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Abstract.

We prove that each element of the open unit ball of a C*-algebra 2l is the
mean of a finite number of unitary elements of U — the closer to the surface,
the more unitaries are needed in general. Each element of % is a positive
multiple of a sum of three unitary elements. If an element of % is a convex
combination of n unitary elements of U, it can be expressed as any convex
combination “‘closer to the mean” than the original convex combination
(of some other n unitary elements); in particular, it is a mean of n unitary
elements.

"1. Introduction.

We study the ways in which an element of a C*-algebra 9 can
be decomposed as a convex combination of elements of the unitary
group #(A) of A. We prove (Theorem 1) that each element S of
() (={AeA:l 4l <1}) is a mean of a finite number n of unitary
elements of . Our estimate for n depends on the distance from A to the
surface of the unit ball; the nearer A is to the surface, the larger n must be, in
general. By considering the case where 2l contains a non-unitary isometry
(an element V such that V*V = I and VV* < I, where I is the unit element
of ), we show that the estimate for n in terms of the distance of 4 from the
surface of the unit ball is ““best possible” (cf. Proposition 3 and Remark 4).
See [12] for related results.

In the last section, we use the convex decomposition in terms of unitaries
to prove, again, one of the Gelfand-Neumark conjectures (cf. [4; Theorem
11]). In the two sections preceding the last, we study “asymmetric” convex
combinations of unitary elements of . If a,U,;+...+a,U, is such a
combination, we show that the element it represents can be expressed as a
convex combination of (other) unitary elements of U with any set of
coefficients “closer to the mean” than a,,...,a, (cf. Theorem 14). This
result follows from an “asymmetric” convex decomposition (cf. Lemma 6)
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of a self-adjoint element of (), the closed unit ball of A, extending the
“mean” of ‘“symmetric” (that is, invariant under permutation of the
coefficients) decomposition introduced by Murray and von Neumann in
[9; p. 239] and a (combinatorial) geometric analysis of the convex
polyhedron in real n-space whose vertices are the points whose coordinates
are a permutation of a,, ..., a,. Limits to the variation of coefficients of a
convex combination are established in Proposition 20 if the element
represented cannot be expressed as a combination of fewer unitary
elements.

These results, indicating the ways in which an element of a C*-algebra
can beexpressed as a convex combination of unitary elements, constitute a
refinement of the study initiated by Phelps [11] and followed by Russo-
Dye[13]. In[13], Russo and Dye prove that the norm closure of co #(),
the convex hull of #(), is (A), for an arbitrary C*-algebra. (Phelps
proves this for a commutative C*-algebra.) This result, known as the
Russo-Dye theorem, has proved very useful. It provides one means of
reducing the study of a non-normal element of a C*-algebra to that of
normal (unitary) elements — and this device is reasonably sensitive to norm
estimates. (The argument of the last section is an illustration of this
process.)

Russo and Dye remark that “little is known about the preclosed convex
hull,” and go on to show that each element T in 2 whose norm is less than 4
is in co# (). In [5], Harris proves a Russo-Dye theorem for more general
Banach algebras with an involution. From among his results (in particular,
his Corollary 1) one can read that each element of (U )? is in the convex hull
of % (N) (indeed, in the convex hull of the “exponential” unitaries of ).
(The second-named author takes this occasion to correct the inaccurate
reference on p. 5 of [107], where the Harris proof of the Russo-Dye theorem
is ascribed to Palmer.) A.G.Robertson proves, again, that (U)? < co ()
in [12; Proposition 1]. He discusses the number of unitaries needed for
such a decomposition and shows [12; Proposition 2] that each element of
(A)9 is a mean of four unitary elements when the group of invertible
(regular) elements of A is norm dense in . In Proposition 18 (combined
with Corollary 15), we show that each element of (){ is a mean of three
unitaries in U if the regular elements are norm dense in A. The norm
closure of the regular elements in a von Neumann algebra is determined in
[1], and it is noted there that the finite von Neumann algebras are precisely
the ones whose regular elements are norm dense. In the case of a finite von
Neumann algebra &, each element in (®)7 is a mean of two unitaries (cf.
Section 3). \

The Russo-Dye theorem is an immediate consequence of the fact that
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()3 C co#(A); but both the Robertson and Harris proofs of this fact
pass through the Russo-Dye theorem itself. In [2], Gardner observes that
the argument of the Russo-Dye comment showing that the open ball of
radius % is contained in co %(2) can be strengthened mildly and given a
special ending to yield a very simple proof of the Russo-Dye theorem. This
strengthening and another concluding argument is the basis for our proof
of Theorem 1.

We are indebted to L. T. Gardner for a prepublication copy of [2]. We
acknowledge with gratitude the partial support of the NSF (USA) and the
SNF (Denmark).

