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CHARACTERIZATION OF I?(#)
FOR INJECTIVE W*-ALGEBRAS .#

LOTHAR M. SCHMITT

Abstract.

We characterize matrix ordered standard forms (#, ¢, 5#,}, ne N) of
W*-algebras .# by the following property: every matrix ordered subspace
of (A, ) generated by the face of a single element in #} must be
completely isomorphic to some W*-algebra.

We relate the completely positive extension property (injectivity) of
matrix ordered spaces, which are dual spaces, to a matricial analogue of the
Riesz interpolation property introduced by Wittstock.

As consequences we obtain: if (3, ], ne N)is a Hilbert space, which
is matrix ordered by a family of selfdual cones #,) < # @ M,, then
(o6, #F) is (finitely) injective or has the matricial Riesz interpolation
property if and only if there exists an injective W*-algebra .#, such that
(A, H#,#,, neN)is a matrix ordered standard form.

Introduction.

Function spaces like C(X) or I?(X, u) — classical objects of functional
analysis — carry a natural order structure. A unifying treatment of these
order structures is the theory of Banach lattices. In this setting the spaces
mentioned above have been given abstract characterizations [19]. For
example consider a Hilbert lattice s, J# isisomorphic to I?(X, u), where X
is a locally compact space and u is a strictly positive Radon measure on X —
Schaefer [19]. & has a selfdual cone # * = I?(X,u)*. Every face in #*
generated by a single function f = 0 is isomorphic to some L°(X,,u;)*.
Conversely if 2 is a Hilbert space with a selfdual cone #* and every
singleton face of »## * is isomorphic to some L°(X ,, u,)*, then it is a Hilbert
lattice. In the first part of this paper we shall prove a similar statement for
non-commutative I?-spaces. These are the Hilbert spaces arising in
standard forms of W*-algebras introduced by Araki [2], Connes [8] and
Haagerup [13]. Choi and Effros [6] introduced matrix ordered spaces as
an appropriate means to handle non-commutative order. The Hilbert space
in a standard form carries a natural matrix order. In [217] Wittstock and the
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author characterized those matrix ordered Hilbert spaces # with selfdual
cones X, < # @M, arising from standard forms of W*-algebras by a
projection property: for every closed face in #," there exists a projection
from s, onto this face. We relate this property to the following: every
matrix ordered subspace of (5, ) generated by the face of a single
element in ] must be completely isomorphic to some W*-algebra.

As well as order structures and integration theory are related in the
commutative and the non-commutative situation, there is a fundamental
link between order structures and extension properties. An injective
Banach space is isometrically isomorphic to C(X), the bounded continuous
functions on a Stonean space X. Goodner, Kelley and Nachbin (see [4],
[16]) proved this in the real and Hasumi [14] in the complex case. A result
of Choi and Effros [6] says, that an injective matrix ordered space R with
archimedean cones M,(R)* and an order unit is completely isomorphic to
an injective C*-algebra. If R is a dual Banach space, then it is completely
isomorphic to an injective W*-algebra. Choi and Effros [6], [11] also
proved, that for a W*-algebra R injectivity and the following extension
property are equivalent: every completely positive map ¢ : N,, — R has a
completely positive extension to M,,. Wittstock [26] has shown, that for
W*-algebras injectivity, the matricial Hahn-Banach property and a
matricial analogue of the Riesz interpolation property are equivalent. In
the second part of this paper we study Arveson spaces, i.e. matrix ordered
spaces, which have the completely positive extension property in the
category of matrix ordered spaces. We shall prove, that for a matrix
ordered space R, which is the dual space of a matrix ordered, A-generating
Banach space, all the properties mentioned above are equivalent to R being
an Arveson space.

The results of part one and part two yield to characterizations of matrix
ordered standard forms [21] of injective W*-algebras, which we shall
obtain in part three.

Notation.

