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HARMONIC ANALYSIS
AND NONSTANDARD BROWNIAN MOTION
IN THE PLANE

JUHA OIKKONEN

Abstract.

A uniform distribution of directions yields an essentially conformally
invariant two dimensional nonstandard Brownian motion which is used
to analyse the relations between harmonic analysis and Brownian motion.
The construction leads to combinatorial proofs of a theorem of Kakutani
relating Dirichlet’s problem to Brownian motion and of a result of Lévy on
the invariance of Brownian motion and harmonic measure under
conformal mappings.

Introduction. 4

If b, and b, are independent one dimensional Brownian motions, then
b= (by,b;) is a two dimensional Brownian motion. In this way the
nonstandard construction by Anderson [1] of a one dimensional Brownian
motion leads to a nonstandard two dimensional Brownian motion (see also
Keisler [4]). The internal counterpart of this process is a random walk
where one takes infinitely often infinitely short steps corresponding to the
directions (1,1), (—1,1), (—1,—1), and (1, —1). We are going to construct
two dimensional Brownian motion in a similar way by means of an internal
random walk, where the directions of the steps correspond to the roots of
the equation z"¥ =1 with N infinite.

We assume that the reader is familiar with the elements of nonstandard
analysis and the use of Loeb spaces to construct measures; the required
details can be found in e.g. Cutland [2] and Keisler [4].

1. The construction.
1.1. DEFINITION. A stochastic process b:R*xQ-—R? is a two
‘dimensional Brownian motion in the space (Q,9,P), if
(i) for all ¢t > O the variable b(t, - ) — b(0, - ) is normally distributed with
density function (2nt)~Yexp(— (x? + x3)/2t);
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@ if 0=t <t, <...<t, then the variables b(t,, ) —b(ty—1,),-.-,
b(ty,*)— b(ty, ) are independent;
(iii) for almost all w € Q, b(0,w) = 0 and b(-,w) is continuous.

1.2. ProposITION. If b is a Brownian motion, then
P({o|lb(t,w) <r forall t < ty})—0
as to — 00.

This is a property shared by Brownian motion and discrete random
walks. We next construct the internal random walk to be used below.

1.3. ConstrucTION. Let H, N € *N \\ N and assume N = H! is divisible
- by four. Denote At = 1/H andlet T = {0,At,..., H}. Let S be the set of the
roots of the equation z¥ = 1. Because N is even, —z € S whenever z€ S.
Define Q = ST\ 0 = the set of internal sequences (w(At),...,w(H)). Let
3 = (Q,2,P) be the Loeb space obtained by giving to every weQ the
weight AP = 1/IQl = 1/N¥. Analogously, T = (T,%,M) will be the Loeb
space obtained by giving to every t € T the weight At. Recall that this space
represents the Lebesgue measure via the map st™! (see [2]). The internal
random walk B is defined by setting

B(0,w) = 0 and B(t + At,w) = B(t,w) + \/2At w(t + At).
Finally, extend B by linear interpolation to a function
B:*[0,H] x Q —»*R2.
This internal random walk generates a standard process by taking
standard parts.
1.4. DeFINiTION. We denote b(t,w) = °B(t,w) for te R™ and weQ;
B,(t,w) = B(t,®) + z and b,(t,w) = b(t,w) + z.

'1.5. TueoreM. The process b: R* x Q — R? is a Brownian motion in {3,
and the internal random walk B is S-continuous for almost all .

Proor. The proof goes like that for Anderson’s construction (see [1]).
The continuity and S-continuity parts follow also from Theorem 3.2 in [4];
the required hypermartingale property follows directly from our
construction. (See also the proof of Theorem 4.4. below.)

2. Harmonic measures.
We shall consider a bounded domain G S R?. To simplify our
discussion we shall make the following assumptions on G.
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(i) There is a continuous function p: G’ \\ G — dG, where G’ is a domain
with G U 0G < G'. Moreover, p | 0G = id.

(ii) If x € *G and °x € G, then there are r, ~ 0 and ¢, ~ 1/2, for which
=c,2nr, of the circumference of the circle with center x and radius r, is
contained in —*G. Moreover it is assumed that the function x +— (r,, c,) is
internal.

2.1. ExampLes. 1) The function p in (i) can be the perpendicular
projection on dG or px may be the element of G closest to x.

2) The disc G = {z|lz — z,| < r} satisfies both of these requirements.
More generally, this will follow from the regularity of the boundary of G; it
is enough that G is C? (actually almost C* suffices, see [5]).