2. Meaning unitaries.
We prove that each element of (21)? is a mean of elements of # (21 )in the
theorem that follows.

THEOREM 1. If the element S of a C*-algebra W has the property that
ISl <1—2n""! for some integer n greater than 2, then there are n unitary
elements Uy, ...,U, in A suchthat S =n~'(U; + U, +...+ U,).

Proor. With Tin (A)? and Vin %(U),
V+T)2=V{I+V*T)2 and lV*Tl =Tl <1.

Thus I + V*T is invertible and (V + T)/2 is an invertible element of (A)?.
Hence (V + T)/2 has a polar decomposition UH with U in () and H a
(positive) self-adjoint element in (U),. Now H = (W, + W,)/2, where

W, =H+i(l - H*)'?, W= H —i(l — H*)'2, and W,, W,e# ().
It follows that V+ T = UW, + UW,. Thus, for each positive integer n,
there are elements Uy, ...,U,_; and Vy,..., ¥, (=U,) in %(2) such that

V+in-1)T=U;+Vi+n-2)T

1
() =U1+U2+V2+(n—3)T=...=U1+U2+...+U,,.

Under the assumption that | S| < 1—2n~! (and n 2 3), we have that
ln=1)"tmS-DIl < m-1)"*@mlIsl+1)<1.

Thus, we may use (n — 1)~ (nS — I) in place of T'and I in place of V in (1).
With these choices, we have nS = X;., U,, with U, in ().

The Russo-Dye theorem is an immediate corollary, for each element 4 in
(), is a norm limit of (1 — 3n~ )4, and (1 — 3n~ ')A is a mean of n unitary
elements of U. At the same time, we can apply Theorem 1 to produce a
special representation of an element of a C*-algebra.
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CoROLLARY 2. Each element of a C*-algebra is some positive multiple of a
sum of three unitary elements.

Proor. If A isin the C*-algebra U and | Al < 1/3(=1—2/3),then Aisa
mean of three unitary elements of 2, from Theorem 1. In any event, for
each positive ¢, (3 | A1l + 3¢)~1 4 has norm less than 1/3 so that

A=Al +e)U,+U,+ Us,)
for some U,,U,,U; in #%(A).

3. Minimal decompositions.

The fact that each element of (2){ is the mean of a certain number of
unitaries is an immediate consequence of Theorem 1 — with S in ()7,
choosensolargethat | Sl < 1 —2n~!and then Theorem 1 assures us that S
is the mean of n unitaries in . In this section, we study the problem of
“minimal” decompositions of elements as means and convex combinations
of unitary elements. For this purpose, we define two numbers associated
with an element T of a C*-algebrg €A

Uy(T) =min{n:T=n"1 Y U;,U,e %(A)}
=1

uc(T) =min{n:T= Z ajUj,UjG%(‘l[),aj>0, Z aj=1}.
Jj=1 j=1

If T has no decomposition as a convex combination of elements of % (),
we define u (T') to be co. (We shall see, in Corollary 15, that u,,(T)=u.(T).)
The context will make clear which C*-algebra is involved in the
decomposition so that we have omitted the algebra from the notation
“u,(T)” and “u(T)”. Of course, u.(T) = u,,(T) = o when | Tll >1, and
Theorem 1 tells us that u,,(T) < nwhen | Tl <1 —2n~1.If s a finite von
Neumann algebra, then as we noted in Section 1, u,,(T) < 2 for every T in
(9),. To see this, observe that each T in (#), has the form UH, where
Ue%(R) and H is a self-adjoint operator in (#),. As in the proof of
Theorem 1, H = (W; + W,)/2 (W, W, e #(®R)),and T = (UW, + UW,)/2.
If V is a non-unitary isometry in a C*-algebra U, then u (V) = oo from [7;
Theorem 1]. Also, u(T) = o0 if T is the function T(z) = z on the closed
unit disk D in C, where T is regarded as an element of the C*-algebra C(D).
For the proof of this, note that if T'=a,U, +... +a,U, for some unitary
elements (functions) in C(D), then z = q,U,(z)+... +a,U,(z) for each
z in D. Since the boundary of D consists of extreme points for D and
|U,,(z)| =1 for each k and each z in D, U,(z) = z for each k and each z
such that |z| =1. Hence each U, provides a retraction of D onto its
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boundary-contradicting the fact that there is no such retraction. Thus C(D)
supplies us with an example of a C*-algebra in which some element of the
unit ball has no convex decomposition in terms of unitary elements while
the von Neumann algebra generated by C(D) (in each representation) is
finite (and so each element of the unit ball of this von Neumann algebra is
the mean of two unitary elements).