Suppose that V is a complex vector space with an involution *. We shall
write ¥, for the real subspace of selfadjoint elements v = v*. Then
V =V, ®iV,. Let M, , be the space of complex m xn matrices and M, be
the n Xn matrices; n,m € N. We shall write 1, for the unit element in M,
M,, , always carries its natural involution st:a — o*. If

Vm,n = Mm,n(V) =V ®Mm,n

is the space of m X n matrices with entries in V, then we define the involution
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()*: Vo= Voum s [0,,]* = [03,].
If we write
h=M,V)=V ®Mn = V;n,m
then
V="V ®R (M)

Suppose v € ¥, and w € V,,. We define:

0

VOw= (8 w)el/,,+,,,.

Especially we define 6, = 1, ® (—1,) € M,,. For ve V, and we W, we let

vXw=Y v, Qw,eV QW.
uv
In particular

vXa =) a0, forveV, aeM,.
nv

Now let
NZn: = {yEMZn'y xo—n,n = 0}

N,, is a matrix system in M,, [6].
A complex linear map ¢: V — W is called selfadjoint if ¢(v*) = @(v)*.
Put

Pn=0 ®idMn: Vn e I/Vn, [vnv] g [‘P(vuv)]-

A complex vectorspace V with an involution * is said to be matrix ordered,
if each (V,), is partially ordered by a cone V] and the following
transformation law yields: if « € M,, , thenaV, a* < V5. If V and W are
matrix ordered and ¢ : V — W is a selfadjoint map, then we say that ¢ is
completely positive if ¢,(V,)) = W, for every n € N. Every completely
positive map ¢ : M, » M,, can be written as

@(B) =a X =p xa =Zypy¥;

a0 €M) ., €M, ., BEM,.
Conversely the last three expressions always define completely positive
maps M, — M,,. This follows from [5, Theorem 1] and [6, Lemma 4.1]. As

usual we shall suppress the indices n =m =k = ,..., =1, if there is no
possibility of misunderstanding.
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1. Matrix ordered standard forms of W*-algebras.

Let .# be a W*-algebra and ¢ a normal, faithful, semifinite weight on .#.
Using the well known results from [23], [22], [8], [13] we obtain the
achieved left Hilbert algebra ./, the modular operator A, the canonical
involution J and the standard form (#, #, J, ¢ "), which is unique up to
spatial isomorphisms. If tr denotes the trace on M,, then o/, ® M,, is the
achieved left Hilbert algebra corresponding to the weight ¢ ® tron #,. It
generates the standard form (#,,, #,,J,,, #, ), where ., operates on J, by
matrix multiplication from the left. Lemma 1.1. of [21] shows that

alymadyHom < K

foreveryae #, ,; n,me N.In particular 5# is matrix ordered by the cones °
>}, which implies that J, = J ®st [21, Lemma 1.3]. Consequently we
call (#, #, #, , ne N) a matrix ordered standard form [21, Definition
1.4].

Now suppose that s# is some Hilbert space, which is matrix ordered by a
family of selfdual cones #, <= #,. Consider a face F = s, for some
ne N,i.e. ahereditary subcone of #, . If one defines the orthogonal face as

Ft={leH,|<F>=0},

then F is said to be completed if F = F* +. Writing P for the selfadjoint
projection on the closed subspace of # generated by F, we call F a
projectable face if Ppo#, = F.If £ € #, , then

={nes;}|IAeR*, 0 <y < AE)
is the face generated by &. It is easy to see, that for £, = ¢ ®1,e #,}.,,
spancF ¢, = (spancg Fy),,
and (spanc F;, F, ) is a matrix ordered linear space.
In [21] we proved the following Theorem which characterizes those

matrix ordered Hilbert spaces, which arise from matrix ordered standard
forms of W*-algebras:

THEOREM 1.1. Suppose that # is a matrix ordered Hilbert space with
selfdual cones #, < H,. There exists a W*-algebra M on # such that
(M, #,5], neN) is a matrix ordered standard form, if and only if for
every n € N every completed face F = 3, is projectable.

