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DIFFERENTIAL OPERATORS CANONICALLY
ASSOCIATED TO A CONFORMAL STRUCTURE

THOMAS P. BRANSON*

Abstract.

Let (M,g) be a pseudo-Riemannian manifold of dimension n. Explicit
formulas are given for (1) a fourth-order operator D, ; on k-forms in M,
n # 1,2,4, (2) a sixth-order operator D¢ on functions, n # 1,2,4; and (3) a
sixth-order operator on (n— 6)/2-forms, n=6,8,10,...; which are
covariant under conformal deformation and transformation of g (subject,
in the case of Dg, to a curvature constraint). Various associated nonlinear
conformally covariant operators are also computed. Previously known
conformally covariant linear operators include the modified Laplace/wave
operator D, = [0 + (n — 2)K/4(n — 1) on functions (K = scalar curvature,
n # 1); the operator giving the Maxwell equations (n even); a second-order
operator D, ; on forms of arbitrary order k (n # 1,2) introduced by the
present author, which specializes to D, when k = 0 and to Maxwell when
k= (n—-2)/2; and a fourth-order operator D, on functions (n # 1,2)
introduced by S. Paneitz.

The old and new results are applied to the problem of finding
representations of the conformal transformation group of (M,g) which are
unitary, or at least admit invariant complex inner products. Explicit
differential geometric formulas for such inner products are given on the
representation spaces determined by D,, Maxwell, D,,, and D,; the
natural setting here seems to be that of Lorentz manifolds.

In the setting of compact Riemannian manifolds, all these operators
produce numerical invariants of conformal structure, and D, produces an
analogue of the Yamabe problem. This is used to get an inequality
obstruction to the possibility of finding an Einstein metric in the conformal
class of a given Riemannian metric.
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0. Introduction and contents.

The theory of conformal transformation and deformation of pseudo-
Riemannian metrics has long been important in geometry and physics. In
Riemannian geometry, conformal deformation of the metric provides a
natural way to vary geometric structures in a way which depends on only
one arbitrary function. The best-known application of this idea is to the
Yamabe problem of finding a Riemannian metric on a compact manifold
with prescribed scalar curvature [25,1]. In physics, where one has a
Lorentz rather than Riemannian geometry, the importance of conformal
structure was recognized much earlier, and here conformality is probably a
more fundamental notion. Conformal changes of metric and conformal
transformations leave invariant the set of null geodesics, i.e., the paths of
massless particles. For this reason, the conformal group of a spacetime has
been proposed as a fundamental physical symmetry group [9, 3, 10, 22,
23].

More recently, conformal structure has been important in the problem
of deciding whether two strictly pseudoconvex domains C" are biholo-
morphic. In [11], Fefferman defines a Lorentz metric on the manifold
C = S x U for a general strictly pseudoconvex domain U, in such a way
that a biholomorphism between domains induces a conformal diffeomor-
phism between the assiciated Lorentz manifolds. General invariants of
conformal structure, realized in C, are then biholomorphic invariants of U.
The light rays (null geodesics) in C play a-basic role in this circle of ideas,
and there is probably a strong connection with the physical problems
which first motivated the study of conformality.

This paper is about invariants of conformal structure, specifically,
differential operators which are conformally covariant (or conformally
quasi-invariant) in the same sense as the modified Laplace/wave operator

0.1) =0+ —2 ———_K, K = scalar curvature; n # 1

( —-1)
(n = dimension), and the operator giving the Maxwell equations (n even).
Our main results are explicit formulas for various general fourth- and
sixth-order conformally covariant differential operators on functions and
differential forms. The search for these operators was inspired by four
things: (1) the result of Jakobsen and Vergne [14] that in the special case of
four-dimensional Minkowski space, nonnegative powers [J? of the
d’Alembertian are covariant under the 15-parameter group of conformal
transformations; (2) the application by Grsted [19] of the conformal
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covariance laws for D, and the Maxwell equations to the representation
theory of SO (2,n); (3) the discovery by the present author [5] of a general
second-order conformally covariant operator D, , on differential forms of
arbitrary order k, for n # 1,2 (specializing to D, when k = 0, and to the
Maxwell operator on “vector potentials” when k = (n — 2)/2); and (4) the
discovery by S. Paneitz [20] of a general fourth-order conformally
covariant operator D, on functions, n # 1,2, with leading term [I?. To get
the present results without excessive calculation, somewhat more
sophisticated computational machinery than that used to get D, , and D is
required, and this is developed here.

Specifically, the new linear operators are (a) a fourth-order operator D,
on k-forms, n # 1,2,4; (b) a sixth-order operator Dg on functions when
n # 1,2,4 and a certain curvature obstruction vanishes; (c) a sixth-order
operator on (n— 6)/2-forms, n =6,8,10,.... Like D,, the Maxwell
operator, D, ;, and Dy, all these operators are polynomial in the covariant
derivative and the Riemann curvature tensor.

All of these operators are also “invariants of conformal structure”, or
“operators canonically associated to a conformal structure”. This is
because their conformal covariance laws, in the setting of ordinary
functions and forms, imply the existence of operators on function or form
densities (sometimes called weighted functions and forms) which, though
appearing to depend on the pseudo-Riemannian metric g, actually depend
only on the conformal class of g.

From the point of view of the classification problem for conformally
covariant operators, the dimension and curvature constraints above seem
to reveal some general trends. We do not get a conformally covariant D,
for manifolds of dimension 1, or a D, ; or D, for manifolds of dimension 1
or 2. For D, and D, this list of critical dimensions expands to n = 1,2,4.
One might expect more critical dimensions to appear for higher-order
operators. Actually, the calculation which gives D, , does give an operator
in dimension 4, but here D, , collapses to a zeroth-order differential
operator, an action of a 2-tensor known classically as the Bach tensor. The
covariance of Dg under the conformal change g —» Q™ %g, 0 < Qe C*(M),
is subject not only to n # 1,2,4, but also to the curvature condition

0.2) 1, (V.r*s—2Vgr*;) = 0, r = Ricci tensor

(vanishing of a one-form), which must be satisfied for all metrics in some
differentiable path of metrics conformally related to the original g; this
path beginning with g and ending with Q~2g. For manifolds (M,g)
satisfying (0.2), D¢ will be covariant under the subgroup of the group
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%(M,g) of conformul transformations generated by the identity com-
ponent of ¥(M,g) and the isometries. It may be that a manifold symmetric
enough to have a conformal group of nonzero dimension is automatically
conformal to a manifold satisfying (0.2). At any rate, D¢ seems to represent
a point at which the theories of conformal deformation and conformal
transformation diverge.

From the conformal covariance laws for the above linear differential
operators, one can deduce the conformal covariance of various nonlinear
operators, analogous to the well-known operators on functions

(0.3) ¢—=D0 0| Do, n#12,
¢ -y + |do|*e, n=2,

and to various hybrids of these. The operator (0.3) appears in the theory of
the Yamabe problem of prescribing K; in the same way, a nonlinear
operator based on D,

¢ - Do +|p|f" Vo, n 1,24,

appears in a Yamabe prescription problem for a function which is a linear
. combination of [JK, K?, and lI7lI? = r,r%,.
Linear conformally covariant operators D yield intertwining operators

for representations of the conformal group of a given pseudo-Riemannian
‘manifold (M,g); basically, such a D intertwines one representation on the
null space A4"(D) with another on the range %£(D). It is natural to ask when
these representations are unitary, or at least admit invariant complex inner

products (which may not be positive definite). We show that invariant

inner products can be produced in remarkable generality; that is, by
differential geometric formulas, without passing to examples. In the case of
AR(D), the formula is almost completely general. For 4" (D). we assume that
(M,g)is a Lorentz manifold, and impose certain topological conditions on
its spacelike surfaces. In a large class of examples, these inner products can
be shown to be nondegenerate; in special cases, they are known to be
unitary. ~ N

The paper is organized as follows. In Section 1.a, we standardize

differential geometric notation, and record some identities which will be
useful later on. In Sections 1.b and 1.c, we develop the computational
machinery necessary to calculate the high-order conformally covariant
operators. The highlight here is a theorem which states, roughly, that to
check covariance under conformal deformations g — Q™ 2g of the metric,
0 < Qe C®(M),itis sufficient to work only *“to first order in derivatives of
log Q”. In Section 1.d, we apply this machinery to give short proofs of the



DIFFERENTIAL OPERATORS ASSOCIATED TO A CONFORMAL STRUCTURE 297

conformal covariance of the known operators D,, Maxwell, D, ;, and D,.
In Sections 2. a —, we derive formulas for D, 4, D, and D (,- ), directly
from the requirement that they be conformally covariant “to first order”,
and at the same time, prove their covariance. Along the way, more
computational machinery, applicable to conformal deformation laws for
operators on forms, is developed. In Section 2.d, we catalogue the various
nonlinear operators whose conformal covariance can be derived from that
of the linear operators.

In Section 3, we explore the applications to group representation theory
described above. In Sections 4.a, we apply the results of Sections 1.d and 2
to get global conformal invariants of compact Riemannian manifolds.
Along these lines, we use the D,-Yamabe problem to obtain an inequality
obstruction to the prescribability of an Einstein metric by conformal
deformation of a given metric. Section 4.b explains how conformally
covariant operators on ordinary tcnsor fields lead to operators on tensor
densities which depend only on conformal structure. Section 4.c is about a
relation, discovered by Paneitz, of D, to the gauge theory of the Maxwell
equations. Section 4.d briefly describes results obtained jointly with Grsted
on an interaction of conformal covariance with the Minakshisundaram—
Pleijel expansion for the heat kernel.

The author would like to thank Irving Segal for teaching him the
importance of conformality in mathematics and physics, and Bent QOrsted
for many suggestions and enlightening conversations throughout the
course of this work. Thanks are also due to Harold Donnelly for educating
the author on various topics related to this work over the last few years, and
to Odense Universitet and the Institute for Advanced Study for their
hospitality.

1. -Conformal covariance.

a. Notation. Some identities. Throughout this paper, (M,g) will be a
pseudo-Riemannian (W¥R) manifold; that is, a C® manifold with a C*®
metric tensor g = (g,5) Which is nondegenerate, but not necessarily positive
definite. n will always denote the dimension of M.

From g we get a unique symmetric ¥R affine connection V, and the
associated Riemann, Ricci, and scalar curvatures R = (R%,,), r = (rg,),
and K respectively. (See, for example, [13, § 1].) We use the sign
conventions in which the Ricci and scalar curvatures of standard spheres
‘are positive: in local coordinates (x*), with J, = 6/0x",
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Raﬁluaa = (Vlvu - Vuvl)aﬁ
Tou = Rpap
K=r,.

Here and below, we employ the summation convention, and raise and
lower indices using the metric tensor and its inverse g' = (g*) = (g,) ™ *.

From g' we get natural metrics g* on the exterior bundles A*(M) (see,
e.g., [5]), and thus a formal adjoint 6 for the exterior derivative d. If E is a
local normalized orientation, i.e., an n-form defined on some open set U in
M with g"(E,E) = +1, then J is uniquely determined locally by the
requirement that

Sugk((P’d'l/)E = sng—Al(a(P:‘/’)E

whenever either the k-form ¢ or the (k — 1)-form y has compact support in
U. Since orientation-reversal has no effect on this definition, the
orientability of M is not an issue. More generally, one has unique, locally
determined formal adjoints for linear differential operators between WR
bundles on a ¥R manifold.

'Exterior multiplication ¢ - n A ¢ of forms by a one-form 5 will be
denoted &(n7). Exterior multiplication by a vector field X is just exterior
multiplication by the g-associated one-form (X,) = (g,5X?). Interior
multiplication of forms by a vector field X will be denoted ¢(X):

(I(X)(p)(Yl,'-': Yk—l) = (p(XaYI’-'-’ Yk—1)9

where the Y] are vector fields. Interior multiplication by a one-form is just
interior multiplication by the g-associated vector field (%) = (g* 7). t(n)is
the pointwise adjoint of &(n): if ¢ is a k-form and ¥ a (k — 1)-form, then

g@.emy) =g 1ume.y).