In the next proposition, we make use of the fact that the spectrum of a
non-unitary isometry V is D, the closed unit disk. This may be proved by
noting that e, + Ae, + A%e, +... is an eigenvector for V* corresponding to
the eigenvalue 4, where || < 1, e, is a unit vector orthogonal to the range of
V,and e, = V¥e,. In this case, V*e, = 0 and V*e, = ¢,_, for kin {1,2,...}.
Thus

V*( Z Akek> = Z }.k+lek= ).( Z Akek>.
k=0 0 k=0

k=

Prorosition 3. If V is a non-unitary isometry and U,,...,U, are unitary
elements in some C*-algebra, then |V —n= (U, + ...+ U,)| = 2n~1.

Proor. Assume the contrary. Then

lutv—n-tl =lv—n-tUl <2n '+ ln U, +...+ U
S22 l4 (-1 t=14n"t

But U*V is a non-unitary isometry, and —1—n"'esp (U¥V —n"1I), so
that 1+n~! < lU*V —n~'Il; a contradiction. From this, we have that
1V—n"YU;+...+ Ul = 2n~1.

RemArk 4. Suppose U is a C*-algebra containing a non-unitary
isometry V (asis the case, for example, when U is an infinite von Neumann
algebra), and let S, be a, V, where

() 1-2(m—-1)"'<a,<1-2n"1,

Then || Sl = a, <1—2n"1, and from Theorem 1, S, is a mean of n unitary
elements. Thus u,,(S,) < n. Suppose S, =r~*({U; +...+ U,) with U;,...,U,
in % (). Then

l—a,=lv=8,Il=lV—rtU +..+U)l 2 2r73,

from Proposition 3. Hence r = 2(1—a,)”! > n—1 from (2). Since r is
an integer r = n. It follows that u,(S,) = n, whence u,(S,) = n. Thus
u,,(S,) = co as n — 0. At the same time, we see that the representation of S,
as a mean of n unitary elements, constructed in the proof of Theorem 1, is
“best possible.”
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In the next proposition, we give an “approximate” characterization of
the set of elements S of a C*-algebra for which u,,(S) < n.

PROPOSITION 5. Let S be an element of a C*-algebra U and d, be the
distance from nS to %(N). If d, < n—1, then u,,(S) < n. If u,,(S) < n, then
d,<n-1.

Proor. Suppose d,<n—1. Then InS—Ull <n—1 for some U in
#(A). Hence (n—1)"1(nU*S —I)e (A)?. If we replace T in (1) by
(n—1)"'(mU*S —I) and V by I (see the proof of Theorem 1), we see that
U*S is the mean of n elements of % (). Thus u,,(S) < n.

Suppose u,(S) S n. Then S =r~*(U; +... + U,) for some rin {1,...,n}.
Thus ISl 1. Moreover,

lrs—Ul =llU,+...4+ Ul <7 —1.
Hence )
Ins-—Ulglrs-U Il +lI(n—=r)Sll cn—-1,

andd,<n-1.

4. Toward the mean.

We show (see Theorem 14) that each convex combination of n unitary
elements of a C*-algebra can be expressed as every other convex
combination of n unitary elements of the algebra for which the coefficients
lie “nearer to the mean.” In particular (see Corollary 15), each convex
combination of n unitary elements of a C*-algebra is a mean of n unitary
elements of the algebra. It follows that u,(T) = u(T) for each T in the
algebra. One of the principal tools we use in proving these results is the
following extension of the classical decomposition (due to Murray and von
Neumann [9; p. 239]) of a self-adjoint operator in the unit ball of a C*-
algebra as a mean of two unitary elements of the algebra.

LEMMA 6. Let A be a self-adjoint element of a C*-algebra 2 and let a be a
real number in [0,1/2]. Let &, be [—1,1] \ ((2a—1),(1 —2a)). Then
sp(4) S SLifandonlyif A = aU, + (1 — a)U, for some unitary elements U ,
and U, of U.

Proor. If A = aU, + (1 —a)U, with U, and U, in %(A), then | 4[| < 1.
Suppose A€sp (4). Choose a pure state p of U that is definite on A and for
which p(4) = A. (See [8; Exercises 4.6.16 and 4.6.31].) Then

|4 2 |p(U3)] |p(4)] = |p(U34)| = |p(aUsU, + (1 — a)])|
21-—a—a|p(UsU,)|21-2a.
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Hence sp(4) C &,

Suppose, now, that sp(A4) S &. We shall construct two continuous
functions f; and f, defined on %, takmg complex values of modulus 1, and
having the property that af,(¥) + (1 —a) f,(t) = t for each t in &. Once we
have the functions f; and f,, we can define unitary elements U, and U, in U
as f1(A) and f,(A4), respectively; and aU, + (1 —a)U, = A.

