RANDOM POLYTOPES AND THE VOLUME-PRODUCT OF SYMMETRIC CONVEX BODIES

SHLOMO REISNER

1. Introduction.

A well known problem in the theory of convex sets is to find a lower bound for the product of volumes $P(K) = V(K)V(K^*)$, where K is an n-dimensional symmetric convex body (i.e., bounded, symmetric, convex set in the n-dimensional Euclidean space \mathbb{R}^n , having non-empty interior) and K^* is the dual body of K with respect to its center of symmetry. An upper bound was obtained by Santalo [10]

$$(1) P(K) \le \kappa_n^2$$

 $(x_n$ denotes the volume of the *n*-dimensional Euclidean unit ball). For an elementary proof of (1) and related results cf. [9].

A widespread conjecture is that

$$(2) P(K) \ge 4^n/n!$$

Equality in (2) is known to hold for

$$K = B_1 = B(l_1^n) = \left\{ x = (x_1, \dots, x_n); \sum_{i=1}^n |x_i| \le 1 \right\}$$

and for its dual

$$B_{\infty} = B(l_{\infty}^n) = \left\{ x = (x_1, \dots, x_n); \max_{1 \le i \le n} |x_i| \le 1 \right\}.$$

A wider family of convex bodies for which equality holds in (2) was discussed in [9] where (2) was also proved for a special class of convex bodies.

A somewhat weaker problem is whether there is a universal constant c > 0 such that $[P(K)]^{1/n} \ge c/n$ for all *n*-dimensional K ((1) implies that $[P(K)]^{1/n} \le 2\pi e/n$).

In [4] it was shown that

Received July 15, 1983; in revised form September 20, 1984.

$$[P(K)]^{1/n} \ge \frac{c}{n \log n}$$

for all K.

In this paper we show how a result of R. Schneider on the limiting expectation of the number of vertices of a random polytope, can be adapted and used to prove (2) for a class of convex bodies – the class of zonoids and for bodies constructed using them. We remark that Mahler [8] proved (2) for n = 2, this becomes a special case of Theorem 2 here since all 2-dimensional symmetric convex bodies are zonoids.

As for the general problem of confirming (2) – as far as we know it is still open. We remark that a proof of (2) was given in [5] but there seems to be some errors in the proof, in particular, the uniqueness which is claimed there is known to be false (cf. [9]). We use here freely, terminology and notations from the theories of convex bodies (cf. [3] and [6]) and Banach spaces (cf. [7]).

2.

In this section we adapt the situation of [11] to our needs. In *n*-dimensional Euclidean space R^n $(n \ge 2)$ let, for $N \ge n$

$$G_1 = (H_1, -H_1), G_2 = (H_2, -H_2), ..., G_N = (H_N, -H_N)$$

be N random pairs of hyperplanes, where the hyperplanes H_i , $-H_i$ in each pair are symmetric with respect to the origin and meet the Euclidean unit ball B^n whose center is the origin. We denote by \mathcal{H}_i the "strip"

$$\mathscr{H}_i = \{ x \in \mathsf{R}^n; -1 \le f_i(x) \le 1 \}$$

where $f_i \in \mathbb{R}^n$ is such that $\langle f_i, x \rangle = 1$ for all $x \in H_i$ ($\langle \cdot, \cdot \rangle$ denotes the scalar product of \mathbb{R}^n).

Let Y_N be the number of vertices of the symmetric (with respect to the origin) polyhedral set

$$\mathscr{H}=\bigcap_{i=1}^N\mathscr{H}_i.$$

 Y_N is a real random variable, let $E(Y_N)$ be its expectation. Assume now that the pairs G_i are independent, identically distributed and that their distribution is given in the following way: we are given an even probability measure μ on S^{n-1} and define a measure ν on the space

$$G^n = \{G = (H, -H); H \text{ a hyperplane in } \mathbb{R}^n \text{ which intersects } B^n\}$$

by identifying G^n with $S^{n-1} \times [0,1]$ via $G \leftrightarrow (u,\tau) \in S^{n-1} \times [0,1]$ where $G = (H_{u,\tau}, -H_{u,\tau}),$

$$H_{u,\tau} = \{ x \in \mathbb{R}^n; \langle x, u \rangle = \tau \}$$

and on $S^{n-1} \times [0,1]$, $v = (\mu \times \lambda)$ (λ – Lebesgue measure on [0,1]).

We assume also that the support of μ is not contained in any (n-1)-dimensional subspace of \mathbb{R}^n . G_i are distributed by the probability ν .

The proof of the following theorem is an easy modification of the proof of [11] and we omit it.