In classical notation, if ¢ = (1/k!)@,,  ,dx* A... Adx®isa k-form, then

k+1
(1'1) (d¢)a1...ak+l = Zl (—1)‘_‘V¢.¢a,...&,...ak+1 X
(12) (6(p)al...a._, = —'Vl(pl«,...a._l

k+1

} (1'3) (s(")q’)a,...a", = s=zf ('_1)8_1"¢,‘pa,...&,...a.“

(1‘4) (‘(X)(p)a,‘..a,-l = Xﬁ‘(pﬂ.al...a._l'
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Formulas (1.1)—(1.4) are valid in any local frame. Recall that in classical
notation, an expression like V,¢,, really means (Vo),,;.

The following notational convention will be used extensively in what
follows.

DEerintTiON 1.1.If (4%) is any rule which assigns to each local frame a list
of n? functions, and if ¢ = (%%, )isa tensor field, we abbreviate by
A*_ #@, or sometimes A 3¢, the rule which assigns to a given local frame &#

the list
(A #p)a,.../l,m._.#‘ = — .Zl Al.p (p/h...Tﬂ...A.m___m +

A; place

;Nhere all indices are relative to & .

REMARk 1.2. a) The A% need not be components of a tensor field.
For example, if I',;* are the Christoffel symbols in a frame (X,),
V.X; = I* X, the formula for the covariant derivative of a tensor field of
arbitrary type reads

(15) Va(pIJ = Xu(pll_ (ra.. #(P)I.I-

Here I and J are multi-indices, and X,¢'; is just the derivative of the
component ¢'; viewed as a scalar function.

b) The commutator of covariant derivatives on tensor fields of arbitrary
type is given by a # action of the Riemann tensor:

_ (1.6) . (VoVp— vaa)‘PIJ = —(R* 4 #p);.

c) If the A%g are the Components of a tensor field, then A+ # can be
characterized as the unique type-preserving derivation on the mixed tensor
algebra of M which annihilates functions, commutes with contractions,
and has (4°, #X)*= — 4% X? on vector fields.

d) Conversely, suppose that B is a type-preserving derivation on the
mixed tensor algebra which annihilates functions and commutes with
contractions. Then B = A4 for some tensor field 4 = (4%). For if fis a
function and ¢ a tensor field, B(f@) = fB¢. This means that B “lives at
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points”’; i.e., is a zeroth order differential operator with C*® coefficients.
Thus on vector fields, (BX)* = — A% X” for some tensor field (4%), and this
determines B as A # on tensor fields of all types.

e) Suppose A = (4%)is a tensor field, (X,) is a local frame, and (#?)is the
dual coframe. Then on differential forms,

1.7) A% = A%e(nP)(X,).

f) If B is an order-preserving derivation on the Grassmann algebra
which annihilates functions, B = A 3 for some A which is determined by
the effect of B on coordinate coframe forms dx®.

b. Conformal deformation of canonical linear differential operators. The
main objects of study in this paper are linear differential operators (LDO)
of the form

(1.8) D = polynomial (V,R®,g®,g'®, contractions)

on tensor fields.

Our concern will be with how such operators deform under conformal
change of ‘metric g = Q%g, 0 < Qe C*(M). To see how the “building
blocks” V and R deform, we adopt the notation of [8]. Fix a local
g-orthonormal frame (X,) (in which g,; = +J,4), and the corresponding
g-orthonormal frame (QX,). We underline all Christoffel symbols,
covariant derivatives, and curvatures calculated with respect to g, and all
indices relative to the frame (QX,). We set w = logQ, and abbreviate
expressions like V,w, V,V2V,0 by w,, w,*s respectively.

Lemma 1.3. a) (See, e.g., [8].)

(1.9) fggi = Q[ — 6. wp + gop*).

b) (See, e.g. [25].)

(1 10) REE_E = QZ(R“"M—u1p5’“+uuﬁ5“l—u““5”l+u,1“5”“), N
Uyg = Wop + W05 — %w‘w,lgaﬁ.

DEFINITION 1.4. a) A canonical tensor field space is a vector subspace of
the mixed tensor algebra gotten by specifying a certain
contravariant/covariant type '(s,t), and (possibly) some list of
symmetry/antisymmetry conditions.

b) A canonical LDO (CLDO) is an LDO of the form (1.8) carrying one
canonical tensor space to another.
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¢) Suppose D is a CLDO carrying a canonical space 7 of (s,,t,)-tensor
fields to a canonical space 7, of (s,,t,)-tensor fields. (s; is the contravariant
degree, or number of upper indices, and t; is the covariant degree, or
number of lower indices.) D is of level I, | = 0,1,2,..., if under a uniform
dilation g = 42g of the metric, 0 < 4 € R, D deforms according to

(1.11) D= Al-—s)+t-s1)p .

ReEMARK 1.5. The objects in the definition are actually “CLDO
schemes”, or rules which assign a CLDO to each WR manifold of a given
dimension n. One should really take the real vector space of such
polynomial schemes and mod out by “universal identities” like the Leibniz
rule

Vir*s9.) = r*gV10,+ (Var“p)ep,
and the Bianchi identity
‘V\araﬁ = %VBK‘

Looking at how V and R deform under uniform dilation of the metric ((1.5)
and special cases of (1.9), (1.10)), we see that all terms in such an identity
must be of the same level, and thus one has a space of level | CLDO schemes
modulo universal identities. To avoid this sort of language, we shall adopt a
consistent abuse of terminology in which we speak of “level | CLDO”,
instead of the more precise “‘equivalence classes of level / CLDO schemes.”

REMARK 1.6. The level acts as a counter for the number of
differentiations involved in a term of (1.8), R being viewed as a second
derivative of g. In other words, we get the level by assigning a score of 1 for
each V, 2 for each R®, and 0 for each g®, g'®, or contraction. For
example, the operator

(®ap) (VaVlVﬁ @+ (V. K)o, 5+ 6V, 042)
from 2-forms to (0,3)-tensors is of level 3.
(1.11) leads us to expect that under conformal change g = Q%g, the
operator of Definition 1.4 (c) deforms according to
Do = Q==+ E:=s1)(Dg + (remainder),),

where the remainder is some sort of canonical expression which is linear in
¢. However, we can also expect that for any ae R,
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D(Q%p) = Qa+!-:=s)+(ti=5)(Dg + (remainder),),

where the new remainder is the same kind of expression. The qualitative
observation about these remainders which will be essential here is given in
Definition 1.7 and Proposition 1.8 below.

- " DeriNtTioN 1.7. Let fbe a C* function on M. An f~augmented CLDO is
an LDO G(f) which carries some canonical space 7, of (s,,t;)-tensor
fields to another canonical space 4, of (s,,t,)-tensor fields, and which is

.. given by a formal expression

(1.12) G(f) = polynomial (V,R®,df®,g®,g'®, contractions).

G(f)is of level I if the effect of a uniform dilation g = Azg, 0< AeR,isto
make

G(f) = AI-—)+E=s)G(f).
G(f)is proper if each term in some representation (1.12) for G(f') contains

a df®. ’ .

ProrosITION 1.8. Let D be a level | CLDO carrying a canonical space
of (sy,ty)-tensor fields to a canonical space T, of (s,t,)-tensor fields. Under
conformal change g = Qg, with © = logQ, D deforms according to

(1.13) DQp) = Qet!-(:-s)+E=5) (Do + D* @ (w)p),

. where for each a€ R, D*@(w) is a proper level | w-augmented CLDO.

Proor. We proceed by induction on the length of the “‘string”
monomial (V,R®,g®,g'®, contractions)

which gives a term of (1.8). The assertion is certainly true of the simple
operators g®,g'®, and contractions, and is true of V and R® by (1.5),
:(1.9), and (1.10). In the case of V,

(1.14) V@l = QN0 + (U] =11 w0, +
+[00 0, — ga. @) #¢]")),
where I and J are multi-indices of lengths |I| and |J|; thus
V,@Q@¢l) = Q1T VI(V,01; + (@ + || = |[T)w,9", +
6w —g.w) #0lh).
,Written4wit.hout the indices, this says that
(1.16) V@p) = (Vo + VO (w)p),

where V*@(w) has the desired form.

- (1.15)
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Suppose now that D is a level I operator satisfying the assertion of the
theorem. Then the compositions g®°D, g!'®@°D, and (any
contraction) ° D are also level l operators satisfying the assertion. By (1.16),
Vo Disalevell + 1 operator satisfying the assertion, and by (1.10), RQ o D
is a level I + 2 operator satisfying the assertion.

REMARK 1.9. By keeping track of the number of derivatives at each stage
of the proof, we find that the order of D*@(w) as a differential operator
cannot exceed that of D.

An important special case of the above is gotten by considering zeroth
order, level | CLDO D carrying (t,s)-tensor fields to scalar functions. Such
an object is given, through the natural duality, by an (s,t)-tensor field T:

N o7 P Uy
Do = T4, oM Ma,

Unraveling the definitions, one finds that T must be an R-linear
combination of expressions

C(V...VR®...®V...VR),
iy times iy times
where i, = 0,

R+i)+...+Q+in=1,

and C is some composition of g®, g' ®, and contractions which leaves s free
(unsummed) upper indices and ¢t free lower indices. In other words, T is a
level I local (WR) invariant (see, for example, [4]). Proposition 1.8 and
Remark 1.9 imply that under conformal change g = Q%g, T deforms
according to

(1.17) T!, = Q(T'; + T* (w),),
I

where T* (w)is a proper w-augmented level | local invariant,i.e., an R-linear
combination of expressions

C(V...VRQ®...QV...VR®V...Vo ®...®V ... Vo),

e——— B [ w— e —
iy times i times Jy times Jp times

where C is as above,p21,m20,i, 20, j, =1, and
R+i)+...+Q+ip)+ir+...+j,=1
In this setting, (1.14) and (1.17) yield



304 THOMAS P. BRANSON

(1.18) Vo Ty = @YV (T! + T (@) )) +
+lw,(T'; + T (w)') +
+ [0 0, o, ) #(T + T* (@))]'}-

c. The equivalence of finite and infinitesimal conformal covariance. The
“nicest”” CLDO D from the conformal deformation point of view are those
for which

(1.19) g =Q%g = DQ%) =QDg, all ¢,
g§=D

for some a,beR. Looking at the behavior of CLDO under uniform
dilation (a special case of (1.13)), itis clear that (1.19)is possible only if D is
of some level [, and

b =a+ l— (tz ‘—52)"“' (tl - Sl),
where s; and t; are as in Proposition 1.8.

DcFINITION 1.10. Let D be a level | CLDO, defined for ¥R manifolds of a -
fixed dimension n. Lets, ty,5,,t,,7;,and 7, be asin Proposition 1.8. D is
conformally covariant of weight w if (1.19) holds for a = w'— (¢, —s,) and
b = w+1'— (t, —s,); that is, if the operator D™~ ¢1=s))(p) defined by
(1.13) vanishes identically (for all M, g, and w).

As an apparently weaker condition on D, one might demand only that
for some a, D*®(w) vanishes “to first order in derivatives of ®”. D*©@(w)

- can be decomposed as :

(1.20) D*@(w) = D*(w) + ... + D" (w),
where D**(w) is i-homogeneous in w: if u € R, D**(udw) = u'D"*(w).

DErFINITION 1.11. a) Let D be a level | CLDO, defined for ¥R manifolds
of a given dimension n. For ae R, we denote by D"®(w) the operator
D'*(w) defined by (1.20).

b) Let s; and t, be as in Proposition 1.8. D is infinitesimally conformally
covariant of weight w if D'™~ =50 () is identically zero (for all (M,g) and
we C(M)).

The equivalence of conformal covariance and infinitesimal conformal
covariance is asserted in Corollary 1.14 below. The following slightly more
general fact will be needed in Section 2.b.

