RELATIVELY 'CLOSABLE' STATES ON C*-ALGEBRAS

NIELS JUUL MUNCH

Abstract.

Let $\mathscr C$ be a C*-algebra and φ a state on $\mathscr C$. Let $(\mathscr K_{\varphi}, \pi_{\varphi}, \xi_{\varphi})$ be the GNS-representation of $\mathscr C$ and denote by S_{φ} the set of states ψ on $\mathscr C$ implemented by vectors in the cone $[\pi_{\varphi}(\mathscr C)'_{+}\xi_{\varphi}]$, that is

$$\psi = \omega_{\varepsilon} \circ \pi_{\omega}, \ \omega_{\varepsilon} = (\cdot \xi, \xi)$$

for some $\xi = \xi_{\psi}$ in the closure $\left[\pi_{\varphi}(\mathscr{C})'_{+} \xi_{\varphi}\right]$ of $\pi_{\varphi}(\mathscr{C})'_{+} \xi_{\varphi}$.

We demonstrate that a state ψ lies in S_{φ} if and only if there is a positive map E of $\mathscr E$ into an Abelian von Neumann algebra $\mathscr A$ and positive normal functionals (or states) $\bar{\varphi}, \bar{\psi}$ on $\mathscr A$, so that $\bar{\varphi}$ is faithful and

$$\varphi = \overline{\varphi} \circ E, \ \psi = \overline{\psi} \circ E.$$

In particular S_{ω} is a convex set.

It is further shown that S_{φ} consists of precisely the states ψ on $\mathscr C$ which are 'closable' with respect to φ in the sense that the map

$$\mathscr{H}_{\varphi}\ni\pi_{\varphi}(c)\xi_{\varphi}\to\pi_{\psi}(c)\xi_{\psi}\in\mathscr{H}_{\psi}$$

is well-defined and closable.

1. Introduction and statement of the theorem.

Let φ be a state on a C*-algebra \mathscr{C} . The set S_{φ} of states ψ of the form

$$\psi = \omega_{\xi} \circ \pi_{\varphi}, \ \xi \in [\pi_{\varphi}(\mathscr{C})'_{+} \xi_{\varphi}]$$

has been considered by Skau in the case where \mathscr{C} is a von Neumann algebra \mathscr{M} and φ is a faithful, normal state on \mathscr{M} .

In that case S_{φ} is surely norm-dense in the set of all normal states $N_{\mathscr{M}}$. Indeed every normal state is implemented by some vector in \mathscr{H}_{φ} (see [1, p. 108]) and each ψ of the form

$$\psi = \omega_{x\xi_{\varphi}} \circ \pi_{\varphi} = \omega_{|x|\xi_{\varphi}} \circ \pi_{\varphi}, \text{ for } x \in \pi_{\varphi}(\mathcal{M})$$

Received July 1, 1984; in revised form November 14, 1984.

and $|x| = (x^*x)^{1/2}$, belongs to S_{φ} . Skau proved in [8], however, that if S_{φ} equals $N_{\mathscr{M}}$ for one normal, faithful φ , then \mathscr{M} is a finite von Neumann algebra and S_{φ} equals $N_{\mathscr{M}}$ for any such φ . (See also [4]). Theorem 3.1 in [8] also suggests that the relation between a state ψ in S_{φ} and φ itself may be connected with properties of the densely defined map

$$\pi_{\varphi}(\xi_{\psi}, \xi_{\varphi}) \colon \pi_{\varphi}(c)\xi_{\varphi} \to \pi_{\varphi}(c)\xi_{\psi}, \ c \in \mathscr{C}$$

if ξ_{ψ} is chosen so as to implement ψ .

The following theorem is obtained by considering the positive part in the polar decomposition of $\pi_{\omega}(\xi_{\psi}, \xi_{\omega})$, when this map is closable.

The centralizer of a faithful, normal state φ on \mathcal{M} will be denoted \mathcal{M}^{φ} . It can be defined equivalently as the fixed-point algebra of the modular automorphism group σ_t^{φ} , $t \in \mathbb{R}$, or as the set $\{m_0 \in \mathcal{M} \mid \varphi(mm_0) = \varphi(m_0m), \forall m \in \mathcal{M}\}$, (see [5, p. 381]). When S is a set in a Hilbert space, [S] will denote the closure of S, as well as the associated orthogonal projection when S is linear.