Let C, be the set of complex numbers of modulus 1 with non-negative
imaginary part. Let 6(t) be the (unique) element of C, with real part ¢,
where te[—1,1]. Then t — |1+ a(l —a)”'6(t)| is a continuous (increas-
ing) one-to-one mapping (hence, homeomorphism) of [—1,1] onto
[A—=2a)Q1—a)"',(1—a)"']. Let g be the inverse mapping to this
homeomorphism. If t € &, then

l-a)'ztl—-a)"2(1-2a)(1—-a) .

Thus 6(g(|t(1 —a)~*|))(=£(t)) is defined for ¢ in &, and ¢ is a continu-
ous mapping of & into C,. i LEW)
=[t(l—a)"|.

When a = 1/2, we can choose t +i(1 —t2)'/2 for f;(t) and t —i(1 —¢?)''2
for f5(t). (In this case, &,=[—1,1].) When a # 1/2, we have that
tl—a)"'Q+al—a)"&@t)"! is a complex number f,(t) of
modulus 1 and f, is continuous on &. Hence f,(t)é(t) is a com-
plex number f;(t) of modulus 1 and f; is continuous on %,. Moreover,
afi(t)+ (1 —a) fo(t) =t for t in .

REemark 7. Thefunctionsf,, f,, 8, and g occurring in the proof of Lemma
6 can, of course, be expressed in terms of elementary functions. Doing that,
we find that the unitaries U, and U, from Lemma 6 have the form

U1=B+i(1—a)D and U2= C—iaD,

where B, C, and D are the self-adjoint elements of 2l given by
30”4 —-(1=2a)47"),

1l-a) 1A+ (1-2a)47"),

( _a)—l(I _ 32)1/2 = a-—l(I _ C2)1/2.

B =
C

Here (1 — 2a)4 ! should be intcrpreted as 0 when « = 1,2, and whena = 0
(so that A is a symmetry), the formula for B should be interpreted as 0.

We retain the notation %, for [—1,1]\ (—(1—2a),(1—2a)) and
deduce the following characterization of a®%()+ (1 —a)#% () with the
aid of Lemma 6.

ProposITION 8. Let U be a C*-algebra and % () be its unitary group. If
0<a<1/2,then
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{UH:Ue@(N),H=H*eU,spH S %}
=a¥(N)+ (1 —a)u(N).
Proor. Suppose T= UH, where Ue# () and H is a self-adjoint

element of A with spectrum in %,. Then H = aU; + (1 —a)U, by Lemma
6. Hence

T=aUU;+(Q—-a)UU,ea(N)+ (1 —a)u(N).
Suppose S = aV, + (1 —a)V, with V, and V, in % (). Then
VES = (1 —a)a(1 —a)~ ' VEV, + 1),
and (1l —a) ™' < 1since 0 £« < 1/2. Thus V%S and S are invertible and
S = U(S$*S)'/? with U in %(2!). Finally,
(8§*S)1? = U*S = aU*V, + (1 — a)U*V,,
whence sp (§*S)'/? C &, by Lemma 6.
REeMARK 9. The first half of the proof of Proposition 8 is valid also in the
limiting case a = %, so that
{UH:Ue¥(N),H = H*e¢A,sp(H) = [-1,1]} = 3@ (A) + %(N)).
The two sets above are equal, when 2 is a von Neumann algebra. Indeed, if
S =4(U, + U,), then U¥S(=%(I + U%U,)) is a normal element of A and
generates an abelian von Neumann subalgebra ¥ of U. The polar
decomposition ¥V H of U%S has its components V and H in €. In particular,

V*V=VV* Hence I —V*V +V is a unitary operator W in A and
UsS=WH.ThusS=U,WH with U, Win#%()and0 < H L 1.

CoroLLarY 10. If 0 < a £ b £1/2, U is a C*-algebra and 9 (N) is its
unitary group, then .

aU(N) + (1 — a)(N) S bUN) + (1 — b)u(N).

Proor. If a < b <1/2, then ¥ = &% and the inclusion follows from
Proposition 8. If a < b = 1/2 the inclusion follows from Proposition 8 in
conjunction with Remark 9.

COROLLARY li. Let T be an element of the unit ball of a C*-algebra U,
whose distance to % (N) is 2a or less, where a < 1/2. In this case, we have that
Tea(U)+ (1 —a)¥(N).

Proor. Ifa< b < 1/2, thereisa U in #(U) such that | T— Uil <2b<1.
Thus | I — U*Tll <1 so that U*T and T are invertible. Hence T = VH,



MEANS AND CONVEX COMBINATIONS OF UNITARY OPERATORS 257

where Ve (A)and H = (T*T)Y?e U.If Zisin sp H, there s a pure state p
of AU definite on H such that p(H) = Aand p(AH) = p(A)p(H)for each 4 in
A. (See [8; Exercises 4.6.16 and 4.6.31] or [10; 4.3.10].) Thus

[1=pU*V)A| =|pd —U*VH)| < I -U*VHI = lU~-TI <2b
and
1-2b < A|p(U*V)| £ A.

