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RELATIVELY ‘CLOSABLE’ STATES
ON C*ALGEBRAS

NIELS JUUL MUNCH

Abstract.

Let € be a C*-algebra and ¢ a state on €. Let (.?Z},,n(p, éq,) be the GNS-
representation of ¢ and denote by S, the set of states § on ¢ implemented
by vectors in the cone [, (€)' ¢ol, that is

'/’ =(0¢°7'C¢, (0( = (.596)

for some ¢ = ¢, in the closure [1:,,(‘6); éq,] of n,(€)+ &,

We demonstrate that a state  lies in S, if and only if there is a positive
map E of € into an Abelian von Neumann algebra o/ and positive normal
functionals (or states) @, on &, so that @ is faithful and

@=0°E, y=y°E.

In particular S, is a convex set.
It is further shown that S, consists of precisely the states § on ¢ which
are ‘closable’ with respect to ¢ in the sense that the map

Aoy 3 my(c)Ey = my(c)Ey €
is well-defined and closable.

1. Introduction and statement of the theorem.
Let ¢ be a state on a C*-algebra €. The set S, of states y of the form

Y =w;om, Leln,(6).c,]

has been considered by Skau in the case where € is a von Neumann algebra
A and ¢ is a faithful, normal state on 4.

In that case S, is surely norm-dense in the set of all normal states
N4 Indeed every normal state is implemented by some vector in ¥,
(see [1, p. 108]) and each ¥ of the form

Y= Wyg,° Ty = W)z ° Ty for xen,(#)
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and | x| = (x*x)"/?, belongs to S,,. Skau proved in [8], however, that if S,
equals N, for one normal, faithful ¢, then .# is a finite von Neumann
algebra and S, equals N, for any such ¢. (See also [4]). Theorem 3.1 in [8]
also suggests that the relation between a state ¥ in S, and ¢ itself may be
connected with properties of the densely defined map

. ﬂ(p(éw, éq)): n(p(c)éq) - ﬂw(C)fw, ce¥

if &, is chosen so as to implement y.

The following theorem is obtained by considering the positive part in the
polar decomposition of (¢, ¢,), when this map is closable.

The centralizer of a faithful, normal state ¢ on .# will be denoted .#%. It
can be defined equivalently as the fixed-point algebra of the modular
automorphism group 6%, t € R, or as the set {m, € A | @(mmg) = @ (mom),
Vme #}, (see [S5, p. 381]). When S is a set in a Hilbert space, [S] will
denote the closure of S, as well as the associated orthogonal projection
when S is linear.

THEOREM 1.1. Let ¢ and s be states on a C*-algebra €. Then the following
are equivalent:

(@) yeS,,.
(b) There is a positive map E of € into an Abelian von Neumann algebra of

and positive, normal functionals @,y on s/ so that  is faithful and
p=@°E, ¢=l/7°E-

These objects can be chosen so that |Ell = gl = |yl =1.

If @ is a faithful, normal state on a von Neumann algebra # and Yy € S,
then

(c) there is an Abelian von Neumann subalgebra sf of M , a normal state
on M and a positive, normal map E: M — o so that

¢=¢°E, y=y°E
and
(*) Em)=m<>mesf N M,
(* %) E(ma) = E(m)a, me #4 ac o N A,
[, (E(#))Ep] = [my()E,]-

If o/, is the von Neumann subalgebra of &/ generated by E() in
(c), then o, = of precisely when [m,()¢,] = [7,(#)E,]. (See [9] or
[1, p. 342]). The last condition therefore implies &/, = .

The following is immediate from the Theorem.
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CoroLLARY 1.2. (1) If A, are positive numbers so that Y = A, =1, then
Yn€S,, neN, implies that y = Y ", ., lies in S,,.

(2) If E: ¥ % is a positive map, then y € S, and |y c El =l g Ell =1
implies y°cE€ S, g.

2. Constructing E.

For every faithful, normal state ¢ on a von Neumann algebra .# and
every Abelian von Neumann subalgebra ., there is positive, normal map E
of A into o so that ¢ ° E = ¢ and the conditions ( * ), (* *)hold together
with [z, (E(H))E,] = [1,()E,].

This E is treated in an independent section.

For the benefit of the reader and to fix notation we recollect the
following, which can be found for instance in ([1, pp. 338]).

Suppose that € is a C*-algebra with unity acting on 5 and that £, € #
is a cyclic vector for ¢ implementing the state ¢ = w, on €.