THEOREM 1.1. Let φ and ψ be states on a C*-algebra \mathscr{C} . Then the following are equivalent:

- (a) $\psi \in S_{\varphi}$.
- (b) There is a positive map E of $\mathscr C$ into an Abelian von Neumann algebra $\mathscr A$ and positive, normal functionals $\bar{\varphi}, \bar{\psi}$ on $\mathscr A$ so that $\bar{\varphi}$ is faithful and

$$\varphi = \bar{\varphi} \circ E, \ \psi = \bar{\psi} \circ E.$$

These objects can be chosen so that $||E|| = ||\bar{\varphi}|| = ||\bar{\psi}|| = 1$.

If φ is a faithful, normal state on a von Neumann algebra \mathcal{M} and $\psi \in S_{\varphi}$, then

(c) there is an Abelian von Neumann subalgebra $\mathscr A$ of $\mathscr M$, a normal state $\overline{\psi}$ on $\mathscr M$ and a positive, normal map $E:\mathscr M\to\mathscr A$ so that

$$\varphi = \varphi \circ E, \ \psi = \overline{\psi} \circ E$$

and

- $(*) \quad E(m) = m \Leftrightarrow m \in \mathscr{A} \cap \mathscr{M}^{\varphi},$
- $(**) E(ma) = E(m)a, m \in \mathcal{M}, a \in \mathcal{A} \cap \mathcal{M}^{\varphi},$ $[\pi_{\varphi}(E(\mathcal{M}))\xi_{\varphi}] = [\pi_{\varphi}(\mathcal{A})\xi_{\varphi}].$

If \mathscr{A}_0 is the von Neumann subalgebra of \mathscr{A} generated by $E(\mathscr{M})$ in (c), then $\mathscr{A}_0 = \mathscr{A}$ precisely when $[\pi_{\varphi}(\mathscr{A}_0)\xi_{\varphi}] = [\pi_{\varphi}(\mathscr{A})\xi_{\varphi}]$. (See [9] or [1, p. 342]). The last condition therefore implies $\mathscr{A}_0 = \mathscr{A}$.

The following is immediate from the Theorem.

COROLLARY 1.2. (1) If λ_n are positive numbers so that $\sum_{n=1}^{\infty} \lambda_n = 1$, then $\psi_n \in S_{\varphi}$, $n \in \mathbb{N}$, implies that $\psi = \sum_{n=1}^{\infty} \lambda_n \psi_n$ lies in S_{φ} .

(2) If $E: \mathscr{C} \to \mathscr{C}$ is a positive map, then $\psi \in S_{\varphi}$ and $\|\psi \circ E\| = \|\varphi \circ E\| = 1$

implies $\psi \circ E \in S_{\omega \circ E}$.

2. Constructing E.

For every faithful, normal state φ on a von Neumann algebra \mathcal{M} and every Abelian von Neumann subalgebra \mathcal{A} , there is positive, normal map E of \mathcal{M} into \mathcal{A} so that $\varphi \circ E = \varphi$ and the conditions (*), (**) hold together with $[\pi_{\omega}(E(\mathcal{M}))\xi_{\omega}] = [\pi_{\omega}(\mathcal{A})\xi_{\omega}].$

This E is treated in an independent section.

For the benefit of the reader and to fix notation we recollect the following, which can be found for instance in ([1, pp. 338]).

Suppose that \mathscr{C} is a C*-algebra with unity acting on \mathscr{H} , and that $\xi_{\omega} \in \mathscr{H}$ is a cyclic vector for $\mathscr C$ implementing the state $\varphi = \omega_{\varepsilon}$ on $\mathscr C$.