THEOREM 1.

$$\lim_{N\to\infty} E(Y_N) = 2^{-n} n! \ V(Z_{\mu}) V(Z_{\mu}^*),$$

where Z_{μ} is the convex body whose support function h(x) is given by

$$h(x) = \frac{1}{2} \int_{S^{n-1}} |\langle u, x \rangle| d\mu(u).$$

DEFINITION. Once the existence of the limit is proved we define

$$E_{\mu}=\lim_{N\to\infty}E(Y_N).$$

REMARK. Theorem 1 and [11] show that also $E_{\mu} = \lim_{N \to \infty} E(X_N)$, where X_N is the number of vertices of the random polyhedral set generated by N random single hyperplanes, rather than pairs of hyperplanes, with the same distribution.

3.

The convex bodies $K = K_v$ whose support functions h_K are given by

$$h_{\mathbb{K}}(x) = \int_{\mathbb{S}^{n-1}} \left| \langle u, x \rangle \right| dv(u)$$

with a given even nonnegative Borel measure v on S^{n-1} , are called zonoids. Considered as unit balls of n-dimensional Banach spaces, these are exactly the n-dimensional Banach spaces whose duals can be embedded isometrically in L_1 -spaces (cf. [2]).

Let $K = K_{\nu}$ be a zonoid, in order to estimate $P(K) = V(K)V(K^*)$ we may assume that $\|\nu\| = 1/2$, i.e., that $K = Z_{\mu}$ ($\mu = 2\nu$) in the terminology of Theorem 1. We get:

THEOREM 2. a) Let μ be as in Theorem 1, then $E_{\mu} \ge 2^n$;

b) Let K be a zonoid of dimension n, then $V(K)V(K^*) \ge 4^n/n!$.

Proof. With the preceding remark it is clear that b) follows from Theorem 1 and a). In order to prove a) it is sufficient to assume that μ is atomic with finitely many atoms, i.e.

$$\mu = \sum_{j=1}^{m} \lambda_j \delta_{u_j} + \sum_{j=1}^{m} \lambda_j \delta_{-u_j}$$

where $m \ge n$, $\lambda_j > 0$ and $u_j \in S^{n-1}$ for all j, $\sum_{j=1}^m \lambda_j = 1/2$ and $\{u_j\}_{j=1}^m$ spans \mathbb{R}^n .

The proof of Theorem 2 is based on three lemmas, the first lemma shows that the polyhedron \mathcal{H} is a polytope with probability which approaches 1. Throughout this proof the letter P denotes probability.

Lemma 1.

$$P(\exists 1 \leq j \leq m \text{ such that } \forall 1 \leq i \leq N, H_i \perp u_j) \xrightarrow[N \to \infty]{} 0.$$

Proof. The set whose probability is to be computed is

$$A_N = \bigcup_{i=1}^m \bigcap_{i=1}^N (H_i \not \perp u_i)$$

hence

$$P(A_N) \leq \sum_{j=1}^m P\left[\bigcap_{i=1}^N (H_i \perp u_j)\right] = \sum_{j=1}^m \left[P(H_1 \perp u_j)\right]^N.$$

Now

$$P(H_1 \perp u_j) = 1 - P(H_1 \perp u_j)$$

 $P(H_1 \perp u_j) = P(\exists -1 \le \tau \le 1 \text{ such that } H_1 = H_{u_i,\tau}) = 2\lambda_j$

hence

$$P(A_N) \leq \sum_{j=1}^m (1 - 2\lambda_j)^N \xrightarrow[N \to \infty]{} 0.$$

An *n*-dimensional polyhedral set is said to be *simple* if all its vertices are intersection points of exactly n (n-1)-dimensional faces.

LEMMA 2. For all $N \ge n$

$$P(\mathcal{H} \text{ is not simple}) = 0.$$

PROOF. Let B_N be the set whose probability is to be computed. We have with the notation of Theorem 1:

$$B_{N} \subset \bigcup_{\substack{k = (\varepsilon_{1}k_{1}, \dots, \varepsilon_{n+1}k_{n+1} \\ \varepsilon_{i} = \pm 1}} (\varepsilon_{1}H_{k_{1}} \cap \dots \cap \varepsilon_{n+1}H_{k_{n+1}} = \{x\} \text{ for some } x)$$

Therefore

$$P(B_N) \le 2^{n+1} \binom{N}{n+1} P(H_1 \cap \dots \cap H_{n+1} = \{x\} \text{ for some } x)$$

$$= 2^{n+1} \binom{N}{n+1} \int_{H_1 \cap \dots \cap H_n = \{x\}} P(x \in H_{n+1}) dv(G_1) \dots dv(G_n).$$

The nature of v guarantees that for fixed x, $P(x \in H_{n+1}) = 0$, hence $P(B_N) = 0$.

The third lemma is a result of I. Barany and L. Lovasz.