PROPOSITION 1.12. Let D be a level | CLDO, defined for ¥R manifolds of a
given dimension n, and let s, t;, and F; be as in Proposition 1.8. Let (M,g) be a
particular n-dimensional ¥R manifold, and let 0 < Q € C*(M). Suppose that
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(x,u) = Q,(x)

isaC®map M X(—¢,14¢)— R* for somee>0,andthat Q, =1, Q, = Q.
Let D, (respectively D@, D) be D (respectively D*@, D'®) evaluated in
(M,Q; %g). Set w, = logQ,, and assume that for some a € R,

Jor all ug € [0,1]. Then
(1.22) D, (Q%p) = Qeti-t=s)+ti=s)p o
forallpe T,

Proor. Letb = a +I'— (t, — s,) + (t; — s1). We want to show that given
peJ,;and xeM,

(1.23) [ D. (%) — Dop)(x)] = 0

u=ugy

d
du
for all uy€e[0,1]. Since everything is C® and the expression in square
brackets is zero when u =0, (1.22) will follow. Since (Do@)(x) is
independent of u, the left side of (1.23) is equal to

d%( 07D, (@) — QztD, (@2 <p)>(x)

=i Qu_+/l u.,+h(Quo+h(p) _bDun(on(p) (x).
dh h=0 0

By (1.13) and (1.20), this last expression equals

4| QD@ (og @y +1/Ru,) ) ()
dhly=o\ 0 Tt ° °
4 (@t pr@(w, p—o,) )X)
dh b0 U uo up+ U
= Qb (x)( D@ d @ (x)
=Q, dh ug+h

do,

—Q"b /(a) [ 27w .

- (x)(D.,o ( = )) )

Thus the assertion is reduced to (1.21).
COROLLARY 1.13. Let D, s;, t;, T;, (M,g), and Q be as above. Let D,
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(respectively D\”) be D (respectively D'®) ‘evaluated in (M,Q~2*g). If for
some a € R, we have D, (w) = 0, ue [0,1], w = logQ, then (1.22) holds.

Proor. Set Q, = Q* in Proposition 1.12.
CoRrOLLARY 1.14. A CLDO is conformally covariant of weight w if and
only'if it is infinitesimally conformally covariant of weight w.

Proor. Infinitesimal conformal covariance means we have the
hypotheses of Corollary 1.13 for all M,g, and w. The conclusion implies
that

g= ng = Q(Qw—(t,-s,)(p) = Qw+l—(t2—sz)D(p

for all M,g,Q, and ¢, and thus that the identity holds universally (i.e.,itis a
formal identity in the sense of Remark 1.5).

REMARK 1.15. Let D, s;, t;, and J; be as above. If D is another CLDO
acting on J,, then
(1.24) (Do DY@ = Do p@ 4 prlati-ta=sd+i=s)lo p,

Loosely speaking, we have defined a derivation on the algebra of CLDO
whose kernel consists of the conformally covariant CLDO. We shall use

this to construct explicit conformally covariant operators in Sections 1.d,
2.a,and 2.b.

REMARK 1.16. a) In the special case of a level I local invariant T,
T'® = T’ is independent of a. Corollary 1.14 says that if T’ is identically
zero, then T is a universal conformal invariant:

g=Q%= 1"1{ =Q'T!,.

b) The operation T — T’ commutes with contractions, the raising and
lowering of indices, and, in the case of type (1,1) local invariants, the 3
action.

We shall adopt the notations 0
T'(@) = (T');) = (T")),
which suppress the dependence on w.
REMARK 1.17. By (1.18),for T a level I local invariant,
(VoTT) = Vo(TYy) + e, T'; +

(1.23) + [0 @, — g, ) #TT,.
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d. Known conformally covariant operators. When dealing with conformal
deformation properties, it is convenient to write local invariants in terms of

1
J —é-(;lT_T)K,n>1

26) ¥ = i 5 (% = J6%), n>2

Caﬂl# == Raﬂ)’“"i' Vlﬂéa“_ I/”ﬂaal"i' I/uaéﬂl"' Vldéﬂ‘” n> 2

instead of the Riemann tensor R, the Ricci tensor r, and the scalar curvature
K. C is the Weyl conformal curvature tensor; by (1.10),

g =% = Ctb), = QC¥,,;

in particular C’' = 0, and

(1.27) V%) = %, J' = o,

By the definitions and the Bianchi identity r*; , = 3K,
(1.28) Ve, =J, Vo, =Jj.

Here and below, indices after the bar denote covariant derivatives, and the
bar is not written in the case of functions (e.g., J5 = J ).

By (1.1) and (1.2), operators on forms built from d, J, V, and R are
CLDO. Conformal change does not affect the exterior derivative,sod = d
and

d( Q') = (Q*(d + ae(dw))gp.
Using this and the fact that § and d are formal adjoints, we get
3(Q%p) = Q**2(6 + (n — 2k — a)i(dw))e on k-forms.

(By (1.1)—(1.4), operators built from d, J, V, R, e(dw), i(dw), and dw are -
augmented CLDO.) Thus

(1.29) d'@ = gg, §'? = (n— 2k —a) on k-forms,
where we have abbreviated ¢(dw) and ((dw) by ¢ and «. By Remark 1.15,

(1.30)
(6d)y@ = 54’V + §"™d = ade + (n — 2(k +1) —a)ud on k-forms,

and in particular,
(1.31) (0d)Y®@ = ade + (n — 2 — a)d on functions.
But if ¢ is a function, dep = — V*(w,) and do = w’e, by (1.1)-(1.4).
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Thus

n.—-

(6dy®=2/2) = ;* on functions.

By (1.27) and Corollary 1.14, we have:

THEOREM 1.18 (see, for example, [19]). The operator

n—2 n—2
DZ_D+TJ_D+mK

on functions in conformally covariant of weight (n — 2)/2 for n # 1.

As usual, we set [J = 6d + dd on forms, and this reduces to [J = dd on
functions. Note that our sign convention gives (= — (02 + ... 4+ 02) in
Euclidean R".

The special casea = 0, k = (n — 2)/2 of (1.30) is the familiar result on the
conformal covariance of the Maxwell operator on ‘“‘vector potentials”:

THEOREM 1.19 (see, for example, [5]). On (n — 2)/2-forms for even n, the
operator dd is conformally covariant of weight (n — 2)/2.

In 1981, the present author constructed a general second-order
conformally covariant operator on forms of arbitrary order. On k-forms,

(1.32) (d6)y@=dé'@ +d'@*?D§ = (n—2k —a)di + (a + 2)ed.
Formulas (1.30) and (1.32) suggest looking at the “weighted Laplacian”

E]n’k=n-22k+26d+n—22k—2d6’

since the apparently first-order differential operator

= ,((,,_2,‘._2)/2)=n-—2k+2 n_2k_2
(Dn,k) 2 2

is actually zeroth-order. To evaluate id + di + ¢ + €0, recall that if X isa
vector field,

(1.33) ‘ Ly = (X)d + di(X) on forms,

(1d + di + de + €0)

where Ly is the Lie derivative with respect to X. By the symmetry of V
(VxY—VyX = [X,Y]),Lx — Vyisaderivation on the mixed tensor algebra
which annihilates functions, commutes with contractions, and agrees with
V. X # on vector fields; by Remark 1.2 (d),
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(1.34) Ly—Vyx=V_X-4# on arbitrary tensor fields.

Furthermore, the ¥R condition Vg = 0 implies that Vg* = 0 for all the
metrics g* on forms, and this gives

(1.35) ¥ = —Vx—V.,X* on forms.
By (1.34). (1.35). and the identity
(1.36) (A*, #)*=A ¥ on forms

(recall Remark 1.2(e)),
(1.37) Ly+L§=-V,X*+V X*#+V-X 4 on forms.
By the symmetry of the Hessian, wy, = w,5, we have

(1.38)
((dw)d + di(dw) + de(dw) + e(dw)d = Ly, + LE, = —0,* +2w*_ #,

where L,, is the Lie derivative with respect to the vector field (w*)
associated to dw by g. Thus

(ﬁn,k)l((n_Zk_Z)/z) = (’— CUAA + 20)'. #)

n—2k+2 n-2k-2
2 2

Now if T is a local invariant of tensor type (1,1), (T, #)’ = (T"), #*. Thus
(V #) = o, %, and we have proved:
THeoreM 1.20 ([5]). Let B = (n — 2k)/2. The operator on k-forms
Dy=B+1)od+ (B —1)d6+ (B+1)B—1)J =2V #)

is conformally covariant of weight (n — 2)/2 for n #1,2. D, ; specializes to
((n+2)/2)D, on functions, and to the Maxwell operator éd on (n — 2)/2-forms.

In 1983, S. Paneitz introduced a general fourth-order conformally
covariant operator on functions, with leading term [1*. By (1.31), on
functions,

(6dddY@ = 6d(6d)y@ + (6dy@*?dd
= dd(ade + (n — 2 — a)d) + ((a + 2)de + (n — 2 — (a + 2))ud)dd.

Thus
n

(6dody =412 = ; 4 [6d(Lyw+ L) + (Lo + L3,)0d] +

+ 26 (Ldto + L:w)d
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by (1.33), the fact that ; and é annihilate functions, and the identities
dd = 66 = 0. This, plus the experience gained in defining D,; above,
suggests “‘correcting’ dddd by adding

)+ 20Zd,

where Z'=J — 2V 3, since —Z'=Ly,+L},. But
E,((=4)2) - [5dZ’ + (6dYDZ + Z(5d) "D 4 Z'6d] +

+ 2[6Zd'<<"“‘)/2’ +0Z'd+6'™IZd],
so that
(02 + E,) =412

= 2= 2 [(5dy ez + Z(5dy = 9] 4 2[5Zd =D + 5 2]

- _1'_ E[Z’Z+ZZ]+(n —4)[(1Zd - 1dZ) + (1Zd — dZ)*],

using the fact that Z is pointwise self-adjoint. Now if ¢ is a function,

CJde —d(Jo)= —we(d))p = —w*J, 0,
vV #de —1dV 4@ =1V #dp = 0* V%, @,.
So
1Zd — dZ = — 0*J ;= 2V ye )
and )
(1Zd — 1dZ) + (1Zd — WdZ)* = —2w*J, + 2V (0*V*})
=20, V%, = (V4. V%)

by (1.35), (1.28), and (1.27). We conclude that

(P +Eyyeom= - 222 4n S22 + (n— (VYR

Because of Corollary 1.14, we have proved:
TueoreM 1.21 [20]. The operator

n—4 n
2

D4=Dz+ i

Oz +z0) +26Zd + 1'-—;-1( Z2-2ye, Vﬂ,)
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on functions, where Z =J —2V %, is conformally covariant of weight
(n—4)2 forn#1,2.

2. New high-order conformally covariant operators.

a. A fourth-order operator on forms. n = 4 as a critical dimension. We
continue with the notational conventions of Section 1.d. By (1.30) and
(1.32), on k-forms,

(6dddy @ = 8d(ade + [n — 2(k + 1) — a]ud) +
+ (@ +2)0 + [n — 2(k +1) — (@ + 2)]ud)5d,
2.1)
(d3dSY@ = do([n — 2k — a]di + (a + 2)ed) +
+ ([n— 2k — (a + 2)]dt + (a + 4)ed)déd.

Choosing a = p—2 (as before, f = (n—2k)/2), and looking at the
operator

E,= (B +2)5ddd + (B — 2)ddds,
we get
E$~? = (B + 2){(B — 2)0dde + podid + Poedd + (B — 2yddd} +
+ (B — 2){(B + 2)ddd:s + Bdded + Pdidd + (B + 2)eddd}
= (B+2)(f — 2)((Lso+ L¥,) + (Lao + LE,)) +
+ 2(B +2)0(Lygo, + LF,)d — 2(B — 2)d(Lyp, + L30)0,

since ed = —de and &t = — 1J. This suggests ‘““correcting” by
E;=(B+2)(B-2) 0Oz +z0) +2(B +2)6Zd — 2(B — 2)dZ6.

The “corrected” operator satisfies
(22)(E,+ E,)¢-2 = (B+2)(8—2)(O®Z + zOO¢-2) 4
+2(B+2)(06Zd ¢~ + 5P Zd) -
-2(B - 2)(dZ5%-2 + al+Izs)
=B+2)B-2)B(ZLZ+2ZL)+
+2B+2)B-2)—dZ + Zdi +1Zd — dZ: —
—Zde +e0Z + 0Ze —€Z4],
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where & = L,;, + L},. To evaluate the expression in square brackets, and
for future purposes, it is convenient to have the following algebraic
lemmas.