Then for every Abelian von Neumann algebra & contained in &', there is a (unique) orthogonal measure $\mu_{\mathscr{B}}$ on the state space $E_{\mathscr{C}}$ of \mathscr{C} , so that the barycenter of $\mu_{\mathscr{B}}$ is φ and the map $\varkappa_{\mu}: L^{\infty}(E_{\mathscr{C}}, \mu_{\mathscr{B}}) \to \mathscr{B}$ defined by

$$(\mathbf{x}_{\mu_{\mathcal{A}}}(f) c \xi_{\varphi}, \xi_{\varphi}) = \mu_{\mathcal{B}}(f \hat{c}), \ c \in \mathcal{C}$$

is an isomorphism. Here, as usual, $\hat{c}(\omega) = \omega(c)$. Put $P_S = [S\xi_{\omega}]$, for any set $S \subseteq B(\mathcal{H})$. The map $u_{\mu_{\mathcal{A}}}$ is related to ξ_{φ} and $P_{\mathcal{A}}$ by

$$\varkappa_{\mu_{\alpha}}(\hat{c}_1)c_2\xi_{\omega}=c_2P_{\mathscr{A}}c_1\xi_{\omega},\ c_i\in\mathscr{C}$$

In the remainder of this section \mathcal{M} is assumed to be acting on a Hilbert space ${\mathscr H}$ with a cyclic vector ξ_{φ} implementing the faithful, normal state φ .

However, as seen from the proof, Lemma 2.1. holds also without the assumption that ξ_{ω} separates \mathcal{M}

LEMMA 2.1. Assume that $\mathcal{B} \subseteq \mathcal{M}'$ is an Abelian von Neumann algebra and put

$$\mathcal{M}_0 = \mathcal{M} \vee \mathcal{B}$$

Then a normal conditional expectation E_0 of \mathcal{M}_0 onto \mathcal{B} preserving ω_{ξ_n} is given by

$$E_0(mb) = \varkappa_{\mu_a^0}(mb) = \varkappa_{\mu_a}(\hat{m})b, m \in \mathcal{M}, b \in \mathcal{B}$$

where $\mu^0_{\mathscr{B}}$ (respectively $\mu_{\mathscr{B}}$) is the orthogonal measure on $E_{\mathscr{M}_0}$ (respectively $E_{\mathcal{M}}$) with barycenter $\omega_{\xi_{\omega}}$ (respectively φ) corresponding to \mathcal{B} and ξ_{φ} .

Proof. Consider the map $E_0: \mathcal{M}_0 \to \mathcal{B}$ given by

$$E_0(m) = \varkappa_{\mu_{\mathcal{A}}^0}(\hat{m})$$

The identities

$$(\mathbf{x}_{\mu_{\mathscr{A}}^{0}}(\hat{m}_{1})m_{2}\xi_{\varphi},\xi_{\varphi})=\mu_{\mathscr{B}}^{0}(\hat{m}_{1}\,\hat{m}_{2})=(\mathbf{x}_{\mu_{\mathscr{A}}^{0}}(\hat{m}_{2})m_{1}\xi_{\varphi},\xi_{\varphi}),\ m_{i}\in\mathscr{M}_{0},$$

show that E_0 is positive, normal and preserves ω_{F} .

Let $b \in \mathcal{B}$. As $P_{\mathcal{B}} \in \mathcal{B}'$ and $b \in \mathcal{M}'$ it holds for all $m \in \mathcal{M}$ that

$$\varkappa_{\mu_{\mathscr{A}}^0}(\hat{b})(m\xi_{\varphi}) = mP_{\mathscr{B}}b\,\xi_{\varphi} = b(m\xi_{\varphi}).$$

The vector ξ_{φ} is cyclic for \mathcal{M} consequently $\varkappa_{\mu^0}(\hat{b}) = b$. Tomiyamas theorem ([10, p. 131]) now implies that E_0 is a conditional expectation, i.e.

$$E_0(mb) = E_0(m)b = \varkappa_{\mu^0}(\hat{m})b, \ m \in \mathcal{M}, \ b \in \mathcal{B}.$$

Finally

$$\mathbf{x}_{\mu_{\mathcal{A}}^{o}}(\hat{m}_{1})m_{2}\,\xi_{\varphi}=m_{2}P_{\mathcal{B}}m_{1}\,\xi_{\varphi}=\mathbf{x}_{\mu_{\mathcal{A}}}(\hat{m}_{1})m_{2}\,\xi_{\varphi},\ m_{i}\in\mathcal{M}$$

and it follows that $\varkappa_{\mu_a^0}(\hat{m}) = \varkappa_{\mu_a}(\hat{m}), \ m \in \mathcal{M}$.