Then for every Abelian von Neumann algebra 2 contained in @ ', there is
a (unique) orthogonal measure u 4 on the state space E, of €, so that the
barycenter of u ,is ¢ and the map L [*(E,.u 4) — B defined by

(0, (S)€8pip) = 1yl fC), cEG
is an isomorphism. Here, as usual, ¢(w) = w(c). Put Pg = [S¢,], for any
set S S B(5¢). The map %y, is related to ¢, and P4 by

"y’(éi)czé(p = Pgci &y, i€F

In the remainder of this section .# is assumed to be acting on a Hilbert
space ' with a cyclic vector ¢, implementing the faithful, normal state ¢.

However, as seen from the proof, Lemma 2.1. holds also without the
assumption that ¢, separates .4 /

LeMMA 2.1. Assume that 8 & M’ is an Abelian von Neumann algebra and
put

My =M\ B
Then a normal conditional expectation E, of #, onto # preserving ® fw is
given by -
Eo(mb) = %0 (mb) =%, (M)b, me 4 be R

where p (respectively pig) is the orthogonal measure on E 4, (respectively
E ,) with barycenter o :, (respectively ) corresponding to # and ¢,,.
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Proor. Consider the map E,: .4, — # given by
Eq(m) = %,0 1)
The identities
(ko (11)m &y, 8p) = pglriy 1hy) = (%0 (12 )m,y 8, &), M€ M,

show that E, is positive, normal and preserves w, .
Letbe #. As Pye #' and b e .4’ it holds for all me 4 that

#,0 (b)(mE,) = mPgbC, = b(m,).

The vector ¢, is cyclic for .4 consequently % 0 (b) b. Tomiyamas theorem
([10, p. 131]) now implies that E, is a conditional expectation, i.e.

Ey(mb) = Ey(m)b = %y?’(m)b, me#,beA.
Finally
“,,;(’hl)mz Cp =myPgm &, = %ﬂg(ﬁll)mz o mi€M
and it follows that %, () = %, (), me A.
£ B

Recall that the modular objects J and A” 2 arise {rom the polar
decomposition of the map m¢, - m*&,. Here Aq, is an injective operator
implementing the modular group ¢f = A‘p A, * and J is a conjugation on
H sothat #' =J.MHJ.

The following lemma is undoubtedly well-known, but I know no explicit
reference and therefore include a proof.

Lemma 2.2. For me M the equality Jm¢, = m*¢, holds if and only if
me #°.

Proor. Due to the separating ability of ¢,, the property me .#¢ is
equivalent to

Agmé, =mé,, teR

which in turn, by Stone’s Theorem and the functional calculus of self-
adjoint operators, amounts to the statement

Agl?mE, =m¢,

The Lemma now follows by applying J to both sides of this equation.

ProrosiTION 2.3. Let f be an Abelian von Neumann subalgebra of MA.
Then a positive normal map E: # — of so that ¢ ° E = ¢ and
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(*) Em=m<mesd N M,
(**) E(ma) = E(m)a, me # ac A4 N A?,
[E(#)E,] = [#¢,]
is given by
E(m) =Jumu(rﬁ)*J, me . #
where uy,; and % u,,, Are defined relative to &,

Proor. We use the results and notation of Lemma 2.1. with B = JAJ
and

My= MV JAJ.

Clearly E is positive, normal and preserves ¢.

If E(m) = m then m = ae o. Now E(a) = a is equivalent to %, (a*)
=JaJ or %, " (a*) $p =JaJ o~ But this condition is 1dentlca1 to
P/Ja* é(p = aé,p
as P, ,, = JP,J.In the case a € .4 thisis true by Lemma 2.2. If E(a) =

the symmetric condition P, Ja¢, = a*{, also holds and
17ag,—a*¢, |2
= (Jaégp"' a*éq)s Jaé(p - a*éq;)
= (aé(p; aé(pi_ Ja*é(p) - (Ja‘:(p - a*é(p’ a*éq;)
=0.

So ae A°.
Conversely assume again a € of N #%. Then for all me A4

‘K”J‘”(ma) E(p = P,Id]maf(p

= u”ow(mJa"‘J) o
and
‘x”ul(ma) = "u‘},,(m‘] a*J)
= xum(rﬁ)fa*J
This implies E(ma) = E(m)a, me #, ae o N MH?.
Finally

Em)E, = P, Im*¢,
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and
[E0)Z,] = [#,].