LemMma 2.1. Let of = (o#") be a Z-graded algebra. Suppose that D is a
derivation of degree |D| on o (i.e., carrying of"— A™*\P), that E is a
derivation of degree | E|, that A is an antiderivation of degree | A|, and that B is
an antiderivation of degree |B|. Then:

a) [D,E] = DE — ED is a derivation of degree |D| + | E|.

b) If|A| and |B| are even, [4,B] is a derivation of degree |A| + | B|.
c) If |A| and |B| are odd, (A,B) = AB + BA is a derivation of degree
|4| +|B|.

d) If|D| is even, [A,D] is an antiderivation of degree |A| +|D|.

Proor. The probf is just straight computation. For example, to prove
(d), suppose that ¢ € o#" and y € &/™. Then

AD(py) = A(@DY + (D))

= (—1)'¢ADY + (4p)Dy + (—1)"* 1?1 (D) Ay + (ADg)y,
DA(py) = D((—1)Y'9AY + (AQ)Y)

= (=1\'¢DAY + (- 1)"(Dp)Ay + (A@)DY + (DAY .

Thus if | D| is even,
[4.D](@y) = (—1)'¢[4,D]y + ([4,D]e).
LEMMA 2.2, If A is a symmetric type (1,1) tensor field, then on forms,
—dA¥ + A¥di+ 1A Hd — dA H#1 — AHe + e0AH + 0A e — eAH0
= —(UAA"M,; - wluA“l - wl(zA'.u —Ar gy, —A) #F+
+ (0, A" +w,  A")#.
Proor. First look at the operator
= —1dA# + A¥di +1A¥d — dA ¥ = ([A#,d],1);

ultimately, we want to evaluate S + S*. Since 4 ¥ is a derivation of degree 0
on the Grassmann algebra, d is an antiderivation of degree 1, and ¢ is an
antiderivation of degree — 1, S is by Lemma 2.1 a derivation of degree 0 on

forms. On functions,
S=1A#4d = Vx, X*= CUAAG),.

Thus S —Vy is a derivation of degree 0 on the Grassmann algebra
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annihilating functions. By Remark 1.2(f), S — Vy = B# for some (1,1)
tensor B which can be determined from its effect on closed one-forms. If 5 is
a closed one-form, i.e. 17,,; = 1;),, then

(Sn)e = ((— dA % + A#di)y),
== WA(A"au’h — A*aNyja— A" 2jatlu) + w*, A¥ ;.
This identifies B as
By = — w*(A%1— A%p) + @0 A,
Thus
S+8*=Vy+Vi+B #+B*#
= -V, (0*4%) —0* QA" |, — A%y, —A,4") #+
+ (0, A", + o, AP) #,
by (1.7), (1.35), and the symmetry of A4, as desired.

In the case of immediate interest (recall (2.2)), we set A = —2V in
Lemma 2.2 to get

(2.3)

—2(—wWdV H+V Ikdi+1V #d —dV 31—V e + €0V 3+ 6V e — eV #0)
= 2(601-],1"}'(011]/“1)+2wl(2V'.|;_— V'“. - V:“') 3 —

2wVt o, V") #,

since V*;,=J ;. Furthermore,
—dJ +Jdi+ Jd—dJi = —e(d))—edI) = —w*J;

is a self-udjoint multiplication operator, so
2.4) —ud) +Jdi+1Jd—dJi—Jde +ed] +8Je—eJd = —2wJ ;.
Combining (2.3) and (2.4), we get
—dZ+Zdi+1Zd —dZi— Zde +e0Z + 6Ze —eZd

= 208, V3420 2V* 3= Vea . — Vo) #— 2w, VE + o, Vi) *

= (VAVE) =2V, Ve Y #4202V =V 5. — V) #*
The problem is now to “integrate” the expression

Foy= o' @Voga= Vs = Voy');

i.e., to find a tensor field (G*;) with G’ = F. For this and other purposes (see
Section 2.b below), we need the following lemma.
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LEMMA 2.3. Let T = (T?;) be a type (1,1) level | local invariant. Then
(2.6) (VAV,T%) = VAV, (T%) + (2 +2 —n)o* T, +lw,* T —
— 20, T5)* = 20* T%; 5+ 2007 T 3 + 205 T *.
Let S be a scalar level | local invariant. Then
(2.7) (VgV2S) = VgV2S' + (14 1)(@"Sp + @pS*) + l*sS — 0*S;6%.
Proor. This is just direct iterated calculation with (1.25).
By Lemma 2.3,
(2.8). (Vo31) = @' + (6 — n)* V7, + 200, Vg —
- 2w, V‘m““ 204 V%, 5+ 20° T g+ 25"
and
29) (%) = 0% + 3@ s + 0pJ%) + 200%5] — 0} ] 3%
By the Ricci identity (1.6) and the Bianchi identity R*;5,|" = 152 —732%
(2.10)
W%t — @,%% = 2R* Y0¥y + (g — 1"+ 1,5 p)0 +
+rw,p +rpw,”
=2C* A — 2VA,0*16% + n(Vp, 0™ + V¥ wy,) +
+ (= 2) (V2 — V5" 12+ Vi¥ plo* +
+ JPwp + Ty — J 02 0% + 2J 7.
Combining (2.8), (2.9), and (2.10), we gef
(211) = (Vg —J%) = (n— o (Ve  + Voiys—2V0) +
420040t = 2VE 02, 0% +
V40t + ViR

-

(2.11) above can be written more intelligibly in terms of the Lichnerowicz
Laplacian [17], defined on covariant tensor fields by

14
(212) (LT)al...a, == 'Ia'z,...a,l,ll + —Zl r”a, T:ll...fl...a" -

o, place

"ot<s

-2 Z R“a,)'a, 7::, ...... Aty
1

@, place a, place
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and extended to all tensor fields by the requirement that L commute with
raising and lowering of indices, and with contractions. Now

(LVYs = = V% + VAr®+ Vort, — 2R% 0 VA,

= =V 2V Vo, = 2C% A VA, — 2V, VE, 8%,
and this simplifies (2.11) to
(213)  (LV)Yp+T%) = (n— B 2V — Vea)* — Viap) —
- (V% V‘,,(S“p)’ +n(VA V).
Combined with (2.5), this says that
(2‘(1n4)— 4)(—1dZ + Zdi+1Zd
—dZ1—Zéc +e0Z + 6Ze — eZd) = (n—4)(V, V*,) +2Y' 4,

where
(2.15) Yo = (LVYp+J%+ V* VA,8%— 2(n— 2)V, V7.
(2.2) can now be rewritten

(Es+ E)0™Y = — (B+2)(B-2)B(Z%) +

+28+ 2B - DIVA VR + 2 V4],

and this gives the following theorem.
THEOREM 2.4. Suppose n # 1,2,4. The operator
D4y = (B+2)ddod + (B —2)dodd +
+ B +2)(B—2)0Z + z0O) +2(B +2)0Zd — 2(B — 2)dZ6 +
2
+(B+D(B-2BZ* - 26+ DB -D[VA V" + = Y #],
on k-forms, where f = (n — 2k)/2, Z = J — 2V ¥, and Y is given by (2.15), is
conformally covariant of weight (n — 4)/2.

Note the introduction of n = 4 as a critical dimension for Dy, (k # 0);
like 1 and 2 for D, , and D, a dimension in which the operator is undefined.
The argument above does give a result in dimension 4, however. By (2.14),
the (1,1)-tensor field Yis a conformal invariant in dimension 4:

THEOREM 2.5. For n = 4, the tensor field
Yaﬂ = (LV)’# + Jap + V“l Vlnéaﬁ - 4VAﬁ Val
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is a conformal invariant in the sense that

(2.16) g = ng = Zgé = Q4 Yaﬂ.
Y is traceless, but the norm-squared of Y is a scalar conformal invariant :
(2.17) g=Qg=>71% YEg =Q8Y%, YA,

Proor. (2.16) follows from (2.14) and Remark 1.16(a). That Y is
traceless follows from the fact that L commutes with contractions:

LVy,=LJ=—-J~.
(2.17) follows from (2.16).

Thus one can take the view that there is always a level 4 conformally
covariant operator in dimension n > 2, but that the order of this operator
collapses from 4 (for n # 4) to 0 (for n = 4, the operator being Y ).

While this paper was being written, it was pointed out to the author by C.
R. Graham that, in dimension 4, the tensor field Y and its conformal
deformation laws (2.16) and (2.17) were discovered by Bach [2] in 1921.
The operator D, , can in some sense be regarded as a generalization of the
Bach tensor to arbitrary dimension n > 2.

b. A sixth-order operator on function. An apparent geometric obstruction.
By (2.1), on functions,

(2.18)
(Y@ = g[e + (n —2 —a)ud + (a + 2)0e0d + (n — 4 — a)d].

Together with (1.31), this implies that

(CPy@ = Ofa0be + (n — 2 — a)0ud + (@ + 2)0e0) + (n — 4 — a)dl] +

+[(@+ 4)6e + (n — 6 —a)id] [12.
Choosing a = (n — 6)/2 gives
(CBytn=612) %9[.? O+ O] +

n—10

2
where, as before, & = L, + L§,. This suggests ‘““correcting” by
(2.19)

Es=

OO,

+4[062d + 62400 +

n—10
p)

n_

5 OzO.

8 (200 + TPZ] + 4[062d + 62400 +
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(1.29), (1.31). and (2.18) then give
(CB + E,ym=6/2)
n—6)\2
= < ) (02 + #07) +
n—6n— 2
2
+2(n— 6)(Z<5£’d +0LdZ + $6Zd + 6ZdZL) +
+2(n—6){(—1dZ +1Zd — Zde + 6Z¢)d +
+ (= dZ +1Zd — Z5e + 5Ze)} +
+8NLZ+ZF —1dZ + Zdi —dZi1— Ze + e6Z — eZd)d

(" 6) 02 + £0z) +

+ —

zxO0+027z+2z0+0z2)+

+"26"22(23D+D$z+$zD+ng))+

+2(n—6)(Z0Ld+0LdZ + ¥LOZd +0Zd¥L) +
+2(n—6)(21 + 12) + 86(LZ + ZZ + P)d,
where
P=—1dZ +Zdi+1Zd — dZ1— Zde + e0Z + 6Z¢ — eZ.
By (2.14),if n # 4, # = — P’, where

2
-P= V‘,‘V"l+;—_—4—Y#,

and Y is as in (2.15). All this suggests “correcting” [ + E, by
_ 2
220) E,= (" ; 6) zOz + 2

+2(n—6)(Z6Zd + 6ZdZ) +
+2(n— 6)(PO + OIP) + 856(Z* + P)d.

)+

For the corrected operator,
(2.21) ((B + E, + E,y@=912

"26"22 ";2(z.z’z+22$+g’zz)+

+(n—-6)n—2)ZP+PZ+¥P+PL)+
+4(n—6)(—1ZdZ +12%d — Z5Ze + 0Z%) +
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+4(n—6)(—dP + Pid + 1Pd — Pde + deP + 6P¢)

_n—6n—2n+2
2 2 2
where

(Z3Y — (n—6)(n—2)(ZP + PZ) +4(n—6)(B + %),

= —1ZdZ +1Z*d — Z6Z¢ + 6Z%,
% = —dP + Piud + 1Pd — Pd¢e + 0¢P + O Pe.

To simplify # + %, we calculate directly using (1.35) to get

g = 2(1)“ V;'“Jl + 2&)“1 VA“J - 4COp V“ﬂll VA“ - 4(1)#3’ Vup Vl",

(2.22)
a a 2

€ = 660;' V B Vpa“. +V B Vﬁaw;,)' + "n—‘;“z (w” Y;'ull + w“;_ YA“).
To evaluate Y%, ;, note that the Lichnerowicz Laplacian L commutes with
the divergence operator

divi(T,, o) = (V' Ty, o)
(see [17]), so that
(LV) 2 = (div LV), = (L div V),
= (L(V))), = —J . +1rtJ,

by (1.28). This and the symmetry of the Hessian, J,; = J,,, give

Yl““' = — (n - 2)Vlqu + JJ“ + 2Vap Vﬂa“l - 2(n —Z)V}'Mla Val.