We may assume that 0 € G.

2.2. DeFINITION. The discrete versions of the interior and boundary of G
are defined as follows:

IG = {B(t,0)|te T, € Q and B(s,w)e*G for t = se T};

DG = {B(t,0)|w e Q and t € T is the smallest with B(t,w)e —*G}.
Moreover,for x € IG and w e Q, T,(w) = the smallest te T with
B.(t,w)e —*G, when defined. Notice that B, moves along IG when
x € IG. Thus

DG = {B(T,(w), w)| w € Q}.
2.3. LEMMA. Assume that xe€IG and te T is finite B,(t,w)e*G and
°B,(t,wo) € dG. Then there exists an internal set A & Q with
PA|{w It=w, I't}) =1
and
w€ A = B,(T,(»),w) = °B,(t,w,).
(Here o 't = (w(At),...,w(t).)

Proor. We shall inductively apply condition (ii) imposed on G. Consider
B, as started from point B,(t,®), i.e. from the moment ¢t on. Then the
(conditional) probability for B, not coming out from a given circle is ~0
and we can neglect such w in the sequel. Denote by A4, the set of those w for
which B, comes out from the circle of center B,(t,w,) and radius rg (, ) in
the complement of *G. Let A4, be the union of 4, and the set of those w
for which B, has come from the previous circle in a point B,(t',w) € *G but
leaves in the complement qf *G the circle with center B, (t',w) and radius

TB.(t,0)
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It follows that Ao & 4; & ... and that for all standard & > 0 there
is an n,eN with P(4,)>1—¢ for n>n, This holds because
P(A,+1|—A,)~1/2 and 1/2+1/4+...=1. (For each n one can find
a “smallest c,” since Q is hyperfinite.) Finally, by w,-saturation we can
use an internal prolongation of the sequence (A4,),cn; and by overspill,
there is some 4 = A4;, ke *N \ N, for which 4, A4 for all neN.
Thus P(4) ~ 1.

We shall next start to use the internal random walk B to define a
harmonic measure for G.

2.4. DeriNtTioN. The internal harmonic measure M, on DG will be
defined for every x € IG by setting for every y € DG

AM,(y) = P({o| B\(Ty(0), ®) = y}).
For internal 4 & DG we get

Mx(A) = Z AMx(y)a
yeA

especially,
M,(DG) = P({w| T,(w) is defined}) ~ 1.

The internal space (DG,*#?(DG),M,) generates a Loeb space (DG, «/,M,)
which will be called the space of discrete harmonic measure.
A set A S DG will be called an interval, if there is an interval

I={xeR*a<x;<b;, i=12}
for which A = DG N *1.

2.5. LemMma. If A S DG is an interval, x,y € IG, °x,°ye G and x = y,
then M.(A) ~ M ,(A); so the function x— M (A) is S-continuous.

Ihdeed, the assertion follows from Lemma 2.3.
2.6. CoroLLARY. If A S DG is an interval and € > 0 is standard, then for

each standard n > 0 there is a standard 6, > 0 with |M (A) — M y(A)I <eg,
Jor all x,y€ IG satisfying

Ix —yl < 4,, dist(y,0G) > 1/n and dist(x,0G) > 1/n.

It follows also that for all intervals A { DG and all x,ye IG with x ~ y
and °x,°yeQG,

(*) M,(4) = M,(4).
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More generally, A S DG is Borel, if A = DG N*C for some Borel set
C < R2. Because & contains all intervals, it contains all Borel sets. Thus
(%) can be generalized to yield the following resuit.

2.7. LemMA. If A S DG is Borel, x,yelG, °x,°ye G and x ~ y, then
M, (A) = M (A).

This Lemma makes it possible to define for all xe G, M, = M, where y
is any element of IG with x ~ y. We shall next construct the harmonic
measure u, corresponding to any x € G.

2.8. DerintTiON. The harmonic measure on 0G corresponding to x € G is
defined by

1x(C) = M (st~ 1(C)),
where st™1(C) = {ye DGl °y e C}.
If I = {z|a; < z; < b;} is an interval in R?, then

(% %) st™(ING)= l&j *I, N DG,

ne

where I = {z|a; +1/n < z; < b; — 1/n}. This implies that p, will be defined
on all intervals and henceforth on all Borel sets.