Thus spH S [1—2b,1]. Since this inclusion holds for each b greater
thana,spH S [1— 2a,1]. From Lemma 6, H and, hence, T are elements of
a@(N) + (1 — a)U(N).

' COROLLARY 12. If a, and a, are non-negative real numbers and N is a C*-
algebra, then

provided (b,,b,) lies on the line segment joining (a, ,a,) to (a,,a,) in R

Proor. If a, = a,, then b, = b, = a, = a, and there is nothing to prove.
Since the hypotheses are symmetric in @; and a,, we may assume that
a, < a,. By assumption, b; and b, lie in [a;,a,]. Let s be a;+a,

- (2 az > 0). It will suffice to show that

sTla, (W) + s La, (W) S s b U (N) + s b, U(N).

Of course, (s~ 'b;,s~1b,) lies on the line segment joining (s~ 'a,,s " 1a,) to
(s™'a,,s"'a;). Thus, we may assume that 0 < a, =a<1/2,a,=1—a,
and b, ,b, liein [a,1 — a]. With these assumptions, b, + b, = 1,and we may
also assume that b = b; £ 1/2 £ b,. In this case, we have that 0 <a < b
< 1/2, and from Corollary 10,

a¥(U)+ (1 —a)%(A) S buUMA) + (1—b)U(N).

If an element S in a C*-algebra U is a convex combination with
coefficients a;,...,a, of unitary elements of A, then the same is, of course,
true for these coefficients in each rearrangement, a,;, ... ,Gx@), Where misin
the group X, of permutations of {1,...,n}. In Theorem 14, we shall show
that each point (b,,...,b,) in the convex hull of

{(an(l)a- .o 9a1t(n)): me Zn}

provides a set of coefficients for a decomposition of S as a convex
combination of unitary elements of 2. Our proof of Theorem 14 is based
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on information about the geometry of that convex hull. The information is
contained in the lemma that follows.

Lemma 13. Let (ay,...,a,) be a point of R" such that a, 2 a, = ... 2 a,
20 and a,+..+a,=1. Let A be the convex hull of
{(an1ys---»anm): L€ X} (= &). Then a point of R" lies in A if and only if it
has the form (bygy,... b)) for some m in X, and (by,...,b,) satisfies the
conditions

(1) blgbz._>_...gb"go,bl‘i‘-..“l‘b”:l;
(ll) bléal, b1+b2 §a1+az,..., b1+...+bn-1 §a1+...+a,,_1.

When (by,...,b,) satisfies (1) and (ii), there are points
(@®,...,a®),...,@@",...,a") in A such that

(lll) (a(ll) a(”) = (al’ 9an) (a(n) "astn)) = (blv'-’bn);
(iv) @fV,....af* V) = t(@P,...,aP) + (1 = t)(@fl,....alty)

forallkin{1,...,n—1},sometin[0,1], and some transpositiont in £, (both t
and t depend on k).

Proor. Let ¢, be the linear functional on R” such that
Cilryse.sty) =11+ 1

Then ¢, attains its maximum on X" at some extreme point of . Now the
extreme points of X" are each in & and the maximum value of ¢, on & is
a,+...+a (sincea; = a, 2 ... 2 a,). Thus, each point of ¢ satisfies (ii),
and of course, some permutation of the coordinates arranges those
coordinates in decreasing order. Finally, the coordinates of a point of 4~
add to 1 and are non-negative since that is true of the coordinates of each
point of & and J¢ is the convex hull of &.

Suppose, now, that (b,,...,b,) satisfies (i) and (ii). When we establish (iii)
and (iv), it will follow that (b,...,b,) liesin X since (a!V,...,a!") does, each
point arising from a point of )¢ by permuting the coordinates of that point
lies in X", and X is convex. We begin the construction of the points
(@P,...,a®) by taking (a{",...,a?) to be (ay,...,a,) (as we must). Suppose
we have constructed (a{V),... ,aﬁ,”),...,(a‘{’,...,aﬁ,”) such that (iv) is satisfied
for kin {1,...,j — 1}, such that

v) by<aP,by+b,<alP+aP,....by+...+b,_ <aP+...+a®,
for each kin {1,...,j}, and such that
(vi) by =aP,....be-1=a?,
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for each kin {2,...,j}. Note that (v) becomes our assumption (ii) with 1 in
place of k (by choice of (afV’,...,a{")). From (v) and (vi)

bi+..+b;<df+...+ad, +a¥ =b, +...+b;_; +a}.
Hence b; < ay. Now
—by=b;+..+b,_y SdP+...+a¥l, =1-4d?,

so thata’ < b, < b;. Let m be the smallest number in {j +1,...,n} such that
ay» < b;. Then

