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THE APPROXIMATION PROPERTY FOR
A PAIR OF BANACH SPACES

ELMER BONDE

0. Introduction.

In this note we will treat Grothendieck’s approximation property (a.p.) from
a sort of weaker viewpoint. More precisely we will consider a fixed pair of
Banach spaces (X, Y), for which operators from X into Y behave like one of the
spaces have the a.p. After Enflo’s famous example of a Banach space without
the a.p., it seems that many spaces do not have the a.p. The motivation for this
note should be seen in the light of this, because many theorems which assume
that a space have the a.p., in this way can be extended to spaces, where a pair
has the property above.

First we will define the a.p. for pairs of Banach spaces and show some simple
equivalent formulations of it. Thereafter we define an analogue to the bounded
approximation property for a pair and look at some factorization theorems.
Finally we mention some examples of pairs, which have this property without
any of the spaces having the usual a.p.

I wish to thank N. J. Nielsen for his guidance and help.

1. Notation.

Let in the following X and Y be Banach spaces and L(X, Y) be the space of
all linear and bounded operators from X into Y. Further we let K(X, Y) denote
the subspace of L(X,Y) consisting of the compact operators.

X ®, Ydenotes the completion of the algebraic tensor product X ® Yin the
greatest cross norm (|| ||,). Similarly X ®, Ydenotes the completion of X ® Yin
the cross norm |- |,, defined by

» x*(x.)y*(y..)’ D E=Y X, ® ),

i€l = Sup{

x*e X* |x*|=1,y* ey, IIY'||§1} ‘
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We will identify Y*® X with the finite dimensional operators from Yinto X.
If this identification is extended, we get a continuous map

i1 Y*®,.X - L(Y,X),
so that i(Y*®, X)=N(Y, X); the nuclear operators from Y into X. For the ¢-
tensor product, we have
Y*®,X = Y*@X!'l ¢ L(Y,X)
and since clearly N(Y,X)g Y* ®, X, we write
Y*®,.X - Y*®,.X .

Further, we will let t denote the topology of uniform convergence on
compact sets in X on the space L(X,Y).

A Tin L(X,Y) is called approximable, if it can be approximated uniformly
on every compact subset of X by finite dimensional operators, ie. Te X*® Y".

The general notation will closely follows [S]. Let us recall that X has the
approximation property (abbreviated a.p.), if every operator Tin L(X, X) is
approximable. Finally we will mention one of Grothendieck’s famous
equivalent formulations of a.p. (see [2]), namely that X has the a.p. if and only
if

BX*®,.X - X*®,X

is1-1.

2. The approximation property of (X, Y).

DeriniTION 2.1. Let X and Y be Banach spaces. The pair (X, Y) is said to
have the approximation property (abbreviated A.P.), if every operator T in
L(X,Y) is approximable.

We clearly have that (X, Y) has the A.P. if the space X or Yhas the a.p. The

converse is not true, as we shall see in Section 4.
Letj: Y*®,X — (L(X, Y),7)* be defined by

](Z y,"'®x,,)(T) =Y y,*(Tx,) forall Te L(X,Y).
n n
By [5, (Proposition 1.e.3)], j is a linear map onto (L(X, Y),7)*.

We have the following

PRroPOSITION 2.2. (X, Y) has the A.P. if and only if i~*(0)=j"*(0).

Proor. By definition of i and j, we have
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* i"Y0) = {ue *®.X

2 va*(Tx,) =0
forall Te X*®Y, ue ), y,,*®x,,}

i 0) = {ue Y*®,.X

Y va*(Tx,) =0

forall Te L(X,Y), ue) y,*® x,,} .

Therefore j~1(0)<i™*(0).

a If L(X,Y)=X*®Y* we get by (*), that i~*(0)<j~*(0).

b. Suppose i~'(0)=j"1(0). Let ¢ € (L(X,Y),7)* so that ¢(S)=0 for all
S € X*®Y. Because j is onto (L(X, Y),7)*, there exists an u € Y*®, X, such
that j(u)=¢. If

U=yt ®x,
especially
Y v*O0)x, =0 forall yeY,

that is u € i~1(0)=j~1(0). Therefore j(u)=¢=0.
We also have

ProposITION 2.3. Let X and Y be Banach spaces, then

(a) (X,Y**) has the A.P.
{
b) BY*®R,X > Y*®, X is1—-1.

i
(c) (X,Y) has the A.P.