2.9. TueoreM. If C is a Borel set of 0G, then the mapping x v u,(C) is
continuous on G.

Proor. It is enough to verify the assertion for intervals. In this case it
follows from Corollary 2.6 and (* *).

Next we shall compare the above constructions based on the internal
random walk B with the standard Brownian motion b. For x € G, we shall
denote

t.(w) = inf {t| b,(t,w) e —G},
when defined.
2.10. Tueorem. If A S 0G is Borel, then
(o] b@)0)€ 4}) = u(A),

Proor. Again, it is enough to consider aninterval A = I N aG where I is
an interval of R2. Then for P-almost all w,

b,(t(@),w)eI NIG <> Ine N* : B, (T, (w),w) e *I, N DG
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and
ty(w) = *T (w),

because B(- ,w) is S-continuous for almost all w. Therefore,
P({w|b,(t,(w),w)e I N OG})
= lim °P({w| By(T(w), w) € *I, N DG)

= lim°M_(*I, N DG) = lim M,(*I, N DG) = pu,(I N 3G).

As a special case we consider the harmonic measure in a disc relative to
the center. It will turn outin the next chapter that the following slightly more
general situation is of importance. So let G be a disc with radius r and center
°x with x € IG. Let G’ be the disc in *R? with center x and radius . The sets
IG and IG’ are defined in the obvious way. Because IG’ is invariant under
rotations with center x and angle a multiple of 2n/N, MZ(*I N DG') will
depend only on the length of the arc *I N *0G’, when I is an interval in R2.

On the other hand, *0G’ and *0G are everywhere infinitesimally close to
each other. So Lemma 2.3 implies that for all intervals I,

MS(*I N DG') ~ MS(*I N DG) ~ MS(*I N DG).

It follows that also uS(I N9G) depends only on the length of the
corresponding arc. We have obtained the following result.

2.11. TueoreMm. If G is a disc, x€ IG and °x is the center of G, then
M, = M., and p._ is uniformly distributed on 0G.

Finally, the following result is needed in the next chapter. Here again G is
any domain satisfying (i) and (ii).

2.12. LEMMA. If x,y€IG and °x,°y € G, then M, and M, have the same
null-sets.

Proor. By basic properties of Loeb measures, it is enough to show that if
A S DG is internal and M, (4) # 0, then M,(A4) % 0. Assume M (4) > ¢
> 0, where ¢ is standard. By Lemma 2.5, there is a standard § > 0 with
M,(A) > ¢ for all ze IG, |x —z| < é. Since G is connected, there is a finite
sequence of discs D,,...,D, & G with centers d,,...,d,, such that d; =°y,
dy+1€0D; for all k=1,...,n—1 and °xe dD,. It follows that B, has a
noninfinitesimal probability of hitting the disc with center x and radius é.
Hence M,(4) # 0.
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3. Dirichlet’s problem.
Recall that a continuous function u: G — R is harmonic in a domain
G C R?, if it satisfies the following mutually equivalent conditions:

(@) Dy u+ D,,u =0in G and ue C%(G);
(b) if r>0 and G' = {z]lz—x| <r} C G, then u(x) = (1/2nr){,,udm,
where m is linear Lebesgue measure on 0G'.
Dirichlet’s problem is to find for a given continuous function f: (G — R a
continuous function u:¢1G — R with u | G = f and u | G harmonic.
Below we shall use the internal random walk B to construct explicit
solutions to Dirichlet’s problem. We assume that G satisfies the
requirements stated in the previous chapter. Let f: 0G — R be a bounded
function which is u,-measurable for all xeG. (Actually, Borel-
measurability is enough.) Let F: DG — *R be an internal function, which is
a lifting of f with respect to some/all the measures M,, x€ IG, °x€G.
(Recall Lemma 2.12.) Here, *f is assumed to be extended to DG by

*f(y) =*/(*py), yeDG.
If f is continuous, F can be simply obtained as *f (*py).

3.1. Noration. Given f and F as above, we denote
u(x) =§,.fdu, for xeG;

U(x)=) FAM, forxelG.
DG

3.2. LeMMA. For x € IG, °U(x) = u(°x).

The assertion follows from the general properties of liftings in
nonstandard integration theory (cf. [2], and from Lemma 2.5.

3.3. LemMa. For x€lIG, U(x) = EF(B(T.(w),w)), when E denotes
expectation with respect to P.

Proor. It is enough to collect the terms of the sum
- LF(BL(T,(0),w))AP = AP} F (B (T, (), ))
according to the elements of DG.

