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RANDOM POLYTOPES
AND THE VOLUME-PRODUCT OF
SYMMETRIC CONVEX BODIES

SHLOMO REISNER

1. Introduction.

A well known problem in the theory of convex sets is to find a lower
bound for the product of volumes P(K) = V(K)V(K*), where K is an n-
dimensional symmetric convex body (i.e., bounded, symmetric, convex set
in the n-dimensional Euclidean space R", having non-empty interior) and
K* is the dual body of K with respect to its center of symmetry. An upper
bound was obtained by Santalo [10]

1) P(K) < %2

(%, denotes the volume of the n-dimensional Euclidean unit ball). For an
elementary proof of (1) and related results cf. [9].
A widespread conjecture is that

@) P(K) = 4"/n!
Equality in (2) is known to hold for

K = Bl = B(I'i) = {x ='(x1,...,x,,); Z |X,-| = 1}
i=1
and for its dual

= n) = = cee s 4 < .
Bw B(loo) {x (xl’ ’xn)s llg'a;n |x;| = 1}
A wider family of convex bodies for which equality holds in (2) was
discussed in [9] where (2) was also proved for a special class of convex

bodies.
A somewhat weaker problem is whether there is a universal constant

¢ > 0 such that [P(K)]*" = c/n for all n-dimensional K ((1) implies that
[P(K)]'" < 2me/n).
In [4] it was shown that
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1/n c
3) (PR 2 e
for all K.

In this paper we show how a result of R. Schneider on the limiting
expectation of the number of vertices of a random polytope, can be adapted
and used to prove (2) for a class of convex bodies — the class of zonoids and
for bodies constructed using them. We remark that Mahler [8] proved (2)
for n =2, this becomes a special case of Theorem 2 here since all 2-
dimensional symmetric convex bodies are zonoids.

As for the general problem of confirming (2) — as far as we know it is still
open. We remark that a proof of (2) was given in [5] but there seems to be
some errors in the proof, in particular, the uniqueness which is claimed
there is known to be false (cf. [9]). We use here freely, terminology and
notations from the theories of convex bodies (cf. [3] and [6]) and Banach
spaces (cf. [7]).

2.
In this section we adapt the situation of [11] to our needs.
In n-dimensional Euclidean space R" (n = 2) let, for N = n

G, = (H1,—H1), Gz = (H2a_H2)a-'~;GN = (HN’_HN)

bg N random pairs of hyperplanes, where the hyperplanes H;, — H; in each
pair are symmetric with respect to the origin and meet the Euclidean unit
ball B" whose center is the origin. We denote by 3 the “strip”

H#={xeR-1< fi(x) <1}

where f; € R"is such that { f;,x) = 1 forall xe H; ({ -, - ) denotes the scalar
product of R").

Let Yy be the number of vertices of the symmetric (with respect to the
origin) polyhedral set

N
# = () %
i=1

Yy is a real random variable, let E(Yy) be its expectation. Assume now that
the pairs G; are independent, identically distributed and that their
distribution is given in the following way : we are given an even probability
measure u on S"~ ! and define a measure v on the space

G" = {G = (H, —H); H a hyperplane in R" which intersects B"}

by identifying G* with §"~* x [0,1] via G« (u,r)e S"~ ! x [0,1] where
G= (Hll,t’ _Hu,t)’



388 SHLOMO REISNER

H,.={xeR";{xu) =1

and on $""! x[0,1], v = (u X4) (4 - Lebesgue measure on [0,1]).

We assume also that the support of u is not contained in any (n —1)-
dimensional subspace of R". G, are distributed by the probability v.

The proof of the following theorem is an easy modification of the proof
of [11] and we omit it.

THEOREM 1.
gim E(Yy) =2""n'V(Z)V(Z}),

where Z, is the convex body whose support function h(x) is given by

1

o) =2 J | utx> dutw)
il 1

DEerINITION. Once the existence of the limit is proved we define

E, = lim E(Yy).
N—- o

Remark. Theorem 1 and [11] show that also E, = limy.,, E(Xy),
where X y is the number of vertices of the random polyhedral set generated
by N random single hyperplanes, rather than pairs of hyperplanes, with the
same distribution.

3. ,
The convex bodies K = K, whose support functions hg are given by

h(x) = f x| dvi)
st

with a given even nonnegative Borel measure v on "~ 1, are called zonoids.
Considered as unit balls of n-dimensional Banach spaces, these are exactly
the n-dimensional Banach spaces whose duals can be embedded
isometrically in L,-spaces (cf. [2]).