Especially we have the following corollary, which should be compared with
Grothendieck’s equivalent formulation of the a.p. mentioned last in Section 1.

COROLLARY 2.4. If Y is a reflexive Banach space, then (X, Y) has the A.P. if
and only if

Y*®,X - Y*®,.X
is1-1.
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PRroOF OF 2.3. (a) = (b): Suppose X*@ Y**'=L(X, Y**). Let
U=y y*®x, e Y*®,X

such that i(u)(y)=0 for all y € Y. Then by looking at the double dual of i(u), we
get

Y y.*(Sx,) =0 forall Se X*@QY**.

The assumption therefore gives that

Y y.*(Tx,) = 0 for all Te L(X,Y**).

The implication then follows from the well known tact that (Y* ®,.X)*
=L(X,Y**).

®)=(: fi:Y*®,X > Y*®,X is 1—1, then i"!(0)=/"1(0) and the
implication is obtained by Proposition 2.2.

In general the two implications in Proposition 2.3 cannot be reversed, as the
following example shows. Let Z be a Banach space with the a.p., so that Z*
fails to have the a.p. Then the pair (Z**,Z) has the A.P. Because Z* does
not have the a.p.,

(*) il:Z*t®nZ*__) Z**@ez*
is not 1—1. By a simple argument, this is seen to imply that
i: Z"@,Z"‘ - Z*®¢Z**

is not 1—1, hence (c) does not imply (b) in Proposition 2.3.

We could have chosen Z* with the a.p., sb that Z** does not have the a.p.
Again (Z**,Z) have the AP, but now (*) gives that i: Z*®,6 Z**
— Z*®,Z**is 1 —1. Because (Z**, Z**) fails to have the A.P., we get that (b)
does not imply (a) in Proposition 2.3.

3. The bounded approximation property of (X, Y) and factorization.

Corresponding to the bounded approximation property (b.a.p.) for one
Banach space, we introduce

DEeFINITION 3.1. Let X and Y be Banach spaces. The pair (X,Y) is said to
have the A-bounded approximation property (abbreviated A-B.A.P.), if every
operator Te L(X,Y) can be approximated in the topology 7 with finite
dimensional operators, which is uniformly bounded by A||T|.
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In this terminology we simply have that X has the A-b.a.p. if and only if
(X,Y) (or (Y, X)) has the A-B.A.P. for all Banach spaces Y.

It is well known that K(Y, X)=Y*®, X for all Yif and only if X has the a.p.

This does not hold for a single pair of Banach spaces, since (Y, X) has the
B.A.P. (or A.P.) does not imply that K(Y,X)=Y*®, X. Indeed, let Y be a
Banach space with a basis, such that Y* does not have the a.p. Then there
exists a space X for which K(Y,X)+Y*®,X (see [5], Theorem 1.e.5), but
(Y, X) has the B.A.P.

The converse we leave as an open problem.

ProBLEM 3.2. Does there exist Banach spaces X and Y, so that K(X,Y)
=Y*®,X but (Y, X) does not have the B.A.P. (or A.P.).

Notice that this is related to problem 1.9 of [5].
]
We have the following theorem, the proof of which is essentially the same as
A. Pelczynski’s proof of Theorem 1 in [8].

THEOREM 3.3. Let X and Y be Banach spaces. An operator Tin L(X, Y) can be
approximated with finite dimensional operators pointwise if and only if T can be
factored through a space Z with a basis; that is, there are We L(X,Z 1) and
UeL(Zr,Y) such that UW=T.

Proor. First we note that it E is a Banach space with dim E=n (n € N), then
there are {U;}!~, S L(E, E) such that

k
dimUE = 1, Y UiH <2 12kgn? and

(1 "2 =t
Y Ux =x forall xe E.

i=1

To see this, define for i=rn+j (0Sr<n, 15j<n), Ux=x;*(x)x;/n, where
{x;}1-1, {x;*}}=1 is an Auerbach system for E.

The “if” part of the theorem is trivial.

For the “only if” part, we assume that there exists {T,}s>; S X*®}Y, so that

Tx-2» Tx forallxeX.