It may be of some interest to note that the constructed E = E, has a
certain continuity property with respect to the faithful state ¢ when & is
fixed. Namely

lo,— ol —+> 0 implies E, (m) ——— E,(m), me .4

in the strong topology.

First cyclic vectors £, implementing ¢, can be chosen in the natural cone
P =[A)*#, &,), (see[1,p. 108]). Theinequality [ £, — &, 112 < g, — o
yields C oo éq, This in turn implies that

in the strong topology, (see [9, Lemma 5.1]). As the modular conjugation
J, associated with each £, equals J (see [1, p. 106]) one has

E, (m)Jmol,) = JmoP,(m*¢,), mmoe M

from which the stated continuity follows.

Recall that by the theorem in [11], there is a conditional expectation E of
a von Neumann algebra .# onto a von Neumann subalgebra 4" preserving
a faithful, normal state ¢ if and only if ¢¥(A#") = A4, t € R. Also note for
later use, that any conditional expectation E, with domain .4 and range
N, preserving the state g, satisfies Eo(mo)éq, = Py (mo&,), mo € Mo.
In particular the above mentioned E is unique.

The following will be useful in section 3.

ProrosiTionN 2.4. Let E be the conditional expectation of M onto
& N MP preserving ¢ and let E: # — of be any normal positive map
satisfying the conditions ¢ ° E = ¢, (*) and (* *).

For me # denote by K(m) the weak convex closure of {E"(m)}% . Then

o N MY NK(m) = {Em)}.

Proor. The set K(m) is compact in the weak topology. Therefore by the
Markov-Kakutani theorem there exists a fixedpoint for E in K(m). This
fixedpoint lies in &/ N .#? by assumption.

However, because of (* %), @(aoa)= ¢(ma) holds for any
aced N MPNK(m), ac o N #®. This shows that o/ N.#% N K(m)
= {a,} is a singleton set and that m — a, is linear.

Now clearly the map m — a, coincides with E.
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It follows from the ergodic theorem in [6] that actually E(m) is the
“almost uniform”, and hence strong, limit of the Cesaro sums

sa(m) = 3. B¥m)

In closing this section we note, that for a general von Neumann
subalgebra A" of #, the crucial property assuring existence of a positive
map E of # into 4" so that E(m)¢, = P, Jm*&,, is not Abeliannes of A"
but a certain tracial property. The map E,, which will be used in the sequel,
does however require Abeliannes.

PRroPOSITION 2.5. Let A" be a von Neumann subalgebra of 4 Then the

following are equivalent:
(1) There is a positive map E of M into A" so that

E(m)éq, = PWJm*é(P, me.#
(2) The functional (plﬂ is a trace.

Also the following conditions are equivalent.

(3) There is a conditional expectation Ey, of M N JN'J onto JAN'J
preserving @ &
(4) A is Abelian.

Proor. (1) = (2). First compute for ne N, meM:
@((nE(m)) = (P, Jm*&,,n*&,)
= (Im*J &y, n*E,)
= (né,, ImIE,)
= @(E(m*)*n)
= @(E(m)n).

So E(m)e 4% and A, & A%, where 4, denotes the von Neumann algebra
generated by E (). In combination with P,. = P, this implies A, = A"
Indeed let E be the conditional expectation of A onto A, preserving .
Then

" Em)&, = P,(n&,) = n&,, ne N
and n= E()e A, ne N. Viz Ny = NV = N
(2) = (1). Let E be the composition of maps indicated below.
ML, g P Py P, Py N'Py= (NP SNP,S5N.
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Here j is the natural anti-*-isomorphism, and t is the inverse of the
reduction map. Clearly E is positive and
Em)¢, =j(PJVJm*JPJV)£¢ =P, Jm*¢,, me A

(3)=> (4). The composition E(m) = JE,(m)*J, m e .#, satisfies the
condition in (1), hence ¢| - and w, |, are traces. Now compute for
me # andneJNJ:

wméw(n*n) = (m* n*nméq,, é(p)
= (n*m*mn¢,,&,)
= (n*Eo(m*m)né,, &,)
= (nn*Eo(m*m)&,, &y)
= (nn*m*m¢,,¢,)
= wméw(nn*)

As &, is cyclic for 4, A" is Abelian.
(4) = (3). Lemma 2.1.

3. The states in S,.

For any two states ¢ and Y on € there is a representation = of € on a
Hilbert space # with vectors ¢, and ¢, implementing ¢ and . For one
such n take n = m, @ m,,.