Returning to (2.22), we have

223) € =60 VeV, + VS V0t +
2

—

—2(n—2)VA,, V] + @t YA )

Since by (2.13)

+

4 {w"[—(n—2)V"“J1+JJ,,+2V"”V”,,“ -

n—4
2
(2.22) and (2.23) imply that

B+E€ = ;.‘37 (Ve YR,Y + (Vo VR, T) +

(Y%) = — {4V*0% = 20* 2V %= Vs — Vo))

+ (n"" 2)w‘[V“p Vﬂ¢|l— 2VaA|ﬂ Vﬂﬁ] -_ 20)}' Val.]a + (UAJJA}
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=——{(V% YR, + (Vg VE,J)} +
n—4

2
a2 @ = 2,

or, returning to (2.21), that if
n—-6n—-2n+2

Ey=——"—>="—5"2°+(n—6)(n-2)(ZP +PZ) -
8:' 6)(V“ YP, + Ve, VPT),
then
(2.24)
([P +Ey+ Ey + Ep) ™92 = o =2) E(Z)Ef_) % WP (P — 2P p).

Now the w-augmented scalar local invariant

N(w) = wl"pa(ram;. - 2"";.|p)
is not realizable as T'(w) for any scalar local invariant T (which would
necessarily be of level 6). To see this, we define the natural “second
derivative” on the space of level I local invariants (T’,) of a certain tensor
type. Recalling that the “first derivative” satisfied

(T @) = 7| [T )emsg = (T)100)

A=0
for x e M, we define this second derivative by
(2.25)
(T, (@,8)(x)

(66,1 66#) a=(0,0)[€ 74 €7 (TL))e-210p-10eg — (T')g] (x).

In practice the second derivative can be calculated algebraically by
extending the first derivative ' to ¢-sugmented local invariants G(£), as
follows. We require that G(¢) —» G(£) (w) be a derivation annihilating d¢,
agreeing with T — T’(w) on ordinary local invariants, and satisfying (1.25).
These conditions are consistent, and lead to

(T) (@,8) = (T')) €) ().
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By (2.25) and the equality of mixed partials, (T7;)” (w,&) must be symmetric
in w and ¢£. This gives a necessary condition for an w-augmented local
invariant like N(w) to be T’ (w) for some T. N(w) fails this test, as can be
shown by taking for M the manifolds S? X S9, with either of the metrics
8s» T 85 built from the standard sphere metrics, and taking for @ and ¢
products of eigenfunctions of [, and [l

Alternatively, one could look at a basis for the level 6 scalar local
invariants. Because of various identities, the following is one such basis: -

J a ﬁ ’

Jan’ J B Vﬂw Vaﬂ] An Ca/w"’ Vum ).). Vpa

JaJm Vaﬂ]/l Vﬂa]la Vaﬁ]). Vpllaa Caﬁlula Cuﬂiula

expressions 3-homogeneous in R (involving no derivatives).
Direct calculation then shows that no linear combination T of the above
has T'(w) = N(w). We do not give the details of either approach because, of
course, the “non-integrability” of N(w) does not constitute a proof that
there is no general conformally covariant sixth-order operator on

functions. Recalling Theorem 1.12 and Corollary 1.13, however, we have
the following positive results:

THEOREM 2.6. For n #1,2,4, let
(2.26)
De=[F+"22 n—8rme 4 2]+

"= 10 OzO +

+4[006zd + 6zalJ] +

n—6 —6n—-2,, )
+( 3 )ZDZ 73 z?00+0z%) +

+2(n—6)(Z6Zd +6ZdZ) +
+2(n—6)(PO+ OP) + 85(Z% + P)d +

+n;6 n;2 n;223+(,,_6)(n—2)(ZP+PZ)—

8(n—=6) .., .
- _%:T(V s Y2+ Ve VET)
on functions, where Z = J — 2V #, Y is given by (2.15), and

N
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2
—P= V;'”V”A"l"mY#.

Let (M,g) be a particular n-dimensional WR manifold, and let
0 < Qe C*(M). Suppose that (x,u) » Q,(x) is a C® map M x (—e,1 +¢)
— R™ for some ¢ >0, and that Qy=1, Q; =Q. Let w,=logQ,, and
1, = dw,/du. If

L), (rp12—2r%)] I(M,Q;zg) =0
for all ue[0,1], then
2.27) (D6)q-7,( Q"2 @) = Q"*92(Dg), 0
for all ¢ € C*(M).

CoroLLARY 2.7. With notation as in Theorem 2.6, if the one-form
F,= rﬂa("amz - 2ra).|ﬂ)
vanishes in (M,Q, 2g) for all ue [0,1], then (2.27) holds.

In the special dimension n = 6, (2.24) shows that Dy is fully conformally
covariant. Thus we have the following theorem, which is actually a special
case of Theorem 2.10 below.

THEOREM 2.8. Suppose n = 6. Then the operator
D¢ =[P +4[[05Zd + 6zd(0] — 2020 + 86(Z* + P)d
on functions is conformally covariant of weight 0.

The calculations above are in some sense computational evidence for the
following:

CoNJECTURE 2.9. Suppose n # 6. There is no general conformally
covariant ‘sixth-order operator on functions, with leading term [, in n-
dimensional ¥R manifolds.

More specifically, it is reasonable to conjecture that the local invariant
(F,) is a genuine geometric obstruction to a covariance relation like (2.27)
for a sixth-order operator. It is interesting to note that the condition
F, = 0 is stable at Einstein manifolds: if (M,g) is Einstein, then

(Fl)’(w)I(M,y) =0.
In other words, the condition F, = 0, which is slightly weaker than the
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Ricci parallel condition r,p; =0, is true for infinitesimal conformal
deformations of an Einstein manifold.

c. A sixth-order operator on (n — 6)‘/2-forms. By (1.30), on (n — 6)/2-forms
for evenn = 6,

(6d6d5dy® = 45dddid + 5d(25e + 2id)dd + 45edddd
= 4(0d6.Ld + 6L ddd) — 26d.L5d.

This suggests correcting by
E,=4(6dd6Zd + 6Zddd) —26dZéd.

Now
((6d)* + E4) @ =84(diZ —~dZ:i + Zed — €26 + 2e0Z + 2Zd1)d
=8NLZ+ZYL —1dZ +Zdi— dZi1— Zde + £0Z — eZ5)d
=80(LZ+ZL + P)d.
This suggests correcting by
E, = 85(Z*+ P)d.
Since d'© = §'® = (, we are'done:
((6d)* + E4 + E;) ¥ =0,
| and we have: .
THEOREM 2‘.16. Suppose n 2 6 is even. Then the operator
Dg n-6y2 = (6d)* + 4(6d0Zd + 6Zddd) — 26dZ5d + 86(Z* + P)d
_is conformally covariant of wéight (n— 6)/2 on (n — 6)/2-forms.

The operator Dg -6y, is analogous to the Maxwell operator
D3 (s 2y2 = 0d, and to the special case

D4,("__4)/2 = 45d6d + 85Zd

of the operator D, ,, in that the leading terms are powers of dd, and the
“inside multipliers” (the numbers a in the covariance relation D'® = 0) are
zero.

d. Nonlinear conformally covariant operators. As is well-known (see
[1,19]) the nonlinear operators

5:(@) = D3¢ + g™+,
N3(¢) = D¢ +a|p|** D¢
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are conformally covariant in the sense that
g =Qg = 5,(Q"I2p) = QM8 (p), n#£1,2,

and similarly for N,. (N, has the advantage of always being well-defined.)
The reason is that the nonlinear terms satisfy the same covariance relation
as the linear operator D,:

(Q(n— 2)/2(p)(n +2)/(n—2) _ Q(n+ 2)/2 (p(n+ 2)/(n— 2),
|Q(n— 2)/2(p|4/(n— Z)Q(n— 2)/2(P — Q(n+ 2)/2 l (P‘4/(n— 2)¢.

Analogous statements can clearly be made about

S4(¢) =Dy +aptHO=Y,

N4(p) = Dso +a|p|¥" Do,
THEOREM 2.11. For n #1,2,4,
g =g =5, 9p) = QIS (p),
N Q™ 2g) = Q92N ().
Subject to the curvature constraint of, say, Corollary 2.7, analogous
statements can also be made about

Se(¢) = D@ + o+ &=6),

Ne(@) = Do + || #~ g,

THEOREM 2.12. Suppose that n # 1,2,4,6, and that (M.g) and Q satisfy the
curvature constraint of Corollary 2.7. Then

g= ng = LS(,(Q(n—mll(p) — Q("+6)/286((P)a
Ne(Q"~929) = Q" 2N 4(p).

If ¢ is a form, the natural definition of |@|* is as g*(¢,¢). But under
conformal change g = Q?%g, g* deforms according to

(2.28) gk = Qg
Thus the correct nonlinearity with which to augment, for example, D, ,, is
not the (n— 2k +2)/(n — 2k — 2) power, but rather the (n + 2)/(n — 2) power
([5])- More precisely, let

N, 4(@) = D240 + a|@|*" Do,
Then: '

THeOREM 2.13 [5]. For n #1,2,
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g= Qz_g_ = Mz,k(g(n—Z)/z(p) = Q("+4)/2N2,k(‘l’)-
For the same reason, the nonlinear covariant operator associated to D,
is
N4i(@) = Dy s +a|@[¥ Yo,
THEOREM 2.14, For n # 1,2,4,
g= ng = N_4.k(Q("-4)/2‘P) = Q("+4)/2N4,k((/>).

More can be said when the “inside multiplier” for a covariant CLDO D
on forms is Q°; that is when D satisfies a covariance relation of the form D¢
= O’De. This is because the exterior derivative d is also covariant with
inside multiplier Q°. For example, in dimension n = 2, let

Py (¢) = D¢ +a|do|*|o|P~ ¢ = Lo +a|dp|*|¢|?~ ¢, p arbitrary,
on functions. Then
g = Qg = Py(p) = Q*P,(9),

by (2.28). For p =1, the operator P, is related to the harmonic maps
problem, and to the “nonlinear g-model” of physics. Along the same lines,
we have covariance results for

Py(¢) = D,p +a|do|*|@|?~ ¢, p arbitrary, n = 4,
and ‘
Ps(p) = Do + a|do|®|@|P~ ¢, p arbitrary, n = 6.
THEOREM 2.15. If n = 4,
g = Qg = Py(p) = Q*P,(p).
THEOREM 2.16. If n = 6,
g = Q’g = Ps(p) = Q°Po(9).

No curvature condition is required in Theorem 2.16, because of Theorem

2.8.

Looking at forms, we have inside multiplier Q° for D, ,- ), = dd (the
Maxwell operator), Dy (,— 4y2, and Dg ,_¢)/2. Some arithmetic with (2.28)
shows that nonlinearities of the form

n—-2 . n
|dol*|olP @, —=p+59=2
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satisfies the same covariance relation as D, ,_ ,),. Thus:

THEOREM 2.17. For n = 4,6.,8, ..., let

Prn-2y2(@) =Dy n-220 + Z “i|d¢|q'|¢|p‘)¢a
(finite)

where

n-2 +f =2
2 Di 2ql_ .

Then
g= ng = Pym-22 (@) = QZPZ,(n—Z)/Z (@)
The analogous statements about Dy (, 4y, and Dg ()2 are:

THeoreM 2.18. For n = 6,8,10,..., let

Poo-an(@)=D “"”‘4’/2"’*( )) “ildq)l"‘lfpl”‘)fp,
(fii:ite)
where

Then

g= Qz_g_ = B-4,(n-—4)/2 (@) = Q4P4,(,,-4,,2 (@)
THeOREM 2.19. For n = 8,10,12,..., let

Pg n-6y2 (@) = D6 n-6)2¢ + ( Z °‘i|d¢|q'|¢|p‘>¢,

f it:ite)

where

Then '
g= ng = Pg,m-6)2 (@) = Q6P6,(n—6)/2 (®).