If $,=T, and S,=T,—T,_, for n>1, then
(0 Yy Sx=Tx forall xeX.
n=1

Set (dim S, X)? =m,. Hence for every n there are {U,,}[ , < L(S,X),as in (1). Set
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W;=U,S,, where j=m;+m,+...+m,_,+i; 15i<m, n=1,2,.... Then
W;: X — Yis a 1-dimensional operator. The last property in (1) and (2) gives
that

Y Wx=Tx forallxeX.
Jj=1

Let w; € W;X with ||w;| =1. Define

00
Zr= {(aj)}";l Y aw; € Yconverging}
=1

and set

k
Y aw;
j=1

lll@@)=:lll = sup

It is straightforward to show that (Z1]||-||]) is a Banach space and that the unit
vector basis form a monotone, normalized basis for Z;. Let W: X — Zbe
given by Wx=(a)%,, where Wx=aw; If k=m;+m,+...+m,_,+j, we

have
k Jj
I = Z VV,X 2 Uin
1=1 i=1
S NTo-axll +2I(T, = T,- )xll = SKITI x|,

where K is a constant such that |T,|| S K| T| for all n € N (the principle of
uniform boundedness). Therefore |W|| <5K||T|. Moreover let U: Z;— Y be
given by

n—-1
Z Six

i=1

k
Z aw, s + 1Suxll

=1

U((a)jzy) = j; aw; .

Then clearly |U||£1 and Tx=UWx for all x € X. Hence the “only if” part is
shown.

This theorem has an interesting collary, which should be compared with
Pelczynski’s man theorem of [8].

COROLLARY 3.4. Let Y be a Banach space and X a separable Banach space,
then (X,Y) has the B.A.P. if and only if all operators T in L(X,Y) can be
factorgd through a space with a basis.

To see this, we need an observation

LemMa 3.5. Suppose for all Te L(X,Y), there is {T,} S X*®Y such that
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T,x-2> Tx forallxeX.

Then there exists a constant C, such that for all Te L(X,Y), we can choose
{T,} = X*®Y with

IT.l = CIT| forallneN and

T,x 2> Tx forallxeX.

Proor oF 3.5. Let
x={(T),| T,e X*®,Y, neN and lim T,x exists for all x € X}.
n
By the uniform boundedness principle we can define
(T = sup | T,| for all (T,) e x.
n
In a natural way yx is a vector space and it is easily seen that (y,|||*|l]) is a
Banach space. The map &: y — L(X,Y) given by
& (T)>y — limT,
n

is clearly linear and bounded. By the assumption @ is onto and hence the open
mapping theorem gives a constant C’, such that for all Te L(X, Y) there exists

(T%) < 3, which comply with &((T%))=T and [[[(T,)|l|SC'|T|. Then there are
(S,)S X*®Y such that

S,x*"> Tx forallxeX and
IS.l = A+C)T| forneN.
Proor or 3.4. By Lemma 3.5 we see that if all operators in L(X,Y) can be

approximated pointwise with finite dimensional operators, then (X, Y) has the
B.A.P. It is easily checked that the reverse implication is true if X is separable.

We can in a way generalize the “if” part of Corollary 3.4, that is

ProrosiTioN B.p. Let X and Y be Banach spaces and A2 1. If every operator T
in L(X, Y) can be factored through a space Zwith the A-b.a.p., then (X, Y) has
the B.A.P.

Proor. First we will show the assertion if Z=Z fixed for all Te L(X,Y)
and Z= (X ®2Z),. Let We L(X,Z) and U € L(Z, Y) such that T=UW. Define

y(T) = inf {|UI W]},
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where infimum is taken over all factorizations of T through Z. By an argument
similar to Johnson’s in [4, Section 2] (in fact because we do not want a
“compact factorization”, it can be done much more easily), it can be shown
that y is a norm on the space I',(X, Y) of all operators T'e€ L(X, Y), which can
be factored through Z, and that (I',(X,Y),y) is a Banach space. The
assumption gives that I',(X,Y)=L(X,Y), hence y and |-|| are equivalent
norms, especially there exists a constant K, such that y(T)< K| T| for all
Te L(X,Y). By this and the fact that (X, Z) has the B.A.P. it is easy to show
that (X, Y) has the BAA.P.
If the Z’s are not equal, we look at

2‘1—‘-'( To zr) .
TeL(X,Y) 2

It is clear that Z comply with Z=~ (3@ Z),. Further, a standard argument
gives that Z has the A-b.a.p. T has a factorization through Z, Tthat is T=UW
where We L(X,Zy) and Ue L(Z1,Y). If i:Z;y— Z and Pr:Z — Z7 is
respectively the natural inclusion and projection, then T= (UP7)(iW) gives a
factorization of T through Z. Hence we are back in the first part of the
argument. "

The idea of the proof of Theorem 3.3 can be used to show:

THEOREM 3.7. Let X and Y be Banach spaces. Then Te X* ®, Yif and only if
T has a factorization through a space Z with a basis, such that T=UW, where
WeX*®.Zrand U e L(Zp,Y).