In fact 4 is the matrix multiplier algebra of (o 5, ) [21, Definition 2.1
and Theorem 4.3]. If one is interested in a further exploration of the facial
structure of (o ;" ) and looks at [8] or [22, section 10.24, Lemma 3] the
following Definition is at hand:
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DeriniTION 1.2. A Hilbert space 5, which is matrix ordered by selfdual
cones #, < H,, has property &, if for every £ #7 the linear, matrix
ordered space (spancF,, F,, neN) is completely order isomorphic
to some W*-algebra .#,. To be precise we have a linear, invertible map
®:.#; - spanc F¢, which satisfies ®,((#,), ) = F; and ®(1) = ¢.

Let n € #,. Then we have a ye #;} such that 0<n <y ®1,. If
(o, # ) has property &, then (spanc F,, F ,,)is completely isomorphic to a
W*-algebra .#,. Since the linear, matrix ordered space generated by the
face of an element in (.#,),; is completely isomorphic to some other W*-

~algebra we obtain a linear, completely positive isomorphism

©: (M, (M, )~ (spanc F,, F, ).

Using that every Hilbert space s# with selfdual cone #* is order
complete [18, Chapter V, section 4.3] it is easy to see that such a map ®
occurring above is o (#;, M ) — o(#, #) continuous. The main result of
this section is:

THEOREM 1.3. Suppose that # is a matrix ordered Hilbert space with
selfdual cones #,) < H,, ne N. Let M be the matrix multiplier algebra of
(o€, H.F). Then the following three statements are equivalent :

(@) (M, H#,#,) is a matrix ordered standard form.
(b) Every completed face F = #, is selfdual in Pr #, ne N.
(c) (S, #.) has property F.

We need some Lemmas for the proof of Theorem 1.3:

LemMMA 1.4. Suppose that (M, #, #, , n€ N)is a matrix ordered standard
form of a W*-algebra and ¢ € #{ .
(@) If A is o-finite and ¢ is cyclic and separating for # , then the map
9ix— AYHRE,
is a completely positive isomorphism of (M,.#, ) onto (span Fg, F ¢)
satisfying ®,(#, ) = F; and ®(1) = ¢.
(b) If M is arbitrary and p = supp(w;) then there exists a completely
positive isomorphism ® of (p#p, (p#p)y; ) onto (spang F,, F ¢,) satisfy-
ing ®,((pAp), ) = F, and ®(p) = ¢.

Proor. (a) &, = &£ @1, is cyclic and separating for .#, and
_ Al
A;,/g = Awe ®1,
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by [23, Theorem 11.1]. So (a) follows from [22, section 10.24, Lemma 3].

In order to prove (b), let g = pJpJ. Then by [13, Lemma 2.6] (¢.# g,
g, 4,3, ne N) is a matrix ordered standard form and ¢ € g is cyclic
and separating for g .# q. It follows from the proof of [21, Proposition 3.4],
that F, = q#*. Now we can apply (a) to obtain a completely positive
isomorphism between g.#q and span¢ F,. Observing that g.#q and p.#p
are completely isomorphic, we are done.

If 2" is a selfdual cone in a Hilbert space J, then #™* uniquely
determines an involution J on . It is well known [8], [15], that for
te A’ = o, there exist unique &*,E” et satisfying & =¢EF —¢,
EY L E7. We call this the Jordan decomposition of £. In addition we
define |&l = £ + ¢~ .

Lemma 1.5. Suppose #'* is a selfdual cone in a Hilbert space # and
Fc " is a face in #*. Then Pp#’ < #’ and the following three
conditions are equivalent:

(a) F is a projectable face in #*.

(b) If¢ e (spang F) ™, thenthereexist E*,E~ € F suchthaté = EY — ¢~ and
ErLet.

(c) Fisselfdual in Pp¥.

Since this Lemma is more or less known [15], we omit the proof as well as
the proof of the next Lemma.

LeMMA 1.6. Suppose #'* is a selfdual cone in a Hilbert space # and .

Ee H’. Then |¢| is a minimal element of {n| £ & < n}, which has minimal
norm in this set.

LemMA 1.7. Suppose S is a matrix ordered Hilbert space with selfdual
cones #, , ne N, which has property F.
(@) If G is a closed face in #,} and & € spang G, then ¢l € G.
(b) If¢ = &* — £~ is the Jordan decomposition of ¢ € spang G, then £ £ € G.
(c) spangG = (spang G)~.