3.4. TuroreM. The function u is harmonic in the domain G.

Proor. Lemma 3.2 implies that U is S-continuous. This will imply that u
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is continuous. We are left with proving that u satisfies property (b).
Consider a disc G’ with c1 G’ & G. We pick x € IG with °x being the center
of G'. The sets IG' and DG’ are defined in the obvious way; especially,
IG' U DG’ S IG. The following calculation implies the result:

uCx)~ U(x) ~ zz;c' U(y)P({o| BATE (@),w) = y})
ye

= ) UpAMI ()
yeDG'

% [pguCy)aMg (v)
= SD(;/u(O,V)dM"Gx’(Y) = SaG'“d#gx'-
3.5. THEOREM. If f is continuous and F satisfies F(y) = *f(*py) for
y€ DG, then U(x) = f(°x) for x e *G with °x € 0G.

Proor. Because f is continuous, there is a standard M with | F(y)l £ M
in DG. So we are again able to use the important Lemma 2.3.

3.6. CoroLLARY. If f is continuous, then for all ye 0G, u(x)— f(y) as
x—->yinG.

Indeed, this follows from 3.5 and 3.2. We have shown how the internal
random walk B and the internal expectation U lead to a solution of
Dirichlet’s problem. To end this chapter, we show how our Brownian
motion b is connected to the harmonic function u.

3.7. TueoreM. If f is Borel-measurable, then
u(x) = Ef (bx(tx(w), w)),
where the expectation is taken with respect to P.

Proor. For a simple function f the assertion follows from Theorem 2.10.
Clearly this implies the general result.

3.8. Remark. If f were not continuous, f is the limit of u on the
boundary of G in the weak sense that °U(x) depends only on those values
F(y) with ye DG and y ~ x, when °x € 0G.

3.9. REMARK. So far the uniform distribution of directions has been very
convenient but not necessary. In the next chapter it will be very essential,
however.
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4. Conformal invariance.

In this chapter R? is viewed as the complex plane C. Assume that a
function ¢ taking complex values is defined in some neighbourhood of z.
We recall that ¢ has a complex derivative if

Pz + h}z =@ _, ()

as h — 0in C. The function ¢ is analytic in a domain G if it has a derivative
at every point of G; moreover, ¢ is conformal in G if it is analytic and
¢'(z) # 0 everywhere in G.

In the sequel we shall assume ¢ to be conformal in the domain G. We are
going to study how ¢ transform B and b.

4.1. Notation. We define a new random walk B, as follows:
B,(0,0) = ¢(0);
B,(t + At,w) = B, (t,0) +|¢'(B(t,0))| \/2At ' (¢t + At),
where ’'(t + At) € S is the first element in the positive direction after
@' (B(t,w))w(t + At) / l¢'(B(t,w))l.
4.2. THEOREM. There is an internal set A which satisfies P(A) ~ 1 and
B,(t,0) ~ ¢(B(t,0))
for finite te Tand all we A.
Proor. Taylor’s formula gives

@ (B(t + At,w) = ¢(B(t),w) + /2At ¢’ (B(t,w))o(t + At)
‘ + Ato" (B(t,w)) o (t + At)? + &(t,w).

Thus
lo(B(t,0)) — B, (t,0)l < 18,| +18,| +18;l,
where

S, = ‘ijm,/zAt (¢’ (B(s,w)a(s + At) — | ¢'(B(s,w)) @' (s + At)),
s=0

with @’ as in the definition of B,;

t—At
S;= ,Z:o Atg” (B(s,0));
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and
t—At
S;= Y e(s,0).

s=0

If ¢ is finite, |S,| & 0, because by the definition of B,,
|S,| <tH - /2At-2n-1/N =t-./2H - 2n/N ~ 0.

To show |S,| = 0 one observes that

Ato” (B(s,w)) = /A2 ¢" (B(s,w))  /2AL (s + At)2.
Because z+—»z2 preserves uniform distribution on {z|lz| =1}, S, has the

form

t—At

JAt/2 ZO G(s,0")(B(s + At,w”) — B(s,0")),

where G is nonanticipating and w” varies over Q with probability measure
P. The density argument used to show that nonstandard approach to
stochastic integration gives the standard Ito integrals shows then that
|'S,| ~ 0, if ¢ is finite. Finally, |S;| ~ 0, because &(s,w) is of the form

' (s,m0), /At with ¢'(s,w) finite and hence

t—At
3
IS;] < maxle'(s,w)l Y. /At < maxle'(s,0) -t- /At
S s=0 s

The process b has the following properties:

(i) For almost all w € Q, the path b(- ,w)is continuous and unbounded;
(ii) For all ¢ > 0, the variables A, (¢); A, (&), ..., where

Ai(e) = b(t;(e), ) — b(r;-1 (¢),") and
7y(e) =inf{t > Ti—l(g)llb(ta ") =b(ti-1(e),")l = &}

are independent and evenly distributed on the set {z||z| = ¢} with respect
to Lebesgue measure.