If p(c*c) = 0 implies Y (c*c) = 0 let, in any of these situations, n(&y,&p)
denote the operator which is zero on the orthogonal complement
[n(®)E,]* of [n(®)&,] and sends m(c)&, to m(c)Sy.

LemMma 3.1. For a state yr on 6 so that ¢ (c*c¢) = 0 implies Y (c*c) = 0, the
Jollowing are equivalent:

(1) yes,.
(2) For any choice of m, &, and &y, n(8y, &,) is closable.
(3) For some choice of =, ¢,, and ys m(&y» &p) is closable.

Proor. (1) = (2). The reduction of n to P = [n(¥)¢,] is (unitarily
equivalent to) m,, and by the assumption (1) there is an implementing
vector &, in [Pn(®) ¢,]. For any vector n = n(c)¢, + (I — P)n

(m(&y» Ep)nsm) = (m(c*c)éy,&p) 2 0.
Hence n (¢, fq,) is symmetric and closable. The closure of the map

n(c)éy — nlc)&y, [n(®)]+ -0
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is a partial isometry u in 7(%)’ so that

n(é’w’ é(p) = un(éw, é(p)'
It fellows readily that n({y, ,) is closable.

(3) = (1). The operator n(&,, &) is affiliated with n (%), hence so is the
closure. Therefore the partial isometry u in the polar decomposition
n(&y,¢p)” = uH lies in n(€) together with all spectral projection of H.
(Cf. [3, p. 336]).

Again put P=[n(¥){,] and =, =n|, Clearly H=HP = PH.
Therefore ¢, = H¢, lies in [n ‘6)+ ol = [Pn(6):&,] and as w*u
= [Ran H]

a)“o Ty = (= (- )Hé(p’Hé(p)
= (n(-)u*uH&,, HEy)
=wgom
= .//
Proor oF THeoreM 1.1. First consider the case where ¢ is a faithful,
normal state on a von Neumann algebra 4 and Yy € S.
Choose ¢, in the natural cone P'/* = [Ay*m,(#). £,] (see [1, p. 108])
and let 7, (¢, fq,)“ = uH be the polar decompos1t10n
In the followmg we suppress the (normal, faithful) representation .
Take % to be the von Neumann algebra in .#’ generated by the spectral
projections of H and put & = J4%&J. Let .E: # — o/ be defined as in
Proposition 2.3. by
E(m) = J'x”a(n‘t)*J, me M

relative to the vector &,.
Clearly E preserves ¢. Put § = 0 JHE; The following calculations are
formally verified by introducing suitable limits.

F(Em)) = (x, (W HEp,HE,)
= (ks (HmH) £,,¢,)
= (HmH¢,,¢,)

> = (mu*uH¢,, HE,)
= (méy,&y)
= y(m).

Tms proves (c). In the general case choose &, in [= (€)' ¢,] and put
= [n,(€) {,]. The positive map
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Ey:m,(c) > Pr, (c)P

mapping 7, (¥) into the von Neumann algebra .# = Pn,(¢)"P on P,
preserves o, and w, . The vector &, is cyclic and separatmg for .# and é,,,
lies in [} .%(p] [nq,(‘g )+ &pl- We therefore obtain the result in (b) by
applying (c) to A4, & Qe and composing the E occurring there with
Ey°m,.

To prove the implication (b)=> (a) it can be assumed that @ is a state
and that of ~ L*(X,pu) is represented on the space # = I?(X,u), where
@(a) = {adp. Here of , ~ L' (X,p). Let ao € I}(X,u), correspond to V,
Y(a) = Saaod U, and cons1der a, as a positive self-adjoint operator on #
affiliated with 7. (Cf. [7, p. 259]).

As o is Abelian, E is completely positive and ([10, Theorem 3.6., p. 194])
ensures the existence of a representation 7 of € on a space 4, a bounded
operator V: 3 — 3 so that

E=V*r(-)V, # = [n(@)VH]

and a normal representation p: o' = of - n(%) satisfying p(a)V = Va,
ae .
Let n; be constant 1. The assumptions imply

Wy, O T = ¢p°E=¢ and Dy gy °T = .
Take & =Vn, and
&y = Vay?n;=pad*)Vn; = pa§*)&,.

The operator n(¢,,¢,) acts on n(€)¢, as does the closed (self-adjoint)
p(ay'?), consequently n(&,,&,) is closable

Retaining the notation of the above proof, we make a few comments
regarding .