Proor. Let { =&, —¢,, £,,€G. Then +¢6<¢,+¢, =:n€G. By
hypothesis there exists a W*-algebra ), +» and an order isomorphism

d):"”lé|+n_" SpanCF|€|+n

satisfying ®(1) = 1¢&l + 9. Letz = @~ 1(1&l), y = ®~1(n) and x = ®~1(¢). If
p =supp y is the support projection of y, then z and p commute and we
have:
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0<+x+y=2y=2lylp
= (xx+y)pt =
= *x=tpxp=pzp=zp<z.

Now Lemma 1.6 implies that zp = z. Denote the spectral resolution of y by
E and put p, = E([1/n,1]), ne N. Then p, * p and p, < ny. The continuity
of @ implies that ®(p)e G and ®(p) = |¢le G. This gives (a) and (b).
Suppose ¢, € spang G, n€ N such that

S lel=3 el <.
n=1 n=1

Then

Y < Y lEleG and Y &, espangG.
n=1 n=1 =

This proves (c).

Proor oF THEOREM 1.3: (a) <> (b), is Theorem 1.1 and Lemma 1.5.
(a)= (c)is Lemma 1.4 and
(c)= (a) is Theorem 1.1, Lemma 1.7 and Lemma 1.5.

2. Arveson spaces.

The class of injective W*-algebras proved to be a very nice subclass of all
W*-algebras, which possesses remarkable stability properties [10]. They
arise in theoretical physics and as biduals of nuclear C*-algebras [7].
Consequently they have been an object of intensive study and have been
given many characterizations [3], [6], [9], [11], [26]. In this section,
which is closely related to [6] and [26], we consider the completely positive
extension property in the category of matrix ordered spaces. We obtain
several characterizations of this property for those spaces, we are interested
in.

In what follows R is always supposed to be a matrix ordered space. A
subspace S < R is called cofinal, if S = S* and for every x € R,, there exists
y€ S,, such that x < y.

DeriniTioN 2.1. We call R an Arveson space, if for every matrix ordered
space Q and every cofinal subspace S = Q every completely positive, linear
map ¢:S5— R can be extended to a completely positive, linear map
®:Q->R.

A cofinal subspace S = R is an Arveson space, if and only if there exists a
completely positive projection P:R — S.
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DEFINITION 2.2. Suppose x € (R3,),; n€ N. x is called o, ,-positive, if for
every k-tupel (yy,...7:) € M%, ., k,me N satisfying

k
Zl '}’: OpnlPx = 0

we have that

v

k
; Y xy, 2 0.

r € R, is called a lower g, ,-bound of x, if r ®¢,,, < x. R has the matricial
Riesz interpolation property, if every o, ,-positive x € (R,,), has a lower
o, ,-bound.

The matricial Riesz interpolation property first appeared in [26], where
it is shown, that it characterizes injective W*-algebras among matrix
ordered order unit spaces, which are dual spaces. In [27] it is proved, that
for uniformly complete ordered vector spaces the ordinary Riesz
interpolation property implies its matricial analogue. A similar condition,
that characterizes injectivity, is given in [6, Theorem 3.4].

DeriniTiON 2.3. Suppose that R, is a matrix ordered topological vector
space — product topology on M, (R,). Define

K2n(R*) = (R* ®N2n) n MZn(R*)+
= {yEMZn(R*)+!6n,n Xy= 0},

LG(R*) = (R* ®N2n)+
= {ye M,,(R,)"|ex.ye (M,, ®M,,)",
v/ eyM,,, (R,)* such that
Oun Xy =0,y %% = y}.
R, has the approximative factorisation property, if
K,.(R,) = L,,(R,)” forevery neN.

The approximate factorisation property appears hidden in the proof of
[6, Theorem 5.2]. Suppose that R, and R are dual matrix ordered spaces in
the sense of [6, page 175]. Using [6, Lemma 4.3] one gets:

K2n(R*) x> CPa(R’ NZn) x> CP(Ngm R*)

where ¢ means 6(R, R, )-continuous.
By [6, Corollary 4.8] we obtain:
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R, has the approximative factorisation property.
<> Everyo(R,R,)-continuous, completely positive map from R to N,, has
an approximative factorisation through M,,.