(3) b1+1—'b <a13—19 bm l—b <a(J)

-Sinceal) < b; < af, thereisa tin [0,1] such that b; = ta}J’ +(1—1t)a¥. Let
7 be the transposition that interchanges j and m, and let (ay*?V,...,ai* 1)
be

t@?,....a) + 1 - t)(@dy,....ad).
Then
(a(li+1)a"',a£1j+1)) = (bla- b a1+19 asr{)—laa_(]j)_'_ao) b asrlﬁ‘l, ag)),

and (a§*V,...,ay* V) satisfies (vi). By definition, (a{*1,...,ay* V) satisfies
(iv). We show that (a¥*Y,...,a0* ") satisfies (v). If 1 < p < j, then

bi+...+b,=a{"V+. .. +ai"h.
Ifj+1 < p < m—1, then from (3),
by+...+bj+bj  +...+b, < b +...4+b;+a¥l, +... +a
=af*tV+.. . +ait
Finally, if m £ p £ n—1, then from (v) (for k equal to j),
bi+...+b,<aP+...+aP=a{"V+. . +ai*".
This completes the construction of (a{"),...,a"),..., (@P,...,a®).

In the preceding proof, we remark that each extreme point of J¢ lies in
& . Noting that the points of & are equidistant from (n~*,...,n~ ), we have

that each point of & is an extreme point of J%".

THEOREM 14. Let U be a C*-algebra and (ay,...,a,) be a point in R" such
that each a, is non-negative. T hen

G UN)+ ... +a,UN) S by UN) + ...+ b, A (N)

if (bys...,bn)€CO{(Anqrys---snm) : WEL,}, Where X, is the group of per-
mutations of {1,...,n
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Proor.Ifa; =...=a,=0,then b, =... = b, = 0 and there is nothing to
prove. We may assume that 0 < a; +... +a, = s. It will suffice to prove
that

sTla, UMW)+ ... +5"ta,A(N) S sT0UUN) + ...+ 57 b, U(N).
We may assume that a; +...+a, = 1 and hence that

CO{(anu),.. . ,a,,(,,)):ne Z"}

is a subset of the (n — 1)-simplex o consisting of those points (ry,...,r,)in R"
such that 0 < r;foreachjandr, +...+r,=1.

The assertion we are proving can be rephrased as follows: If the operator
S in A is a convex combination a, U, +... +a,U, of unitary elements
U,,...,U, of A and

(b1s...,bp)€cO{(Anys - anm) : TEZ,},

then there are unitary elements V;,...,V, in U such that S =5b,V, +...
+b,V,. We call (b,,...,b,) a representing point (in ¢) for S when such
unitary elements exist. Of course, each (by),...,byn) 1S @ representing
point when (b,,...,b,) is; and from Corollary 12, each point of
co{(by,..,bn)s (barys--->bum)} 18 a representing point when =7 is a
transposition.

We may suppose thata; = a, = ... 2 a,and thatb; = b, = ... 2 b,.In
this case, since _

(by,...,b,)ECO{(Ar(1)s- -+ »Anm) :TEL,},

it follows from Lemma 13 that there are n points
@d,...,am),...,@p,...,a™)
such that
(@P,...,aV) = (ay,...,a,), @P,...,a") = (by,...,b,),
and
(@f*V,...,a%* V) = t(aP,...,aP) + 1 —t)(@})),...,a%))

for some t in [0,1] and some transposition 7 in X,. From the preceding
p

paragraph, we have that (@{,...,a) is a representing point for each k in

{1,...,n} since (aV,...,a") (=(ay,....a,)) is. Thus (b,,...,h,) is a

-representing point.

CoROLLARY 15. Each convex combination of unitary elements of a C*-
algebra is a mean of the same number of unitary elements of the algebra.
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Proor. If a4,...,a, are non-negative real numbers with sum 1, then

. 5, Gty = L =1hm-1)n = (%%)
It follows from Theorem 14 that
a;UN)+...+a,%(N) S %@1(‘1[)+...+ %%(m),
for each C*-algebra 2.

5. Asymmetric decompositions.

In this section, we study the extent to which variation in the coefficients
of a convex combination of unitary elements of a C*-algebra permits that
combination to be expressed as a convex combination of fewer unitary
elements of the algebra (see Proposition 20). We begin with a result
(Lemma 16) related to Corollary 11. With U a C*-algebra, it will be
convenient to introduce the notation co, % (1) for the set

{a,Ui+...+4a,U,:Uy,...,U,e%(N),0 < gj,ay+ ...+ a,=1}.