Proor. The “if” part is trivial.

For the “only if” part we refer to the same notation as in the proof of
Theorem 3.3. Let Te X*®,Y. We can clearly assume that there exists
{T}5% S X*®@Y with

T, T and |T,-T,| <2 ™fornsm.

As before we let $;=T; and S,=T,—T,_, (n>1). Then 33, S, converges
uniformly on By to T. W, is defined by {U,,}7z, as in Theorem 3.3, such that

00
Y Wx=Tx forall xeX.
i=1
Now we will show that Y.j=1 W, converges uniformly on By to T.
Let x € By and 8>0. Choose ko=Y2,' m, where n, € N such that 27"
<¢/4. For k2k, there exists n2n, complying with
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def "< . £
-y = Yy m;sks Y m=d,.
i=1 j=1
Then ‘
k 00 k
j=1 j=dy_y+1 j=de-1+1
oo m; k' '
S X USx|+]| Y ULSx
j=ni=1 i=1
00 k'
= Z S|+ Z UnlISxll <& (OSk'=k—d,_.,<m,).
j=n i=1

Let Wyx=a,(j)w;and Wx =32, a,(i)e;, where {e;}{2, is the unit vector basis in
Z 1. Next, set

k
PWx = Y a,(jej; rank (PW) =k
j=1

Z ax(j)wj

j=k+1

I

IWx— P, Wxlll = sup

nzk+1

00

sup < 2

n2k+1

j=k+1 j=n+1

for all x € By (if k= ko =k, (¢)). That is P, W converges in operator norm to W.
Hence We X*®,Zr.

4. Examples.

Now we will look at some examples of pairs (X, Y) with the B.A.P., such that
either X of Y has the a.p.

Maurey have shown that if X and Y are Banach spaces respectively of type 2
and cotype 2, then every operator T in L(X,Y) can be factored through a
Hilbert space [7]. (See [6] for the definition of type and cotype.) By this and
Proposition 3.6, we get

ProrosITION 4.1. If X is of type 2 and Y of cotype 2, then (X,Y) have the
B.AP.

ExaMPLE 4.2. It is well-known that [, for 1 Sp<o0 is of type min (p,2) and
cotype max (2,9). By results of respectively Szankowski and Enflo, [11], [1], we
have: For every 1< p <00, p#2, there exists a subspace X of /, without the a.p.
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Hence for 1<p, <2 and 2<p, <00, we can choose YcI, and X cl, without
the a.p. The pair (X, Y) has by Proposition 4.1 the B.A.P. Note that if X is of
type 2, then X * is of cotype 2. Hence if X is chosen as above, then (X, X *) has
the B.A.P.

ExampLE 4.3. Pisier has constructed an infinite dimensional Banach space X
such that

(a) X and X* is of cotype 2,
(b) X®.X2X®,X,
© X*®,XH X*®,X is onto

(see [10]).
The space X does not have the a.p. but (X, X*) has the B.A.P.
To see this, recall the following well-known facts

M (X®.Y)* = L(Y,X¥)
(I X®.N)* = I,(Y,X*)

(I,(Y,X*) is the 1-integral operators from Y into X*, see [9]).

It follows easily from (c) and (II) that X does not have the a.p.

(b) implies because of (I) and (II) that L(X,X*)=1I,(X,X*) and by the
definition of integral operators, we get that every operator in L(X, X*) has a
factorization through a L,-space. Hence Proposition 3.6 gives that (X, X*) has
the B.A.P.

ExAMPLE 4.4. Let A and B be C*-algebras. U. Haagerup have shown that
every operator T in L(A, B*) can be factored through a Hilbert space [3].
Especially we get that (4, B*) have the B.A.P. for arbitrary C*-algebras 4 and
B. We recall that there exists C*-algebras withput the a.p. (see [12]). Hence we
can get an example of the prescribed type.

We have now seen various examples of pairs (X, X*) with the B.A.P., such
that X does not have the a.p. That this is not true for every Banach space X,
can easily be seen, if se let X =Y @, Y*, where Yis a Banach space with the a.p.
such that Y* does not have the a.p.
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