Let K = K, be a zonoid, in order to estimate P(K) = V(K)V(K*) we
may assume that vl = 1/2, i.e.,that K = Z, (u = 2v)in the terminology
of Theorem 1. We get:

THeOREM 2. a) Let p be as in Theorem 1, then E, > 2";
b) Let K be a zonoid of dimension n, then V(K)V(K*) 2 4"/n!.
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Proor. With the preceding remark it is clear that b) follows from
Theorem 1 and a). In order to prove a) it is sufficient to assume that u is
atomic with finitely many atoms, i.e.

u= Z j'J'5u,»+ Z A’ja-—uj
ji=1 ji=1
where m 2 n, 4;>0 and u;eS""* for all j, )7_ A;=1/2 and {u;}]-,
spans R".

The proof of Theorem 2 is based on three lemmas, the first lemma shows
that the polyhedron # is a polytope with probability which approaches 1.
Throughout this proof the letter P denotes probability.

Lemma 1.

P@EALl £j<m suchthat V1 <i < N, H; tu;)y=%0.

Proor. The set whose probability is to be computed is

=_§J U(H_{_u

hence
P(4y) = Z P[ﬂ (H; !(_u,):l = Z [P(H, £ u))]
j— =
Now
P(H, lu)=P@—-1=<t=<1suchthat H, =H, )=2J

hence

P(Ay) < Z Q-2 52
An n-dimensional polyhedral set is said to be simple if all its vertices are
intersection points of exactly n (n — 1)-dimensional faces.
LemMma 2. ForallN Zn
P(5# is not simple) =

Proor. Let By be the set whose probability is to be computed. We have
with the notation of Theorem 1:
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By c U (e Hy, N...0 &, H, = {x} for some x)
k=(61kys..0rps1kpsy
g=1%1

Therefore
P(By) s 2"*! (nlil)P(Hl N...NH,,, = {x} for some x)

=2~+1< N) JJ: P(xeH,, )dv(G,)...dv(G,).
H,

n+1
Hin.. = {x}

The nature of v guarantees that for fixed x, P(xe H,,,) =0, hence
P(By) = 0.

The third lemma is a result of I. Barany and L. Lovasz.

Lemma 3. [1] Let K be an n-dimensional symmetric, simple convex
polytope. Let v be the number of vertices of K, then v = 2".

We complete the proof of Theorem 2 as follows: for fixed N, let Ay and
By be as in the proofs of Lemmas 1 and 2. If (G,,...,Gy)isnotin Ay U By.
Then J# satisfies the assumptions about K that were made in Lemma 3 and
therefore Yy = 2". By Lemmas 1 and 2

which completes the proof.

4. Two corollaries.
Itisclear that P(K) = P(K*), hence, if K is such that K* is a zonoid, then

K satisfies (2).

COROLLARY 1. Let E be a k-dimensional Banach space having a basis
(e)f=1 with an unconditional basic constant x((e;)) =1 (i.e., | Y + oe,
= || Yaie; || for all scalars o; and all choices of signs). Let E,,...,Ex be
finite dimensional Banach spaces, each of which is either a subspace of an
L, space or a quotient space of a C(K) (K-compact) space. Let
F=(E;®...®E)g be the direct sum of (E,) in the sense of E (for
X =(x1,~, ) €F, ;€ E;, Ixllp= 1Y} Ixlzellg). If dim F = n then
P(Bg) = 4"/n! (Bg is the unit ball of F).

Proor. Use [9, Theorem 15 and Theorem 21] and Theorem 2.
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COROLLARY 2. Let X y be the number of vertices of a random polyhedral set
generated by N independent random hyperplanes in R, distributed according
to the same probability measure as in Theorem 1. Then lim E(Xy) = 2" and
also N=e

1/n
2< [ lim E(XN)] <.
N-=wo®

Proor. The first claim follows from Theorem 2 and the remark following
the proof of Theorem 1. The right hand side of the second inequality
follows from [11] and Stirling’s formula.

REMARKS ADDED IN PROOF. a) Recently, we proved a uniqueness in
Theorem 2: equality in b) (for a zonoid K) holds if and only if K is a
parallelotope.

b) Recently, J. Bourgain and V. Milman proved that [P(K)]'/" = ¢/n for
all n-dimensional K.
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