Recall that the modular objects J and $\Delta_{\varphi}^{1/2}$ arise from the polar decomposition of the map $m\xi_{\varphi} \to m^*\xi_{\varphi}$. Here Δ_{φ} is an injective operator implementing the modular group $\sigma_t^{\varphi} = \Delta_{\varphi}^{it} \cdot \Delta_{\varphi}^{-it}$ and J is a conjugation on \mathscr{H} so that $\mathscr{M}' = J\mathscr{M}J$.

The following lemma is undoubtedly well-known, but I know no explicit reference and therefore include a proof.

LEMMA 2.2. For $m \in \mathcal{M}$ the equality $Jm\xi_{\varphi} = m^*\xi_{\varphi}$ holds if and only if $m \in \mathcal{M}^{\varphi}$.

PROOF. Due to the separating ability of ξ_{φ} , the property $m \in \mathcal{M}^{\varphi}$ is equivalent to

$$\Delta_{\varphi}^{it} m \xi_{\varphi} = m \xi_{\varphi}, \ t \in \mathsf{R}$$

which in turn, by Stone's Theorem and the functional calculus of selfadjoint operators, amounts to the statement

$$\Delta_{\varphi}^{1/2} m \xi_{\varphi} = m \xi_{\varphi}$$

The Lemma now follows by applying J to both sides of this equation.

PROPOSITION 2.3. Let \mathscr{A} be an Abelian von Neumann subalgebra of \mathscr{M} . Then a positive normal map $E: \mathscr{M} \to \mathscr{A}$ so that $\varphi \circ E = \varphi$ and

$$(*) \quad E(m) = m \Leftrightarrow m \in \mathscr{A} \cap \mathscr{M}^{\varphi},$$

$$(**) E(ma) = E(m)a, m \in \mathcal{M}, a \in \mathcal{A} \cap \mathcal{M}^{\varphi},$$

$$\big[E(\mathcal{M})\xi_{\varphi}\big]=\big[\mathcal{A}\,\xi_{\varphi}\big]$$

is given by

$$E(m) = J \varkappa_{\mu_{IAI}}(\hat{m})^* J, \ m \in \mathcal{M}$$

where μ_{JAJ} and $\kappa_{\mu_{IAJ}}$ are defined relative to ξ_{ϕ} .

PROOF. We use the results and notation of Lemma 2.1. with B = JAJ and

$$\mathcal{M}_0 = \mathcal{M} \vee J \mathcal{A} J$$
.

Clearly E is positive, normal and preserves φ .

If E(m)=m then $m=a\in \mathscr{A}$. Now E(a)=a is equivalent to $\varkappa_{\mu_{J,\sigma_J}}(a^*)^{\widehat{}}=JaJ$ or $\varkappa_{\mu_{J,\sigma_J}}(a^*)^{\widehat{}}\xi_{\varphi}=JaJ\xi_{\varphi}$. But this condition is identical to $P_{J,\sigma_J}a^*\xi_{\varphi}=Ja\xi_{\varphi}$ and

$$P_{\omega}Ja^*\xi_{\omega}=a\xi_{\omega}$$

as $P_{J \not = J} = J P_{\not = J} J$. In the case $a \in \mathcal{M}^{\varphi}$ this is true by Lemma 2.2. If E(a) = a the symmetric condition $P_{\not= J} J a \xi_{\varphi} = a^* \xi_{\varphi}$ also holds and

$$\begin{split} \|Ja\xi_{\varphi} - a^{*}\xi_{\varphi}\|^{2} \\ &= (Ja\xi_{\varphi} - a^{*}\xi_{\varphi}, \ Ja\xi_{\varphi} - a^{*}\xi_{\varphi}) \\ &= (a\xi_{\varphi}, \ a\xi_{\varphi} - Ja^{*}\xi_{\varphi}) - (Ja\xi_{\varphi} - a^{*}\xi_{\varphi}, \ a^{*}\xi_{\varphi}) \\ &= 0. \end{split}$$

So $a \in \mathcal{M}^{\varphi}$.