<> Every completely positive, linear map from N%, to R, has an
approximative factorisation through M,,.

THEOREM 2.4. Suppose R is a Banach space, which is the dual space of a
matrix ordered Banach space R, with continuous involution. Suppose in
addition, that R, is A-generating for some A 2 1, that is for x € (R,.)y, there
exist x,,X, € R} suchthat x = x; — x, and | x| + I x, 1 < Al x|.

The following conditions are equivalent:

(I) R is an Arveson space.
(IT) R s finitely injective, [6, page 165].

(IIT) Any completely positive, linear map ¢:N,,— R has a completely
positive, linear extension to M,,,.

(IV) R, has the approximative factorisation property.

(V) R has the matricial Riesz interpolation property.

(VI) R has the matricial Hahn—Banach property, [ 25, page 135].
We need a Lemma:

LemMaA 2.5. (a) The dual cone of L,,(R,) in (Ry,), is the set of all o, ,-
positive elements in R,,,.

(b) If ye (Ry,)y is o, ,-positive, then @:N,,— R, arra Xy defines a
completely positive map.

Proor. a) If y € (R;,), is in the dual cone of L,,(R,), then y x y = 0 for
every y € (M,, ® M,,)* with g, , X y = 0. Hence by [5, Theorem 1] and [6,
Lemma 4.1], this is equivalent to:

k
if 91,...7x € M5, such that ) y*0,,7. =0,
k=1

k
then Y y¥yy.=0.
k=1

b) Suppose aeM,(N,,)* = (M, ®M,,)*. Then there exist finitely
many 7y, € M,,,, such that

axXB =) yPy. forevery fe M,,

U XOpp = VxOnn¥x = 0.
K
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Hence

aXy =Ypyrn20.
X

Proor oF THeoreM 2.4. (III) = (IV) is contained in the proof of [6,
Theorem 5.2].

(IV)=> (V). Suppose x = [x,;]€ M,,(R); is o,,-positive. We define
7: (R )= R by

1(y) = inf {{x,u)|ue M,,(R,)*, 0,, Xu=y}.
If (IV) holds, then

7(0) = inf {{x,u)|u e K,,(R,)}
— inf (x5 e La(Ry)) 2 0.

Thus 7 is a welldefined sublinear functional on (R,),, which satisfies

t(Y) é <x113y+> + <x2n,2my~>
S (Ixyy I+ Ixgp 20 Ay,

y =yt —y~, yte R} suitably chosen. By the Hahn—Banach Theorem we
have a z € R, such that (z,y) < 1(y). If y = [y,;] € M,,(R,)*, then

(2 ®0un ) = 2,0pn %X V) S 1(0y0 % y) S (X, ).
Hence x is lower g, ,-bounded.
(V)<> (VI)is [26, Satz 3.5].
(VI)= (I) follows similarly as the proof of [26, Beispiel 2.3.3].

The equivalence (I)<> (VI) holds for every matrix ordered space R [20]
and is a matricial analogue of the equivalence between the Krein—Rutmann
extension Theorem for positive linear forms and the scalar Hahn—Banach
Theorem. In the case, where R is a W*-algebra, and in the case, where R, is
a C*-algebra, Theorem 2.4 is contained in [11, Theorem 9.1, Theorem 9.2,
Theorem 9.3] and [26, Satz 3.6, Korollar 3.7].

For a moment let us turn to the commutative situation:

COROLLARY 2.6. Suppose (R,R") is a quasi-(0)-complete ([1, page 1164])
Banach space with a closed generating cone R* and continuous involution,
which has the Riesz interpolation (decomposition) property. Then there is one
and only one way to define a matrix order on R with closed cones in M ,(R)
such that Rf = R*. R is given by

R} =co{R* ®M;)
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k

={Zx,¢®a,‘, x. € R*, ocxeM,T,keN} .

k=1
(R,R:’ , h € N) has the approximative factorisation property.