4.3. DeFINITION. A process satisfying (i) and (i) above is called a
generalized Brownian motion. (Cf. the outline [3]).

4.4. TueoreM. The process (t,w)»—-np(b (t,w)) is a generalized Brownian
motion.

Proor. It is enough to verify the following result:
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CraM. If u is harmonic in a domain G and continuous on c1 G and if
x € G, then

u(x) = E(u(@ © b)s (t,x (@), ),

where (¢ © b), indicates ¢ (b) started from x and ¢,,, is the time of the first
exit of (¢ ° b), from G.

Here we assume that G satisfies the assumptions (i) and (ii) made in
Chapter 2. The Theorem needs the claim in the case, where G is a disc with
center x.

To prove the claim, we consider the discrete version. Givenadisc D S *G
with center y and radius r € *R*, we have

*u(y) = SBD *udp,

where u is the uniform probability measure on dD. So we obtain the
estimate

(%) ) - 5 S+ 9)| S 5.

for a finite, by approximating the difference between the integrand *u(z)
and the summand *u(y +rs) on each arc between the consecutive points
y+rs.

Denote by B, , the version of B, started from x. To be exact, B, , is
defined by a choice of B, (o, wo) ~ X, to€ T, as B, ,(t,w) = B,(to + t,0"),
where w'(t') = wy(t') for t' £ty and @' (to+ 1) = ().

Next we estimate *u(B,, .(0,w)) by the average of all *u(B, ,(At,®");
then each *u(B, .(At,w’)) by the average of all *u(B,,.(2At,w”) with
' (t) = w”(¢t). This process is carried on through all te T as long as the
points B, ,(t,) lie in *G. Collecting these approximations together, we
obtain by (%)

*u(x) & *u(B,,;(0,0)) & E*u(B, (T, (@), »)),

‘where T,, , is the time of first exit of B, , from *G. Finally, it follows from
the general properties of liftings that the Claim holds.

4.5. Remark. 1) The nonstandard proof of conformal invariance of
Brownian motion has two parts. In the first (4.2) we showed essentially that
@(b) is generated by an internal random walk B, differing from B only in
that the lengths of steps vary (S-continuously). In the other part (proof of
4.4) we showed that every such random walk generates a generalized
Brownian motion.
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2) The steps of B, have been actually defined using the first nonzero term
of the Taylor expansion of ¢. This can be done also when ¢ is only
supposed to be a nonconstant analytic function. Because the derivative of
such a ¢ can vanish only at finitely many points, those w leading to such
zeros can be neglected in the arguments. So our results and proofs hold also
for nonconstant analytic functions.

The following is due to Nevanlinna [6].
4.6. THEOREM. If ¢@:c1G—>clG' is a homeomorphism with ¢ | G

conformal (or just nonconstant analytic), then for all x € G and all Borel sets
A S 0G,

ps (A) = uS (@A),
where the indices G and G’ indicate to which domains the harmonic measures

correspond.

Proor. We may assume 0 € G. The internal versions I,G" and D,G" are
the sets of those B, (t,w) with B (t,w)el G_and B(t,w) e DG, respectively.
Then B, generates internal measures M, . and corresponding Loeb
measures M, . on D,G’ in analogy with chapter 2. In the same way we

obtain measures 4, . on 0G".
Let u:c1G’ — R be continuous and harmonic on G'. It follows from the

proof of Theorem 4.4 by methods of Chapter 2 that for xe I,,G’,
*u(x) & E*u(By (T, (@), 0)) = § D, *UdM,s.
Therefore for x € G/,
M(X) = SBG’ude,x’

which means that p,, , is the harmonic measure uS'. On the other hand, if
A € DG is an interval,

P{w| B,(T,(w),w) € A} & P{®| B, +,)(®),w) € *¢ A}.
So for all Borel sets 4 S 0G,
,ng (A) = ”’(p,{p(x)((PA)'
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