Conversely assume again $a \in \mathcal{A} \cap \mathcal{M}^{\varphi}$. Then for all $m \in \mathcal{M}$

$$\begin{split} \varkappa_{\mu_{J\mathscr{J}J}}(ma)^{\hat{}}\xi_{\varphi} &= P_{J\mathscr{J}J}ma\xi_{\varphi} \\ &= P_{J\mathscr{J}J}mJa^{*}J\xi_{\varphi} \\ &= \varkappa_{\mu_{J\mathscr{J}J}^{0}}(mJa^{*}J)^{\hat{}}\xi_{\varphi} \end{split}$$

and

$$\begin{split} \varkappa_{\mu_{J \neq J}}(ma) \hat{\ } &= \varkappa_{\mu^0_{J \neq J}}(mJa^*J) \hat{\ } \\ &= \varkappa_{\mu_{J \neq J}}(\hat{m})Ja^*J \end{split}$$

This implies E(ma) = E(m)a, $m \in \mathcal{M}$, $a \in \mathcal{A} \cap \mathcal{M}^{\varphi}$. Finally

$$E(m)\xi_{\varphi} = P_{\mathscr{A}}Jm^{*}\xi_{\varphi}$$

and

$$[E(\mathcal{M})\xi_{\varphi}] = [\mathcal{A}\xi_{\varphi}].$$

It may be of some interest to note that the constructed $E=E_{\varphi}$ has a certain continuity property with respect to the faithful state φ when ${\mathscr A}$ is fixed. Namely

$$\|\varphi_n - \varphi\| \xrightarrow[n \to +\infty]{} 0 \text{ implies } E_{\varphi_n}(m) \xrightarrow[n \to +\infty]{} E_{\varphi}(m), m \in \mathcal{M},$$

in the strong topology.

First cyclic vectors ξ_{φ_n} implementing φ_n can be chosen in the natural cone $P = [\Delta_{\varphi}^{1/4} \mathcal{M}_+ \xi_{\varphi}]$, (see [1, p. 108]). The inequality $\|\xi_{\varphi_n} - \xi_{\varphi}\|^2 \le \|\varphi_n - \varphi\|$ yields $\xi_{\varphi_n} \xrightarrow[n \to +\infty]{} \xi_{\varphi}$. This in turn implies that

$$P_n = \begin{bmatrix} J \mathscr{A} J \xi_{\varphi_n} \end{bmatrix} \xrightarrow[n \to +\infty]{} P = \begin{bmatrix} J \mathscr{A} J \xi_{\varphi} \end{bmatrix}$$

in the strong topology, (see [9, Lemma 5.1]). As the modular conjugation J_n associated with each ξ_{φ} equals J (see [1, p. 106]) one has

$$E_{\varphi_n}(m)(Jm_0\xi_{\varphi_n}) = Jm_0P_n(m^*\xi_{\varphi_n}), \ m,m_0 \in \mathcal{M}$$

from which the stated continuity follows.

Recall that by the theorem in [11], there is a conditional expectation E of a von Neumann algebra $\mathcal M$ onto a von Neumann subalgebra $\mathcal N$ preserving a faithful, normal state φ if and only if $\sigma_t^\varrho(\mathcal N)=\mathcal N$, $t\in \mathbb R$. Also note for later use, that any conditional expectation E_0 with domain $\mathcal M_0$ and range $\mathcal N_0$ preserving the state ω_{ξ_φ} , satisfies $E_0(m_0)\xi_\varphi=P_{\mathcal N_0}(m_0\xi_\varphi)$, $m_0\in \mathcal M_0$. In particular the above mentioned E is unique.

The following will be useful in section 3.

PROPOSITION 2.4. Let \hat{E} be the conditional expectation of \mathcal{M} onto $\mathcal{A} \cap \mathcal{M}^{\varphi}$ preserving φ and let $E: \mathcal{M} \to \mathcal{A}$ be any normal positive map satisfying the conditions $\varphi \circ E = \varphi$, (*) and (**).

For $m \in \mathcal{M}$ denote by K(m) the weak convex closure of $\{E^n(m)\}_{n=1}^{\infty}$. Then

$$\mathscr{A}\cap \mathscr{M}^{\varphi}\cap K(m)=\{\hat{E}(m)\}.$$

PROOF. The set K(m) is compact in the weak topology. Therefore by the Markov-Kakutani theorem there exists a fixed point for E in K(m). This fixed point lies in $\mathcal{A} \cap \mathcal{M}^{\varphi}$ by assumption.

However, because of (**), $\varphi(a_0a) = \varphi(ma)$ holds for any $a_0 \in \mathcal{A} \cap \mathcal{M}^{\varphi} \cap K(m)$, $a \in \mathcal{A} \cap \mathcal{M}^{\varphi}$. This shows that $\mathcal{A} \cap \mathcal{M}^{\varphi} \cap K(m) = \{a_0\}$ is a singleton set and that $m \to a_0$ is linear.