Proor. We can assume without loss of generality that (R, R*)is regular
ordered in the sense of [25, Definition 2.2]. Now the uniqueness of the
matrix order follows from [25, Theorem 3.1]. The second statement is a
consequence of [27, Proposition 2.1] and Theorem 2.4.

One knows, that Banach lattices have the Riesz interpolation property
Principle ideals of Banach lattices are AM-spaces and these are
isometrically order isomorphic to the spaces C(K), K a compact Hausdorf
space by the representation Theorem of M. and S. Krein and S. Kakutani
[19]. The following Theorem can be seen as a matricial analogue to this:

THeoreM 2.7. Suppose R and R, as in Theorem 2.4 and one of the
conditions (I)- (VI) satisfied. If £ € R, then

(V=spangF,, V,r =V, NR}.,, meN)
cle

is completely isomorphic to an injective W*-algebra # ;. T he isomorphism is
o(Me, My,) — 0(V,R,) continuous.

ProOF. Suppose first n = 1. [6, Theorem 4.4] shows that (V, Vi, meN)
is completely order isomorphic to an operator system. (¥, V) is injective
since R is an Arveson space. Hence (¥, V) is completely isomorphic to an
injective C*-algebra by [6, Theorem 3.1]. Thus we have a new normon V:

. +|tE v
||v||w-—1nf{teR .[U* té]go}

and the unit ball ¥; of (V,l-1l,) is 6(V,R,) closed. If 0 < v < ¢, then
lollg < AlElg, since RY is A-normal ([17, Theorem 3.2 and the
remarks following Definition 2.2]). Hence V; is o(V,R,) compact. If
v, = v* — 0 with respect to Il - Il ,, then

— vl o€ v, S llv,ll o &

implies v, — 0 with respect to o(V,R,,). Now we apply Mackey’s Theorem
in order to show that the closure of R, in V* is a predual of V.

If n > 1, then there exists ye R* such that £ <y ®1,. Hence V can be
considered as a subspace of the injective W*-algebra .#, ® M,. This
completes the proof.
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3. Characterization of matrix ordered standard forms of injective
WH-algebras.
THEOREM 3.1. Suppose (M, #, #,}, ne N)is the matrix ordered standard
form of a W*-algebra M M is injective (an Arveson space) if and only if # is
an Arveson space.

Proor. (a) Suppose first that # is o-finite. If ¢ : N,, — J# is a completely
positive, linear map, then there exists a cyclic and separating vector £ € #
such that ¢(1,,) < ¢. Lemma 1.4 implies that ¢ can be considered as a
completely positive map ¢:N,, — #. If # is injective, then ¢ has a
completely positive extension to M,,. Hence 5 is an Arveson space by
Theorem 2.4. The proof of the converse implication uses the same
argument.

(b) Suppose .# is arbitrary. Fix an increasing net (p,), vel of
o-finite projections converging to 1 and define g, =p,Jp,J. Then
(qv#qy, 4,5 (q, ®1,)5#,, ne N) is a matrix ordered standard form of

and ¢es#}, is o,,positive. Then (g, ®1,,)¢ is o,,positive. By
Theorem 2.4 we have 5, € ¢,5¢” such that

Ny @0un < (g ®12,).
In particular —q,¢5,,2, = 7, < q,¢,,; implies without loss of generality
_ n,—n (weakly) and n ®g,, < . Hence we have by Theorem 2.4 and (a):
J is an Arveson space

<>every ¢, is an Arveson space

<>every q,.# g, is injective

<> # is injective.
The last equivalence is well known and can be obtained in the same way as
the first.

THEOREM 3.2. Suppose (3, #,", ne N) is a matrix ordered Hilbert space
with selfdual cones #,) < H,. Let M be the matrix multiplier algebra of
(26, H ). If A satisfies one of the conditions (I)—(VI) of Theorem 2.4, then
M is injective and (M, K, K, , ne N) is a matrix ordered standard form.

Proor. We apply Theorem 1.3, Theorem 2.4, Theorem 2.7 and Theorem
3.1.
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