In dimension 4, one can assert the conformal covariance (and gauge-
invariance) of systems which incorporate D, , and D, fields into the Yang-
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Mills-Higgs-Dirac system, as “‘extra Higgs fields.” One can then have
“mixed” nonlinearities on the right-hand sides of the generalized Higgs
equations, and make new contributions to the Yang-Mills current. A
system of this type (including D, , fields and some generalized Dirac fields)
is introduced in [6, Section 4].

3. Covariance under conformal transformations and representations

of the conformal group.

a. Conformal transformations. In this section, let (M,g) and (N,g’) be YR
manifolds of the same dimension and signature.

DEerFiniTION 3.1. A diffeomorphism h: M — N is a conformal transfor-
‘mation if (h~1)*g = Q%g’ for some Q > 0 in C*(N).

We write h- for the action of a diffeomorphism 4 on tensor fields asin [ 5];
on vector fields, h - X = (dh)X, while on covariant tensors, k- acts as (h~1)*.
To adapt the above results on conformal deformation covariance, it is most
convenient to view a conformal transformation h: M — N, h- g = Q%g’, as
the composition of an isometry and a conformal deformation:

(3.1) (M,g) 4 (Mg = (Q°h)"2g) B (N,g).

Since CLDO D are defined to be invariants of WR structure, they clearly
respect isometries:

(3.2) D(N,g’)h * (p = h : D(M,_g)(p'

If in addition D is conformally covariant, we have for some a and b a law of
the form

D(M,g)[(g o h)a(P] = (Q o h)bD(M,g).
This and (3.2) show that
(3-3) D(N’gl)(gah'(p) = Qbh'D(M,g)(p.

Analogous statements are true of nonlinear conformally covariant
operators like those of Section 2.d. In the case where (M,g) = (N,g’), (3.3)
has group representation theoretic content, as we shall see immediately
below.

DerintTION 3.2. A conformal transformation on (M,g) is a conformal
transformation h: (M,g) —» (M,g).
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REMARK 3.3. If hy and h, are conformal transformations on (M,g),
h;-g = Q?g, then h, © h, is conférmal with

(3.4) Qp o, = (h1- Q)Q,

and hi' is conformal with Q,-i= (Qoh)~!. Thus the conformal
transformations form a group ¢(M,g), which (at least for M connected)is a
Lie group of dimension at most (n +1)(n + 2)/2. (See [16, v.I, Note 9].
This reference works in the Riemannian case, but the results obtained
are far more general, as noted in [16, v.II, Note 13].) Of course, there is no
reason to expect conformal transformations to exist generically, but
in some important special cases, ¥(M,g) has the maximal dimension. For
example, consider the manifold M = S? X §%, p + q = n, with the metric
g = gs«— &s». The group 0(p,q) acts conformally on (M,g) by

R 8¢
(&) JEI+ ...+ @OF

where ¢ = ('éo, voos€n+1); €o,...,¢, are homogeneous coordinates on S?;
and ¢,.4,...,¢,4+, are homogeneous coordinates on §% This example is
important as the double cover of the conformal compactification of the
standard signature (p,q) flat space R%?; that is, of R" with the metric

— (@XY)2 = ... — (dxP)? + (dxP* )2 + ...+ (dx)?

(see [23, 19]).

For the present purposes, we shall define a tensor representation of a
subgroup H of ¢(M,g) to be a homomorphism u:H — AutJ for some
_canonical tensor space J on M. (We do not require continuity or put any
particular topological vector space structure on Z.) By (3.4), the maps

u,.4M,g) > Aut T
h— Q°h-
are tensor representations for each a € R. (3.3) implies that a conformally
covariant operator intertwines two of these representations. Even a
conditionally conformally covariant operator like the Dg of Section 2.6 is

an intertwining operator so long as (M,g) satisfies the curvature condition
r",,,(r"',,I a—2r*;) = 0. Looking at (3.1) in the presently relevant form,

M,g) % (M,g = (Q°h)"2g) > (M,g),

we see that (M ,g) must also satisfy the curvature condition, being isometric
to (M,g). If h can be connected to the identity in ¥(M,g) by a one-
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parameter family (not necessarily a group) of conformal transformations
h,, then each (M, (Q,° h,)~2g) satisfies the curvature condition by the
above argument, and Corollary 2.7 implies that

3.5) Ds(Q"~92p - @) = Q*2h - Do, @ e C*(M).

Since (3.5) is also true when & is an isometry, it holds for the Lie group
generated by the connected component € (M,g) of the identity in ¥(M,g),
and the isometry group #(M,g). We have proved:

THEOREM 3.4. Suppose M is connected, and let G = €(M,g).
a) D, intertwines u, _ 5y, (G) and u, . 52 (G) on functions, n # 1.

Dz“(n—z)/z(h)‘l’ = Un+2)2 (h)D;, heG.
D, intertwines g, 4)2(G) and u, 4 4y/2(G) on functions, n #1,2. If

in (M,g) and n #1,2,4, then Dg intertwines uy_g¢)y,(H) and g 62 (H),
where H is the group generated by €,(M,g) and #(M.,g).

b) D, initertwines g, - 2 2)2(G) and U, — 24+ 2)2(G) on k-forms, n # 1,2.
D, intertwines g - sy - 42(G) and U, 25+ 4y2(G) on k-forms, n #1,2,4.

C) Deou-6y2 intertwines uog(G) and ug(G) on (n— 6)/2-forms,
n=6,8,10,....

Both r”,,(r“m a—2r%5) = 0 and the existence of a conformal group of
nonzero dimension are symmetry conditions of a sort on (M,g). It may be
that if (M,g) has an interesting conformal group, then automatically some
conformally related (M,Q~2g) satisfies the curvature condition. This
would mean that Dy is a point of departure for the theories of conformal
deformation and conformal transformation, in the sense that the latter
admits more covariant differential operators.

b. Invariant inner products on the representation spaces. Suppose D is
an intertwining operator on a canonical tensor space J as above,
Du,(h) = u,(h)D. One then has a decomposition of u, into representations
on /(D) and J /4 (D), the latter being equivalent to the representation u,
on D7 Itis remarkable that for the operators of Theorem 3.4, u -invariant
complex inner products on these representation spaces can be produced in
great generality; that is, by geometric formulas without passing to
examples. In the case of 47(D), the natural setting for these inner products
is apparently that of Lorentz manifolds (M,g).
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The idea for the inner product on /A4"(D) is very straightforward.
" Suppose D is an operator on k-forms with

Du,(h) = u,(h)D, all he H,

where H is some subgroup of G = ¥(M,g). Let {-,-> be the g* inner
product, and note that if h-g=QZ?g, then h-gt=Q %g* For all
(complex-valued) ¢, Y € 7,
(3.6) Cua(h)p, Duy (W) = {ug(h)o, uy(h)DY)

=Q***h- o, h-D§)

— Qa+b+2kh . <(P,Dl/7>
Now if E is a normalized orientation on (M,g), we have
3.7) h-E=+Q"E,

the sign depending on whether h is orientation-preserving or orientation-
reversing. (3.6) and (3.7) are all we need to prove the following.

THEOREM 3.5. Suppose (M,g) is a compact oriented ¥R manifold, with
normalized orientation E. Suppose D is a formally self-adjoint CLDO on k-
forms, with

Du,(h) = u,(h)D, all he H,

where H is some subgroup of the group of ofientation-preserving conformal
transformations on (M,g). Then if

(3.8) ' a+b+2k=n,
the formula
(3.9) (@) = [ <@.DY>E

defines a u,(H)-invariant sesquilinear form on 7, the space of smooth
complex-valued k-forms on M. The radical of (-,*) is exactly A" (D), and thus
(+,*) determines a nondegenerate sesquilinear form on 7 | A" (D).

Proor. It is clear that (¢,J) is linear in ¢ and conju&g—linear in . By
the formal self-adjointness of D, we have (¢,¥) = (V,9). If ¥ ¢ #'(D),
n = Dy # 0, and we can always find a ¢ € 7 for which

Su <@ME #0,

even when g is indefinite.
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It remains to show the u,(H)-invariance of (-,*). By (3.6) and (3.7),

Cug(h)@, Duy(WWHE = Q**** 2"k~ ((p,DY>E)
=h-((@,DY>E)

for each he H, since H consists of orientation-preserving transformations.
Thus

(Ua(h)@, us(h)) = §\ h- ((@,DY)E)
= SM<¢’DJ>E
= ((P,!//),

since h is a diffeomorphism.

Of course, all the operators of Theorem 3.4 are formally self-adjoint, and
have inside and outside multipliers satisfying (3.8). Thus we have:

CoROLLARY 3.6. Suppose (M ,g) is a compact oriented WR manifold, and let

H be the group of otientation-preserving conformal transformations on (M ,g).
Then (3.9) gives a nondegenerate sesquilinear complex inner product on (k-
Sforms)/ A" (D) which is u,(H)-invariant in the following cases:

(a) D=D,,k=0,a=@n-2)2,n#1,;

(b) D=D4,k=0,a=n—-4/2,n+#1,2;

() D=Dyy,a=Mn—-2k—-2)2,n#1,2;

d) D=Dyy,a=n—-2k—4)2,n+#1,24;

(€) D= Dgu-¢6)y2, k=(Mn—6)/2,a=0,n=6,8,10,....

Ifr”,(r“,,“ —2r*;,5) = 0in (M,g) and M is connected, the same is true with H
_replaced by the group generated by the orientation-preserving isometries and
the identity component of €(M,g), in the case D = D¢, k = 0, a = (n—6)/2,
n#1,24. : ,

The assumption that M is compact in the above is just a convenience; it
could obviously be replaced by some decay assumption on the fields ¢, y.

The idea for the inner products on the .#°(D) comes from a geometric
formula of G. Zuckerman [26] for the well-known [12] inner product on
Maxwell potentials in 4-dimensional Minkowski space (or, more precisely,
this inner product realized on Maxwell potentials in S* x 3, the double
cover of the conformal compactification of Minkowski space). We now
restrict to the case where (M,g) is oriented and Lorentzian, i.e. g has
signature (n—1,1). Let ¢ and ¥ be k-forms, and consider the formal
expression

G10) Aoy =1 l@ A *dF-F A *dp)



DIFFERENTIAL OPERATORS ASSOCIATED TO A CONFORMAL STRUCTURE 331

Here S is a closed, connected, spacelike hypersurface, and * is the Hodge
operator in (M,g):

(3.11) _ g (*o.n) =g An,E)

for ¢ a k-form, n an (n — k)-form, and E a choice of normalized orientation.
(3.10) makes sense because the integrand is an (n— 1)-form. (Strictly
speaking, we should pull back the integrand to S via the inclusion
1:S—> M.) We claim, with certain assumptions on (M,g) and on the
subgroup H of €(M,g) considered, that .o is independent of S, and gives a
ug-invariant complex inner product on Maxwell potentials ((n —2)/2-
forms in 4"(6d)), and a u,_ 5),-invariant complex inner product on the
“wave functions” (D). On Maxwell potentials, o will also be gauge-
invariant. On A4"(D, ), the correct inner product will be

(612) Bod) = "2 () - "TH 2 oy (xg, %y,

This specializes to the wave (/(*¢, *y)=0) and Maxwell ((n—2k
—2)/2 = 0) cases immediately above.
We first record some identities. By (3.11), on a Lorentz manifold,

(3.13) 5 =(—=1)y"**Y xd % on k-forms,
(3.14) * % = (=1)dn=R*1 on k-forms,
(3.15) o N\ *y = (Y E for ¢, k-forms.
Here {-,') = g~ If ¢ and y are k-forms,

(3.16) d(@ A *dy) = — @ A %3dy +{do,dy)E,

by (3.13)—(3.15). If h is an orientation-preserving conformal transfor-
mation, h- g = Q%g, then

(3.17) *h @ =Q% "h- *x¢, ¢ ak-form.
Thusif v = h™ ! (logQ),

us(h)p A *dug (R} = Qh- o N\ *dQh- )

(3.18) = Q20+ 2+ D=rp (o A\ % (dy + as(doy)),

where ¢ and ¥ are k-forms.