Now clearly the map $m \to a_0$ coincides with \hat{E} .

It follows from the ergodic theorem in [6] that actually $\hat{E}(m)$ is the "almost uniform", and hence strong, limit of the Cesaro sums

$$s_n(m) = \frac{1}{n} \sum_{k=1}^n E^k(m)$$

In closing this section we note, that for a general von Neumann subalgebra $\mathcal N$ of $\mathcal M$, the crucial property assuring existence of a positive map E of $\mathcal M$ into $\mathcal N$ so that $E(m)\xi_{\varphi}=P_{\mathcal N}Jm^*\xi_{\varphi}$, is not Abeliannes of $\mathcal N$ but a certain tracial property. The map E_0 , which will be used in the sequel, does however require Abeliannes.

PROPOSITION 2.5. Let \mathcal{N} be a von Neumann subalgebra of \mathcal{M} . Then the following are equivalent:

(1) There is a positive map E of \mathcal{M} into \mathcal{N} so that

$$E(m)\xi_{\omega} = P_{\mathcal{N}}Jm^*\xi_{\omega}, \ m \in \mathcal{M}$$

(2) The functional $\varphi|_{\mathcal{N}}$ is a trace.

Also the following conditions are equivalent.

- (3) There is a conditional expectation E_0 of $\mathcal{M} \vee J\mathcal{N}J$ onto $J\mathcal{N}J$ preserving ω_{ξ_n} .
- (4) N is Abelian.

PROOF. (1) \Rightarrow (2). First compute for $n \in \mathcal{N}$, $m \in \mathcal{M}$:

$$\varphi(nE(m)) = (P_{\mathcal{N}}Jm^*\xi_{\varphi}, n^*\xi_{\varphi})$$

$$= (Jm^*J\xi_{\varphi}, n^*\xi_{\varphi})$$

$$= (n\xi_{\varphi}, JmJ\xi_{\varphi})$$

$$= \varphi(E(m^*)^*n)$$

$$= \varphi(E(m)n).$$

So $E(m) \in \mathcal{N}^{\varphi}$ and $\mathcal{N}_0 \subseteq \mathcal{N}^{\varphi}$, where \mathcal{N}_0 denotes the von Neumann algebra generated by $E(\mathcal{M})$. In combination with $P_{\mathcal{N}_0} = P_{\mathcal{N}}$, this implies $\mathcal{N}_0 = \mathcal{N}$. Indeed let E be the conditional expectation of \mathcal{N} onto \mathcal{N}_0 preserving φ . Then

$$\hat{E}(n)\xi_{\omega} = P_{\mathcal{N}}(n\xi_{\omega}) = n\xi_{\omega}, \ n \in \mathcal{N}$$

and $n = \hat{E}(n) \in \mathcal{N}_0$, $n \in \mathcal{N}$. Viz $\mathcal{N}_0 = \mathcal{N}^{\varphi} = \mathcal{N}$.

(2) \Rightarrow (1). Let E be the composition of maps indicated below.

$$\mathcal{M} \xrightarrow{J(\cdot)^{\bullet}J} \mathcal{M}' \xrightarrow{P_{\mathcal{N}}(\cdot)P_{\mathcal{N}}} P_{\mathcal{N}} \mathcal{M}' P_{\mathcal{N}} \hookrightarrow P_{\mathcal{N}} \mathcal{N}' P_{\mathcal{N}} = (\mathcal{N} P_{\mathcal{N}})' \xrightarrow{j} \mathcal{N} P_{\mathcal{N}} \xrightarrow{\tau} \mathcal{N}.$$

Here j is the natural anti-*-isomorphism, and τ is the inverse of the reduction map. Clearly E is positive and

$$E(m)\xi_{\omega} = j(P_{\mathcal{N}}Jm^*JP_{\mathcal{N}})\xi_{\omega} = P_{\mathcal{N}}Jm^*\xi_{\omega}, \ m \in \mathcal{M}$$