LEMMA 3. [1] Let K be an n-dimensional symmetric, simple convex polytope. Let v be the number of vertices of K, then $v \ge 2^n$.

We complete the proof of Theorem 2 as follows: for fixed N, let A_N and B_N be as in the proofs of Lemmas 1 and 2. If (G_1, \ldots, G_N) is not in $A_N \cup B_N$. Then \mathcal{H} satisfies the assumptions about K that were made in Lemma 3 and therefore $Y_N \ge 2^n$. By Lemmas 1 and 2

$$P(A_N \cup B_N) \xrightarrow[N \to \infty]{} 0$$

which completes the proof.

4. Two corollaries.

It is clear that $P(K) = P(K^*)$, hence, if K is such that K^* is a zonoid, then K satisfies (2).

COROLLARY 1. Let E be a k-dimensional Banach space having a basis $(e_i)_{i=1}^k$ with an unconditional basic constant $\chi((e_i)) = 1$ (i.e., $\|\sum \pm \alpha_i e_i\|_E$ $= \|\sum \alpha_i e_i\|_E$ for all scalars α_i and all choices of signs). Let E_1, \ldots, E_K be finite dimensional Banach spaces, each of which is either a subspace of an L_1 space or a quotient space of a C(K) (K-compact) space. Let $F = (E_1 \oplus \ldots \oplus E_k)_E$ be the direct sum of (E_i) in the sense of E (for $x = (x_1, \ldots, x_k) \in F$, $x_i \in E_i$, $\|x\|_F = \|\sum_{i=1}^k \|x_i\|_{E_i} e_i\|_E$). If dim F = n then $P(B_F) \geq 4^n/n!$ (B_F is the unit ball of F).

PROOF. Use [9, Theorem 15 and Theorem 21] and Theorem 2.

COROLLARY 2. Let X_N be the number of vertices of a random polyhedral set generated by N independent random hyperplanes in \mathbb{R}^n , distributed according to the same probability measure as in Theorem 1. Then $\lim_{N\to\infty} E(X_N) \geq 2^n$ and also

$$2 \le \left[\lim_{N \to \infty} E(X_N) \right]^{1/n} \le \pi.$$

PROOF. The first claim follows from Theorem 2 and the remark following the proof of Theorem 1. The right hand side of the second inequality follows from [11] and Stirling's formula.

REMARKS ADDED IN PROOF. a) Recently, we proved a uniqueness in Theorem 2: equality in b) (for a zonoid K) holds if and only if K is a parallelotope.

b) Recently, J. Bourgain and V. Milman proved that $[P(K)]^{1/n} \ge c/n$ for all *n*-dimensional K.

REFERENCES

- 1. I. Barany and L. Lovasz, Borsuk's theorem and the number of facets of centrally symmetric polytopes, Acta Math. Acad. Sci. Hungar. 40 (1982), 323-329.
- 2. E. D. Bolker, A class of convex bodies, Trans. Amer. Math. Soc. 145 (1969), 323-345.
- T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, Ergeb. Math. Grenzgeb., Berlin, 1934.
- 4. Y. Gordon and S. Reisner, Some aspects of volume estimates to various parameters in Banach spaces (Proc. research workshop, University of Iowa, 1981) pp. 23-53, ed. B. L. Lin. Univ. Iowa, Iowa City, 1982.
- 5. H. Guggenheimer, Polar reciprocal convex bodies, Israel J. Math. 14 (1973), 309-316.
- 6. K. Leichtweiss, Konvexe Mengen, Springer-Verlag, Berlin Heidelberg New York, 1980.
- J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, I-II (Ergeb. Math. Grenzgeb. 92, 97), Springer-Verlag, Berlin - Heidelberg - New York, 1977, 1979.
- 8. K. Mahler, Ein Minimalproblem für konvexe Polygone, Mathematica (Zutphen) B7 (1939), 118-127.
- J. Saint-Raymond, Sur le volume des corps convexes symétriques, in Seminaire d'initiation a l'analyse, 20° Année, 1980/81, Exp. No. 11, eds. G. Choquet, M. Rogalski, J. Saint-Raymond (Publ. Math. Univ. Pierre et Marie Curie 46), Univ. Paris VI, Paris, 1981.

- 10. L. A. Santalo, Un invariante afin para los cuerpos convexos del espacio de n-dimensiones, Portugal. Math. 8 (1949), 155-161.
- 11. R. Schneider, Random polytopes generated by anisotropic hyperplanes, Bull. London Math. Soc. 14 (1982), 549-553.

UNIVERSITY OF HAIFA
DEPT. OF MATHEMATICS AND SCHOOL OF EDUCATION OF THE KIBBUTZ MOVEMENT
HAIFA 31999
ISRAEL