TueoreM 3.7. Let (M,g,E) be Lorentzian, connected, compact, oriented
(8"(E,E) = —1), and of even dimension n 2 4. Suppose that all closed,
connected, spacelike hypersurfaces in M represent the same class in
homology. Then for (n — 2)/2-forms @,y € A" (5d), the expression (3.10) is
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independent of S, and uy(H)-invariant, where H is the group of orientation-
preserving conformal transformations on (M,g). That is, o is a uy(H)-
invariant sesquilinear complex inner product on A" (6d).

Proor. We first show that o7 (¢,y) is independent of S. If S, and S, are
closed, connected, spacelike hypersurfaces, (3.16) gives

(j - f )<<pA*dn/?—%/\*d<p)=j(—¢A*éd%w*ad«p),
S, M 14

where V is such that 0V = S, — S;. If ¢, € 47 (6d), this is zero.
For the invariance, let h be an orientation-preserving conformal
transformation, h-g = Q?g, v =h~!- (logQ). (3.18) gives

2id (uo(h)p,uo (W) = 5 wo()p A * duo(h) — uo(h) A *duo(h)p)
=fsh- (9 A *df = A *dp)
= fyie) @ A *dF = A *do)
= 2l (), ’
since the conformality of h implies that h~*(S) is also spacelike.
RemARrk 3.8. If either of the Maxwell potentials ¢ or ¥ is exact, say
¢ = df for some (n — 4)/2-form f, then
QA *AY—Y N\ *dp =df A\ *df =d(f N\ *d) £ f N\ *ody
=d(f N *dy),

which integrates to zero over S; thus o/ (¢,)) = 0. This says that &/ is

gauge-invariant. As a result, o determines a complex inner product o/
on A'(6d)/R(d), the vector space of gauge equivalence classes. Since

h-df = d(h - f), this space also carries the representation u,, for which &/ is

invariant. The question of when 7 is nondegenerate appears complicated,

and we shall not take it up here, except to note that in the important special

case treated in [21], & is nondegenerate.

Exactly the same formula (3.10) serves to provide a u,_ ), (H)-invariant
complex inner product on A"(D,).

THEOREM 3.9. Let (M,g,E) and H be as in Theorem 3.7, except that n is
allowed to take any value but 1. Then

Ao¥)=5; [ @ xdF-Fx do)
S

gives a well-defined u, - 5y, (H)-invariant sesquilinear complex inner product
on A (D,).
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Proor. To imitate the proof of Theorem 3.7, we must first show that -
E=di@ A *dl = A *dg) = 0.
But by (3.16),

-2 _
E= K@ *F-T xo)=0.

This shows that o is independent of S.
To get invariance, note that by (3.18),

2iof (“(n— 2)/2 (W@, up- 2)/2 (h))
= [sh-[@ * @) +3(n—2)e(d)§) — ¥ *(do +3(n — 2)e(dv)p]
= [sh (@ *df -y *dp)
= fory @ *dF — T * do)
= 2isl (p.¥),
since @ * e(dv)y = Y *e(dv)p = @Y * dv.

REMARK 3.10. We cannot expect &/ even to be positive semidefinite on
N(D,), since o (p,p) = —AL(,p). To get unitary representations, it
seems necessary to get an invariant decomposition of A4'(D,) into positive
and negative frequency subspaces. Consider for the moment the special case
of the above in which M = I x S, where I is either S* or an interval in R,

_and S is a compact, oriented Riemannian manifold. Take as the metric on
M, g = —dt* + g5, where t is the parameter on I, and as the orientation E
= dt N Eg. The scalar curvature of M is just that of S:

K(t,x) = Ks(x),

so that
0? n-—2
D, = Frl +Ag+ Z(—r—l—_—l)KS.

(Recall our sign convention which makes Ag = Ug = —V/V {-.) Sul?pose that
all the eigenvalues of B> = Ag+ (n — 2)K/4(n — 1) are positive (in general
they need only be bounded below):

0<dp<Ai<...

(Multiplicity will not be important.) Let &; be the ; eigenspace of B2. C®
solutions of D,¢ = 0 have the form
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Plex) = 3 @V} (x)+e V] ()

where ¢ € &;; with some decay condition on the [l Il 2. This gives the
desired positive/negative frequency decomposition.
Now for any ¢, dp = ¢dt + ds¢, so that

(3-19) ) Ss ((P * d‘l-’ - (ﬁ * d‘P) = Ss(_(P(l—’t + ¢¢r)ES,

since dt pulls back to 0 under /:S - M, and *dt = — Eg. Here “Ss” is the
integral over any of the fixed-time hypersurfaces t = t,. If ¢ is a positive
frequency solution of D, = 0,

¢ = ZeVig,(x),
then (3.19) reduces to

2ist (9,0) = 22i /% N ;1125

This explains the factor of 1/2i in the definition of 24 and shows that &/ is
positive definite on the positive frequency subspace 4" * (D). (Similarly, o
is negative definite on the negative frequency subspace.)

To get unitary representations, we would need to know that 4" *(D,) is
" Uy 2)2(H)-invariant; however, we are unable to prove this assertion even
in the limited generality of this Remark. The special case I = S*, § = §" !
has been worked out in detail however ([19, 21]). For convenience, we
restrict to even n. The eigenvalues of Bon $" ! are Ay = (n — 2)/2, 4, = n/2,
Ay=@m+2)2,..., A= (n—2+2j)/2,..., so that all solutions of D,¢ =0
are 2m-periodic in t. &; consists of jth order spherical harmonics; i.e.
restrictions to S"~! of j-homogeneous harmonic polynomials in R". The
orientation-preserving conformal group H is given by the action of O(2,n)
described above in Section 3.a, restricted to SO(2,n). If H, is the identity
component SOy (2,n), then u,_,), (Hy) preserves the positive frequency
subspace, essentially because an element of the maximal compact
K, = SO(2) x SO(n) carries a solution of the type

(3.20) dOm2F 22 (x), pe g,

to another of the same type; and an element of the Lie algebra | of H carries
(3.20) to a solution of the form

ei(n—4+2j)t/2(p_ (x) + ei(n+2})t/2¢+(x)’ = 6111.

ReMARK 3.11. The situation for the representation u, on gauge
equivalence classes of Maxwell potentials is strongly analogous to that for
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wave functions. Assume that M = I x § as above, and that H®~2/2(S) = 0
(i.e., there are no harmonic (n — 2)/2-forms on S). Then we can get a unique
representative ¢ of each gauge equivalence class with

1(0/0t)p =69 =0;
i.e., in the Coulomb gauge. Indeed, given an (n — 2)/2-form ¢, let
¥ (t,x) = §; (:(8/0t))(r,x)dr

for some tyel; then ¢'= ¢ —dy is gauge equivalent to ¢, and
1(C/ot)e’ = 0. Thus at each fixed time, ¢’ is an (n — 2)/2-form on S; and it
may be Hodge decomposed as

@' = @5+ @y
where @5 € #(65) and ¢, € #(ds). @;is gauge equivalent to ¢’ and thus to @,
has 1(9/0t)@}; = d¢j = 0, and is clearly unique with these properties. Gange

equivalence classes of solutions of dd¢ = 0 may now be identified with
series

i (Vo) (x)+e"VHof (x),

Jj=0

where 0 < A, < A, < ... are the eigenvalues of dsds on coclosed (n — 2)/2-
forms (4; corresponding to eigenspace &), and pfeé;
For any ¢ in the Coulomb gauge,

2l (@,0) = {0 N\ *dp—p N *do
= Sg("(o N *50p/0t + & N\ *50p/0t)
= {(—<@, 0p/0tys + P, 0ip/0t)s)E;.

If ¢ is a Coulomb gauge, positive frequency Maxwell potential,
¢ = YeVHg,(x), 9;€ 8,
then

.521((/),(/)) = Z‘ / /Q.j " (p_j.IIiZ(A(n—Z)/Z(s))-

Thus o is positive definite on the space of positive frequency gauge
equivalence classes of Maxwell potentials.

If S = S""! with n = 4 even, ;= ((n+ 2)/2)?, so all Coulomb gauge
solutions are 2zn-periodic. H is given by the action of SO(2,n) above; an
element of K|, carries a solution
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(3.21) 0TI (x), peé,
to another of the same type; an element of | carries (3.21) to a solution
ei(n+2j—2)t/2(p_ (X) + ei(n+2j+2)t/2(p+ (X), (p:t e 5;‘1 1

Thus uy(H) preserves positive frequency, and we have a unitary
representation.

We now return to the general case.

THEOREM 3.12. Let (M,g,E) and H be as in Theorem 3.7, except that the
only dimension restriction is n # 1,2. For k-forms @,y in M, let </(p,/) be
given by (3.10). Then

Do) =""2E2 o)~ K2 g x5y

is a well-defined, ug, _ 3 - 3),2 (H)-invariant sesqulllnear complex inner product
on N (D).

Proor. Again we imitate the proof of Theorem 3.7. Let § = (n — 2k)/2.
To show that 4 is well-defined, we use (3.16) and (3.13)—(3.15) to calculate

d{o A\ *df —§ A *do} = (—<9,0dy) + {¥,6dp))E,
d{ %@ A *d %~ A %d %@} = (= *0,0d *Fy +{ *7,6d *p))E
= (= %@, *doF) + { * P, *d6@))E
= ({@,doy ) — (¥, dé@))E,

since * is an anti-isometry for Lorentz manifolds. By the definition of D, ;,

HB+1)@ A *dfi—§ A *dp)— (B—1)(*p A *d xf — *J A\ »d *¢)}
= B+1)(B - 1D{{e.Z¥) — (V.Zo)}E,

where Z = J — 2V #. This is zero because Z is pointwise self-adjoint; and
thus #(p,¥) is well-defined (independent of S).
As for the invariance result, for he H, (3.18) gives
ug_1 (W) N\ *dug_, (hy — Ug - 1B A * dug_ 4 (h)p
=h-{p A *@J + (B —DedoW) - F A *(do + (B —L)e(dv)o)},
while by (3.17) and (3.18),
*igg_ 1 (0)p A *d #up_ (W — *up_y ()5 A %d %up_ (W)
=u_@gsn)(h) * Q@ A *du_g,(h) * ¢
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—U_gryy(h) ¥ A *du_ig4)(h) %o
=h-{*@ A\ *(d *J— (B +1)e(dv) *})
= *Y A *(d *¢ — (B+1)e(dv) *9)}.
Thus
2iB (-1 (0 g, (W) — 2iB(p,)
= B+DB =15 {0 A *e(do)f —F A *e(do)p +
+ %@ N\ *g(dv) *f — % A *¢(dv) * @}
= (B+1(B =1) §j-15){(= 1) [@ Atldv) *§ = Au(dv) *9] +
+ (=1 *F DT %o Addo)f — *§ A i(dv)e]}
= B+ 1B~ 1)f,-15)1d0)@ A *F —F A %9) =0,
since ¢(dv) is an anti-derivation,
((dv) = (=1)"k*D*1 % ¢(dv) * on k-forms,
and ¢ A *y = (@,)>E. This shows that & is ug_ (H)-invariant.

As it turns out, & tends not to be positive definite, even after restriction
‘to a posttive frequency subspace. This question, and similar questions

involving higher-order intertwining operators, are treated in detail in [7]
for the special case M = §* x §"~ 1,

We shall not continue to assemble a catalogue of conformally invariant
inner products on the null spaces of Dy, D, 4, D¢, and Dg (,_¢) 2. Rather, to
indicate the general direction in which things are headed, we shall just write
down the inner product on A4"(D,). Writing D, in the form

(3.22) T =(n—2)J —4V 4,

—4
Q =TS (@ +nt - 2v ),

the correct inner product is .
Ao, y) = %Ss {@ A\ *(déd + TdW —y A *(ddd + Td)p +
+6dp N *dy —ddy N *do}.

This also tends to be indefinite, even after restriction to a positive frequency
subspace.