LeEMMA 16. Let U be a C*-algebra and S be an element of W such that
IS <1—¢ where0 < e < (n+1)~1.IfS has distance to co, % (1) less than
£2(1 — &)™ !, then there are unitary elements U ,..., U, in U(N) such that

S =alU1+...+anU,,+8U,,+1,

wherea, 20and a, +...+a,+¢e=1.

Proor. By assumption, we can find unitary-elements V,,...,V, in % ()
such that

IS—®BVi+...+b,V) <e2(l—g) !
for some non-negative real numbers b,,...,b, with sum 1. Let T be
b~ S—QAQ—¢e)b Vi+...+b,—1V,_1)],
where
b=¢e+(1—-¢e)b,(=b,+e(1-b,)=1).
Then

ITI<b~ ' [1—e)lS— B,V +...+ b, V) + (1 —e)b,+£l SII]
Sbh e+ (1—¢eb,+e(l—¢)] =1,
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and, assuming as we may that n~! < b,, we have
IT—vl < iT—b"11—eb, Vil +11b~11 —e)b,V, -Vl
<b ' A-e)lS =By Vi+...+b, V)l +el 5]
+1—=b"1(1—¢)b,
Sbhb 2 +e(l—g)]+1-b"'(1—¢e)b,
=2hb 1< 2nn—-1+e )" <1,
From Corollary 11, there are unitary elements U, and U, ; in 2 such that
T=Q01—-eb " )U,+eb 'U,,,.
Thus
S=Q-¢ebVi+...+(1—¢)b,—V,, +bT
=a1U1+..-+a”U"+8U"+1,
Where U1 = Vl"“’ Un—l = V"l’ a, = (1—8)b1,...,an_1 = (l—e)b,,_l,
an=b—a=(1—8)b,,.

As an easy consequence of Lemma 16, the proposition that follows
characterizes the (norm-)closure of co,% () in (A)?. Toward this end, we
define co, . % (1) as the set of elements S in A with the property that for
each positive ¢ there is a convex decompositiona, Uy + ... + a,+ U, 41 of S
with U,,...,U,+, in %(A) and a, ., less than .

ProposiTiON 17. If U is a C*-algebra and n is an integer greater than 1,
then

()} N (co,%(A))™ = (A)} N co, . %(N).

Proor. If Se(A)? Nco,,#(A) and a positive ¢ is given, there are
elements U,,...,U,+ in %(N) and non-negative real numbers a ,...,a,+,
with sum 1such thata,,, <¢and S =aq,U,+...+a,4+,U,+,. We have

IS —(@U;+...4a,-1Up_ 1+ @+ aps U, £ 2a,,, < 2.

Hence Se (U)} N (co, % (N))=.

Suppose, now, that Te ()} N (co,%(A))=. For & small enough,
ITI < 1—e. Since T has distance 0 to co,% (), Lemma 16 applies, and
Teco, . % (N).

 Applying Proposition 17 to the case where n is 2, we obtain a
characterization of those C*-algebras U with dense sets of invertible
elements as those in which ()} S co,, () (cf. [12; Section 3], where
Robertson conjectures that the C*-algebras U with dense sets of invertible
elements are precisely those in which co% () = (A),).
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ProrosiTion 18. Let AU be a C*-algebra and let N, be its group of
invertible elements. The following are equivalent.

(i) Ay, isdensein A;

(i) (% (U + % (N)) is dense in (A),;

(iii) (A)} S cop .+ #(A).

Proor. (i) — (ii). If Se (), there is a sequence {S,} in A,,, tending to S.
Leta, be (max{1,1S,I})~ . Then {a,S,} tends to S and a,S, € (A), N Ay,,.
As noted (for example, in the proof of Theorem 1), each

a,S, €3 (UN) + U (N)).
Hence (% () + % ()) is dense in (2A),.

(ii) — (iii). By assumption, ()} = (A} N (co,#(A))=. From
Proposition 17,

(AN} N (co, % (A))™ = (A)] Ncop, U(Y).

(iii) - (i). It will suffice to show that each element of (U)%isin A;,,. Leta
positive ¢ (£ 1/3) be given. By assumption, each S in (2)? has the form
alUl +a2U2+a3U3, where Ul,Uz,U3E%(Q[), 0 é a, b a,, 0 é az; <eg
(£1/3),and a, +a,+a;=1.If a; = 0, then

S = a,U,(I +a;'a;UU;) e Wiy,

since 1/3 < a,. If a,; > 0, let & be min{¢,a,/2} and let S, be (a, — &)U, +
(a;+as+¢€)U,. Then IS — Syl < 2(e'+ a3) < 4¢ and

So= (ay+as+&)W,[(az+as+¢) Hay—€&)ULU +1]eN,,.