(3) \Rightarrow (4). The composition $E(m) = JE_0(m)^*J$, $m \in \mathcal{M}$, satisfies the condition in (1), hence $\varphi|_{\mathcal{N}}$ and $\omega_{\xi_{\varphi}}|_{J\mathcal{N}J}$ are traces. Now compute for $m \in \mathcal{M}$ and $n \in J\mathcal{N}J$:

$$\begin{split} \omega_{m\xi_{\varphi}}(n^*n) &= (m^*n^*nm\xi_{\varphi}, \xi_{\varphi}) \\ &= (n^*m^*mn\xi_{\varphi}, \xi_{\varphi}) \\ &= (n^*E_0(m^*m)n\xi_{\varphi}, \xi_{\varphi}) \\ &= (nn^*E_0(m^*m)\xi_{\varphi}, \xi_{\varphi}) \\ &= (nn^*m^*m\xi_{\varphi}, \xi_{\varphi}) \\ &= \omega_{m\xi_{\varphi}}(nn^*) \end{split}$$

As ξ_{ω} is cyclic for \mathcal{M} , \mathcal{N} is Abelian.

 $(4) \Rightarrow (3)$. Lemma 2.1.

3. The states in S_{\bullet} .

For any two states φ and ψ on $\mathscr C$ there is a representation π of $\mathscr C$ on a Hilbert space $\mathscr H$ with vectors ξ_{φ} and ξ_{ψ} implementing φ and ψ . For one such π take $\pi = \pi_{\alpha} \oplus \pi_{\psi}$.

If $\varphi(c^*c) = 0$ implies $\psi(c^*c) = 0$ let, in any of these situations, $\pi(\xi_{\psi}, \xi_{\varphi})$ denote the operator which is zero on the orthogonal complement $[\pi(\mathscr{C})\xi_{\varphi}]^{\perp}$ of $[\pi(\mathscr{C})\xi_{\varphi}]$ and sends $\pi(c)\xi_{\varphi}$ to $\pi(c)\xi_{\psi}$.

Lemma 3.1. For a state ψ on \mathcal{C} so that $\varphi(c^*c) = 0$ implies $\psi(c^*c) = 0$, the following are equivalent:

- $(1) \ \psi \in S_{\varphi}.$
- (2) For any choice of π , ξ_{φ} , and ξ_{ψ} , $\pi(\xi_{\psi}, \xi_{\varphi})$ is closable.
- (3) For some choice of π , ξ_{φ} , and ξ_{ψ} , $\pi(\xi_{\psi}, \xi_{\varphi})$ is closable.

PROOF. (1) \Rightarrow (2). The reduction of π to $P = [\pi(\mathscr{C})\xi_{\varphi}]$ is (unitarily equivalent to) π_{φ} , and by the assumption (1) there is an implementing vector ξ'_{ψ} in $[P\pi(\mathscr{C})'_{+}\xi_{\varphi}]$. For any vector $\eta = \pi(c)\xi_{\varphi} + (I - P)\eta$

$$(\pi(\xi'_{\psi},\xi_{\varphi})\eta,\eta)=(\pi(c^*c)\xi'_{\psi},\xi_{\varphi})\geqq 0.$$

Hence $\pi(\xi'_{\psi}, \xi_{\varphi})$ is symmetric and closable. The closure of the map

$$\pi(c)\xi_{\mu} \to \pi(c)\xi'_{\mu}, \ [\pi(\mathscr{C})\xi_{\mu}]^{\perp} \to 0$$

is a partial isometry u in $\pi(\mathscr{C})'$ so that

$$\pi(\xi'_{\psi}, \xi_{\varphi}) = u\pi(\xi_{\psi}, \xi_{\varphi}).$$

It follows readily that $\pi(\xi_{\psi}, \xi_{\varphi})$ is closable.

(3) \Rightarrow (1). The operator $\pi(\xi_{\psi}, \xi_{\varphi})$ is affiliated with $\pi(\mathscr{C})'$, hence so is the closure. Therefore the partial isometry u in the polar decomposition $\pi(\xi_{\psi}, \xi_{\varphi})^- = uH$ lies in $\pi(\mathscr{C})'$ together with all spectral projection of H. (Cf. [3, p. 336]).

