our results in a

THEOREM 2. Let X be positive Harris satisfying (1). If

(i) Cisdiscrete and the invariance semigroups II(c,c), ¢ € C, are either no
groups at all or transient groups or

(ii) the smallest closed subgroup containing the support of the measure vf ~!
vf " HA) = v(f~1(A)), A € 9) is G itself and G is transient,

then S is transient.

We saw above that for G = R or K X R the stationarity of X is enough
to furnish us with a recurrence criterion, namely E,S; =0 and E, f,(X)
= 0, respectively. For other groups, we will again use the decomposition
of X,,X,,... intoindependent blocks. If (Sy1) S;m)s>=1 is recurrent, then a
fortiori (S,)X is.

A random walk S on R? is recurrent if and only if ES, =0 and
ES} < oo, cf. [12, p. 98]. Hence our Markov random walk on R? will be
recurrent if and only if

E"(St(z) - St(l)) = O and Eul St(Z) o t(l)lz < 00

(assuming, as before, that the process does not live on a smaller subgroup).
The first condition reduces to E,S; = 0, since E, S, = (E,7)(E,S;) (with
7 = 1(1)). The second condition may be written

ElY f(X)? <.
i=0
If f is bounded, E,t% < oo will guarantee the recurrence of S.

THEOREM 3. Let X be as in Theorem 2. If

(i) C is discrete, the invariance semigroups IlI(c,c)=R or R? and
E.S; = 0 and, in addition, in the R?-case,

ElY f(X)|>? <o forsome ceC,
=1

where 1 is the first return time to ¢, or
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(i) G=R and E,S; =0 or
(iii) G=R?, E.S; =0 and

(1)
Evl Z f(Xl)lz < @,
i=0

where 1(1),7(2),... are the times discussed above decomposing the
chain X,,X,,... into i.i.d. blocks,

then the Markov random walk S is recurrent.

The conditions given are also necessary (in (ii) and (iii) provided that the
distribution of S, ;) — S, is not supported by a proper closed subgroup).

REMARK. If G is compact (or II(c,c) in the discrete case) then S is, of
course, always recurrent.

3.

For all Harris chains condition (1) is valid for some P*. However, it is
crucial for the decomposition of X into i.i.d. blocks that k =1. This
limitation is a considerable drawback, when we want to investigate
Markov random walks, where the increment S, ,, — S, is a function of two
(or more) consecutive values, €.g., S,+1— S, = f(X,, Xp4+ 1)

The process S is still a Markov random walk: just consider
X, = (X,,X,41) € CxC, cf. [11], but property (1) is lost in general.

P(Xn+1 e AxBl X, = (x1,X2)) =
8 (AP Ky € Bl Xpuy = x3) 2 5, (4)h(x)v(B)

which cannot be written in the form (1) unless, of course, n{x,} > 0. The
two-step transition is again more regular,

P(X,z € Ax Bl X, = (x1,3) 2 he2)(§ v(dy)h() v(B).

Random walks on certain groups, notably the group of rigid motions on
R?, have been investigated using the theory of semi-Markov processes, cf.
[4]. It can also be regarded as a Markov random walk on R¢. The essential
features of random walks on the semigroup of real n X n-matrices of rank
k < n may be studied by viewing (an embedded) Markov random walk on
the general linear group GL(k, R), see [5] or the survey [6].

Our Example 3 is a simple example of such a walk, the product of
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random projections of R? on 1-dimensional subspaces. Almost all of these
projections can be represented as matrices of the form

1+ap)! 1+ap) ta
BA+ap)™t  p(l+ap)la

where a,f € R, aff # —1. The projection is orthogonal if its nullspace,
spanned by the vector (—a,1), and its range, spanned by (1,8), are
orthogonal; thus the criterion for orthogonality is a = .

The product of two projections P; and P, is not, in general, a projection
itself (below, the subscripts i refer to the matrix P;, i = 1,2):

PPy = (1+a;By) 7" (L+0y )1+ 2) ! (ﬁl ﬂ(f;z)

Suppose X = (X,,X,,...) is a stationary Markov chain on the set of
matrices of the same type as P above. The first element of the product
matrix X, X,...X, is a Markov random walk on the multiplicative
semigroup R. Call that element S,, then

Sp= kI-—ll fXi—1,Xh), So=1, S =@+, 1,

where
fXo 1, X)) = A+ oy B +ap)™ !, k=2,3,....

Assume that P,(f(X;, X;+1)=0)=0 for all k (where = is the invariant
probability measure for the chain X). Then S is a Markov random walk on
the multiplicative group R \ {0}. Hence it is recurrent if and only if

E"logl f(XOaX1)|
= {logl f(x,y)| n(dx)P(x,dy) = 0.
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