REMARK 19. Itis'not, in general, possible to replace 2+ by 2 in condition
(i) of Proposition 18. We illustrate this with the C*-algebra U of
convergent complex sequences (so that U = C(N U {c0})). The invert-
ible elements of A are dense in U, but the element S in (2A)?, defined by
S(c0) = 0and

S(n) = (2n)"tet™ (neN)
cannot be expressed in the form 4(U + V) with U and V in % (). Indeed, if
S =3(U + V) with U and V in % (), then, letting U (n) be u(n) + iu'(n) and
V (n) be v(n) + iv'(n) with u(n), u’'(n), v(n), v'(n) real, we have
$[u(2n) + v(2n)] + 4i[w'(2n) +v'(2n)] =4[U(2n) + V(2n)] =S(2n) = t‘;—;—)—
Thus u'(2n) = —v'(2n) and u(2n) + v(2n) = (2n)~*(—1)". Since U and V are
unitary elements of 2,

1 = u(2n)?® + w'(2n)* = v(2n)? + v'(2n)%.
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But u'(2n)?> = v'(2n)*> so that u(2n)?> =v(2n)?. Since u(2n)+v(2n) =
@n)~*(—-1y 0,

u(2n) = v(2n) = (—;nl—): — 0 = u(00).

At the same time,

3[u@n~1)+0@n—1)] + $i[w@n—1) +v@n—1)] = ST

4n—-2
"and now Wn—-1)=1v'2n—1)= (4n—-2)"1(=1)"*. Thus
[u@n—1)| = 1 —u'(2n—1)*)"2 > 1 = |u(w0)|
— a contradiction.

ProposITION 20. Let U be a C*-algebra and T be an element of U such
that u(T)=n2=23. If a,U;+...+a,U, =T, where a,,...,a, are non-
negative real numbers with sum 1 and U,,...,U, e % (), then

(1) a; £ aj+ay provided j + k;

(i) (n—1)"'< a;j+a, provided j + k;

(iil) @; < 2(n+1)"" for allj.

ProOF. By renumbering, we may assume that a; <a,<...Za,. If
a, > a; +a,, then '

a U, +a,Usy+a,U,=a,U,(a, ' U@, U, +a,U,) +1).

Hence, (a; + a,+a,) (@, U; +a, U, + a,U,) € Wy, N (A), and

, a Uy +a, Uz +a,U,=%(a;+a,+a,) (Vi +12)
for some V; and V, in # (). This provides a convex decomposition of
T in terms of n—1 elements of % (2 )-contradicting the assumption that
u,(T) = n. Thus
aSa,Saj+a,Saj+a

provided j + k. This proves (i).
When j = k, (ii) follows from (i) and

1=(a;+ay)+az+...+a,= (n—1)(a,+a;) £ (n—1)(a;+ a).

We show that a, < 2(n+1)"*, whence a; < a, < 2(n+1)"! for all j, and
(iii) follows. From (i), we have

(n—1)a, = (a,+a))+ @ +as)+... + (@2 +a,-1) + (-1 +a4)
= 2(01 +... +a,,_1) = 2(1 -—a,,),
whence (n + 1)a, < 2, as desired.
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6. An application.

Gelfand and Neumark [3] list six conditions for a Banach algebra with a
unit and a * operation (involution) to be isometrically *isomorphic to a C*-
algebra of operators acting on a Hilbert space. They conjectured that the
last two conditions are redundant. The fact that the * operation is an
isometry, the fifth condition, is proved in [4]. In fact, a full proof of the
Gelfand-Neumark theorem, without assuming the last two conditions, is
given in [4; Theorem 11] and an account of the work on the Gelfand-
Neumark conjecture follows Remark 10 of [4]. If we join the proof of [4;
Theorem 11] on p. 555, where it has just been established that invertible
elements of the B*-algebra U have a polar decomposition with components
in 2, unitary elements of f have norm 1, and the self-adjoint elements of U
form a norm-closed set, then the proof given in Section 2 applies to this B*-
algebra U, and (A)} < co#(N). Suppose Te(NA)} and T=3"_,q;U;,
where U;e % (), a;> 0, and £}-,a; = 1. Then

T*=2%_,4;U¥ and 7| s£¥og=1

If Sin A is such that | S| < I $*II, choose b such that | S| < b < [ S* | and
let T, be b=1S. Then Tye ()2, but 1 < b~ 1 IIS* Il = | Tl — contradicting
what we have just proved. Thus | $* | < ISl for each S in 21, and [l (S*)* |l
< IIs*|. 1t follows that Il Sl = Il S*Il for each S in UA.
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