338 THOMAS P. BRANSON

4. Remarks and further results.

a. Global invariants of conformal structure. A fourth-order Yamabe
problem. The conformal covariance relations satisfied by D, D, , Dy, Dy s,
and Dg ,-¢)2 lead to the following.

THEOREM 4.1. Suppose (M,g) is compact and Riemannian. All critical
values of the functionals

) (D29,0)2m
4, TI——[P————L—)
( 1) (/] LG/(n—z)(M), n=> 2

D, 0,
(4.2) (" 2,]']:? (P)LZ(A"(M)),
Q =2 (AR(M))

(D49, 9)2(m

4.3

4.3) ’ "_“T—l(p 2 o) n>4
D, .9,

(4.4) (I 419 (P)I}(A*(M))’
I Q@ " 2= 9 (AK(M))

n>?2

n>4

(45) (D6I,I(,.—6%/2(P,(0)L2(A(u—6)/2(MD’ n= 8,10,12,...
e "LG/(n-s)(A(u—s)/z(M))

are conformal invariants of (M,g); i.e., the same list of critical values is
produced by (M,Q~2g) for 0 < Qe C*(M).

Proor. For (4.1), this is a key tool in [1]; it follows from the covariance
relation

(4.6) D, (" 22p) = Q212D g,
For (4.2), the assertion follows from
@) D,,(Q~ % 22g) = QUK+ 22D, g

and (2.28). (The I¥ norms are gotten by integrating powers of the g* norm.)
For (4.3)-(4.5) we use

(4.8) . D, Q" V2p) = Qn+412D o,
4.9) D M(g(n— 2k—-4)/2 Q)= Qn—2k+4)2 D410,
(4.10) Dg,(n-6y29 = Q°Dg (n—6)29,

and (2.28).

REMARK 4.2. a) We cannot expect D, ; to be bounded below, or (4.2) to
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have an infimum, unless k < (n — 2)/2. This condition guarantees that the
dd and dé coefficients are both positive. Similarly, to bound D, , below, we
need k < (n—4)/2.

b) The nonlinear operators of Theorems 2.11-2.14 are those appearing
in the Lagrange multiplier problem for minimizing (4.1)-(4.4). For
example, to minimize (4.2), we should solve the nonlinear eigenvalue
problem

D, ¢ +a|[*"?P¢ =0, a constant.

c) There are continuous imbeddings of the Sobolev spaces involved in
4.1)-(4.5):

L%—>LZ"/("—2), L%—’Lz"/("_‘t), L%—)LGl("_s).

These exponents put us exactly at the borderline cases of the Sobolev
Imbedding Theorem, where the imbeddings are not compact. This is, of
course, well-known in the D, case (see, e.g., [1]), where the list of critical
values has been called the “conformal spectrum” of (M,g) [18]. We can
regard the new conformally covariant operators as providing us with new
conformal spectral data. It is natural to ask to what extent the various

conformal spectra determine the conformal class of (M,g).
d) The curvature condition for the covariance of D4 seems to make the

critical points of
(Ds9,9) M)
@ U ppren-oxm)
'meaningless from the above point of view.

The nonlinear eigenvalue problem corresponding to the Paneitz
operator D, is analogous to that for D,, the Yamabe problem. (4.6) with
@ =1 gives

n_2 _ n_2 n+2 n—2
4n-1)"- T 4(n-1)

4.11) (4 +—-—= K)u Kun=Z,u=Q7 ,11)

(For Riemannian manifolds, we write [1= A.) Thus to prescribe K by
‘conformal deformation of g, we look for a positive solution u to 4.11).
Similarly, (4.8) applied to ¢ = 1 gives, in the notation of (3.22),

n+4 n—4
(4.12) (A2 +4Td + Q) =Quvn=%, v=Q7, n#1,24,

a Yamabe prescription problem for the level 4 local scalar invariant
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._"_4( n. « B
Q="2"(ar+3 -—2V,,Va>.

Among other things, this gives a global obstruction to the possibility of
prescribing an Einstein metric by conformal deformation (Corollary 4.5
below).

THEOREM 4.3. Suppose (M,g,E) is compact, oriented, and Riemannian,
n+#1,2,4, and that g = Q%g, 0 < Qe C*(M). Then

[ @7 QE = [, Q"7 QE.

PRrOOF. Since (A% + 8Td )Q™"~ /2 is an exact divergence in the metric g,
it contributes nothing when we integrate both sides of (4.12) against
E=Q"E.

COROLLARY 4.4. Under the assumptions of Theorem 4.3: a) If Q is a
positive (respectively negative) constant, Q must be positive (respectively
negative) somewhere; b) If Q = 0, then either Q = 0 or Q changes signon M.

COROLLARY 4.5. Under the assumption of Theorem 4.3, if g is an Einstein
'metric of nonzero scalar curvature, then Q is positive somewhere. If (M ,g) is
Ricci flat, then either Q = 0 or Q changes sign on M.

Proor. If g is Einstein, V*; = (J/n)é% and AJ =0, so

(-4 n+4)
e="— "

b. Tensor densities and differential operators depending only on conformal
structure. The vector bundle E of (p,q)-tensors (or (p,q)-tensors with certain
symmetry/antisymmetry conditions) over a manifold M can be characte-
rized by the coordinate transformation rule for its C® sections: a (p,q)-
tensor field T is a rule which assigns to each coordinate chart (U ;x!,..., x")
a list of functions T* g ﬁ'), in such a way that the (U;x!,...,x") and

(0,y%,...,y") lists are related by

Ay d
T ey

= (aa:y‘l) oo (0, y)(@,, xP)... (5”'36’3’) T* % .

on U N U, where J, = 6/0y*. A more general vector bundle can be obtained
by weighting this transformation law by a power of the Jacobian
determinant
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F = det (6xP/0y*).
We shall call the bundle defined by
Frhs e hy

By b
w—@—p)
=4 n (aaly’ll) e (a%y’ln)(@lxﬂl) .. ((7qu3~), weR,
the bundle of tensor densities of weight w, and denote it by E" if the original
bundle was E. (In particular, E = E?7?2.)
If M is given a ¥R metric g, one can calculate det (g,4) in each coordinate
chart; this scalar quantity has weight 2n:

det (7,,) = #2 det (g,p).

Thus if T is a (p,q)-tensor density of weight w, the functions
w=(@-p)

(detg,g) ™ 2n T%~% ,

transform as the components of an ordinary tensor field [T], which we
shall call the core tensor field for T (relative to g). Conformally related ¥R
metrics g = Qg have

det(gaﬁ) = an det (&aﬂ);
thus g and g determine core tensor fields related by
[T]=Q* @ P[T].

The conformally covariant CLDO of Sections 1,2, when viewed as
operators on ordinary tensor fields, depend on the ¥R metric g, and not
just on its conformal class (e.g., D, # D, for g = Q?g). But the conformal
covariance laws say exactly that these operators, when viewed as operators
between tensor densities of certain weights, depend only on the conformal
class of g. If E and F are canonical tensor bundles and D: C*(E) - C*(F)is
a CLDO, we define associated differential operators

D*¥:C®(E*) - C*(F")
by
[p*¥'T]=D[T].
A priori, D** depends on g because [ - ] does. But if D is a conformally
covariant level | CLDO of weight w, then D***! depends only on the
conformal class of g. Indeed, if g = Q?g, then (supposing that Eisa bundle

of (p,q)-tensors, and F is a bundle of (r,s)-tensors), the conformal
covariance law
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D_(Qw-—(q—p)(p) = Qw+l—(s-r)D(p

gives
[D_w.w+lT] = Q- wHI=(s=n) [D_w,w+lT]
= Q—(wﬂ—(s—r))lz[T]
— Q—(W+l-(S~r))Q(Qw—(q—p)[T])
= D[T]
- [Dw.w+lT],
as desired.

In this sense, conformally covariant differential operators can be called
“differential operators canonically associated to a conformal structure.”

It would be desirable to relate, say, the (D,,)"~2/2®+2V2 to the
Laplacian of some elliptic complex in the case of compact Riemannian M,
in order to relate conformal geometric information to topological
information. This prospect is especially appealing because the D, , appear
to carry more geometric information than the ordinary (de Rham complex)
Laplacians. Asindicated indirectly in [6, Section 5], the correct route seems
to be through some sort of Dirac complex.

c. /' (D,) as a partial gauge for the Maxwell equations. Paneitz’ original
reason for calculating D, involved gauge-fixing for the Maxwell equations
on

(M’g) = (Sl XS3’ —&st +gS’ = '_dtz +gS’)'
As shown above (Remark 3.11) one can fix the Coulomb gauge
1(0/0t)A = 64 = 0;

but these conditiohs are not conformally invariant. Paneitz showed that
the conformal transform of a Coulomb gauge potential in (M,g) can be
reduced to the Coulomb gauge by a solution of Dyu = 0:

1(0/ot)(h-A+du)=06(h-A+du) =0, some ue A/ (D,). ‘

He also showed that D, is in a certain sense unique with this property.
According to calculations of the author, all this remains true in the case
of Maxwell potentials ((n — 2)/2-forms) in S* xS$"~! for even n = 4, if we
replace D4 by D4,(n_4)/2 [7].
d. Conformal structure and CR structure. Conformally invariant tensor
fields and conformally covariant differential operators have recently
become important in the problem of deciding when two strictly
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pseudoconvex domains in C" are biholomorphically equivalent. Given a
strictly pseudoconvex domain U, Fefferman [11] defines a Lorentz metric
gon F = §' x9U, in such a way that biholomorphisms H: U, — U, induce
conformal transformations

h: (Fl,gl)_) (F23g2)'

Thus invariants of the conformal structure of (F,g) turn out to be
biholomorphic invariants of U.

The natural “intrinsic” structure generalizing the property of being the
boundary of a pseudoconvex domain is that of a CR manifold. If N is an
intrinsic CR manifold which is strictly pseudoconvex in the sense that its
Levi formis positive definite, a version of Fefferman’s construction can still
be done; this yields a Lorentz metric on an S* bundle F over N. (See [15]
and references therein.) Invariants of conformal structure like || C 2, D,,
and D, on F then project to invariants of CR structure on N. In the case of
D,, this process is known to yield a scalar curvature correction to the
Kohn-Spencer Laplacian A,. (Again, see [15]. Definitions of the
appropriate curvature tensors for a CR structure are worked out in [24].)

One might also work directly with a CR structure and the curvatures of
[24], and perform calculations analogous to those of Sections 1.d and 2, to
obtain differential operator invariants of CR structure analogous to D,,
D6’ Dz,k, D4,ka D6.(n— 6)/2

e. Heat kernels and conformal invariants. Let (M,g) be a compact
Riemannian manifold. Joint work with B. Orsted indicates that
conformally invariant tensor fields occur at certain points in the
Minakshisundaram—Pleijel expansion for the fundamental solution of the
heat equation ,

(8/0t + D)i(x,t) =0, '(x,t)e M xR,

based on a conformally covariant operator D. Recall that for the heat
equation based on the ordinary Laplacian A on functions, the heat kernel
K (x,y,t) has a certain asymptotic expansion, which on the diagonal reduces
to

K(%,x,t) ~ (dnt)""*(ap ¥ ast +azt* +..0), t Y0,

where a; is a level 2i scalar local invariant. Analogous statements can be
made when A is replaced by a CLDO D, provided D has a consistent level I.
For example, in the scalar case, if we replace Aby A +aK, a€R, the a; are
still level 2i local invariants, but this is not true if we replace A by A + K2
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The flavor of our general results can be illustrated by two examples. A
typical “pointwise’ result has as a special case thatif n =6 and D = D,
then

g=Qg=a,=0Q%,.

This special case can be calculated directly: a, is a multiple of ICI2. A
typical “global’ result has a special case that forn =4, D = D,,

g = ng = S)\’(!.ZE = SM azE.

This special case can also be calculated directly: a, is a linear combination
of I Cll? and the Pfaffian (Euler characteristic density).

ADDED IN PROOF. V. Wiinsch reports that he has solved Conjecture 2.9 in
the negative, by constructing a general conformally covariant sixth-order
operator on functions (for n > 4) which appears to differ from our D¢ by a

-second-order operator.
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