For a norm-dense set of states on €, the “standard” states of [2], the
projection P is equal to I. For such a ¢ and any ¥ in S, therefore the &/
occurring in Theorem 1.1 can be assumed to liein n, (¢ )” Generally the .o/
constructed above embeds into m, (%) via the 1somorph1sm n,(€) P
- n,(€)'. In the case, where € = .# is a von Neumann algebra and @ is
normal and faithful, any o, which in addition to the conditions in Theorem
1.1 (b) satisfies

[E("”)] = LZ(X’ﬂ)s EI)=1

can be embedded into .# via a positive, injective map A so that p°A° E
= ¢. It suffices to find a similar map A, into .#’. Consider the bounded
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operator u:mé‘P—»E(m)eL’(X,;t). When a is a positive function in
L°(X,p)

(u*a,mc,) = p(E(m)a) 2 0

for all positive m in .#. Hence u*ae [ A/, é(P]. Asué,=1and u*1 = ¢,
the reasoning in ([1, p. 226]) demonstrates that actually u*ae 4/, So-
Consequently there is a positive map A, of o into .#' given by
u*a = Ao(a)l,. Now injectivity of Ao is derived from injectivity of
u*,and w; ° Ao = @ is obvious. Hence ¢ ° J 1o(*)*J © E = ¢. Ifit is further
assumed that ap€ Ranu there is in addition to this a functional y on
M’ so that yo Ao E =y. Simply choose n € # satisfying un = a, and put
x=(&pm)

~ Asto the relation between ¢ and ¥, a more concrete representation can
be given on the positive real axis. Let y be the measure u° ag ! on [0,00[.
Then for any given a in L®(X,u) obviously

lu((feag)a)l g lal, I flly, feL@)
There is therefore a function E, (@) in L*(y), so that

§x (f 2 ao)adp = i o fE1(@)dy, feL'®)

and composing E with E;, one obtains a new positive map E of € into
L*(y) so that

@(€) = fo,u EC€)X)dy(x), ¥(c) = fig, 0 XE()(X)dy(x), c € €

and so that E(%) is dense in I?(y). Regrettably these conditions do not
guarantee uniqueness of the measure y, nor of the algebra o = L*(y).

Two normal, faithful states ¢ and y on a von Neumann algebra .4 are
said to ‘“commute” if their modular automorphism groups commute
ofoc¥ =c¥oof, VsteR. This is (cf. [5, p. 383]) equivalent to the
existence of a positive, self-adjoint, injective operator hy, affiliated with
M, so that

¥(m) = p(hymh,), me A

(or symmetrically ¢ = y/(h,, - hy)).

The latter condition is used for a general (non-faithful) y in the next
proposition.

Recall that if ¢ is a cyclic and separating vector for .4 then P}*
— [A}#.4,£] and P} = [&;E]

ProposITION 3.2. Assume that ¢ is a faithful, normal state for a von
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Neumann algebra A Then the following are equivalent for a normal state y :
(1) There is a positive, self-adjoint operator h,, affiliated with #? so that

Y (m) = @(h,mhy), me #
(2) The state y has an implementing vector
&y Pg,‘ n sz
with respect to m,.
(3) Condition (c) of Theorem 1.1. holds with = .

Proor. (1) = (2). The vector ¢, = nq,(h,,,)éq, implements . We are
through after verifying the implication

he (#9), = n,(k)é, € PY* N PY2.
First
Iny(h)J &y = my(h)*&, = my,(h)E,
and m,(h)¢, € Pg’ 2. Next Ay/%(m, (h)E,) = m,(h)&, implies that
o (1) &y = Ay 7y ()&,
Hence 7, (h)¢, € Pg“.

(2) = (3). If m,(&y,¢,) is essentially self-adjoint this follows from the
proof of Theorem 1.1.

The vectors ¢, + i, are both separating for m,(#) in that
W, +ig, (nq)(m))

= (¥ + @)(m) £ i((m,(m)&y, &y) — (my(M)Ey, &y))

= +o)(m)
Consequently J (¢, * i&,) = &y F i{, are both separating for n,(.#) and
cyclic for m,(#). This implies that

Ran (m,(¢y,&p) £ il) = mp(H)(Ey iC,)
are dense in ) Essential self-adjointness follows (cf. [7, p. 257]).

(3) = (1). This is seen from Proposition 2.4. When § =y, Yo E =y
holds. If a, is the Radon—Nikodym derivative of y with respect to ¢ on
o N MA?. (Cf. the proof of Theorem 1.1.) one finds

¢ (a}*mal?) = p(ab* E(m)al?)
=Y (Em))
= y(m).
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