Again put $P = [\pi(\mathscr{C})\xi_{\varphi}]$ and $\pi_{\varphi} = \pi|_{p}$. Clearly H = HP = PH. Therefore $\xi'_{\psi} = H\xi_{\varphi}$ lies in $[\pi_{\varphi}(\mathscr{C})'_{+}\xi_{\varphi}] = [P\pi(\mathscr{C})'_{+}\xi_{\varphi}]$ and as $u^{*}u = [\operatorname{Ran} H]$

$$\omega_{\xi'_{\psi}} \circ \pi_{\varphi} = (\pi(\cdot)H\xi_{\varphi}, H\xi_{\varphi})$$

$$= (\pi(\cdot)u^*uH\xi_{\varphi}, H\xi_{\varphi})$$

$$= \omega_{\xi_{\psi}} \circ \pi$$

$$= \psi.$$

PROOF OF THEOREM 1.1. First consider the case where φ is a faithful, normal state on a von Neumann algebra \mathcal{M} and $\psi \in S_{\varphi}$.

Choose ξ_{ψ} in the natural cone $P^{1/4} = \left[\Delta_{\varphi}^{1/4} \pi_{\varphi}(\mathcal{M})_{+} \xi_{\varphi}\right]$ (see [1, p. 108]) and let $\pi_{\varphi}(\xi_{\psi}, \xi_{\varphi})^{-} = uH$ be the polar decomposition.

In the following we suppress the (normal, faithful) representation π_{φ} .

Take \mathscr{B} to be the von Neumann algebra in \mathscr{M}' generated by the spectral projections of H and put $\mathscr{A} = J\mathscr{B}J$. Let $E: \mathscr{M} \to \mathscr{A}$ be defined as in Proposition 2.3. by

$$E(m) = J \varkappa_{\mu_{\alpha}}(\hat{m})^* J, \ m \in \mathcal{M}$$

relative to the vector ξ_{ω} .

Clearly E preserves φ . Put $\overline{\psi} = \omega_{JH\xi_{\varphi}}$. The following calculations are formally verified by introducing suitable limits.

$$\overline{\psi}(E(m)) = (\varkappa_{\mu_{\mathscr{B}}}(\hat{m})H\xi_{\varphi}, H\xi_{\varphi})
= (\varkappa_{\mu_{\mathscr{B}}}(HmH)^{\hat{}}\xi_{\varphi}, \xi_{\varphi})
= (HmH\xi_{\varphi}, \xi_{\varphi})
= (mu*uH\xi_{\varphi}, H\xi_{\varphi})
= (m\xi_{\psi}, \xi_{\psi})
= \psi(m).$$

This proves (c). In the general case choose ξ_{ψ} in $\left[\pi_{\varphi}(\mathscr{C})'_{+}\xi_{\varphi}\right]$ and put $P = \left[\pi_{\varphi}(\mathscr{C})'\xi_{\varphi}\right]$. The positive map

$$E_0: \pi_{\varphi}(c) \to P\pi_{\varphi}(c)P$$

mapping $\pi_{\varphi}(\mathscr{C})$ into the von Neumann algebra $\mathscr{M}=P\pi_{\varphi}(\mathscr{C})''P$ on $P\mathscr{H}_{\varphi}$ preserves $\omega_{\xi_{\varphi}}$ and $\omega_{\xi_{\psi}}$. The vector ξ_{φ} is cyclic and separating for \mathscr{M} and ξ_{ψ} lies in $[\mathscr{M}'_{+}\xi_{\varphi}]=[\pi_{\varphi}(\mathscr{C})'_{+}\xi_{\varphi}]$. We therefore obtain the result in (b) by applying (c) to \mathscr{M} , $\omega_{\xi_{\varphi}}$, $\omega_{\xi_{\psi}}$ and composing the E occurring there with $E_{0}\circ\pi_{\varphi}$.

To prove the implication (b) \Rightarrow (a) it can be assumed that $\bar{\varphi}$ is a state and that $\mathscr{A} \simeq L^{\infty}(X,\mu)$ is represented on the space $\mathscr{H} = L^{2}(X,\mu)$, where $\bar{\varphi}(a) = \int ad\mu$. Here $\mathscr{A}_{*} \simeq L^{1}(X,\mu)$. Let $a_{0} \in L^{1}(X,\mu)_{+}$ correspond to $\bar{\psi}$, $\bar{\psi}(a) = \int aa_{0}d\mu$, and consider a_{0} as a positive self-adjoint operator on \mathscr{H} affiliated with \mathscr{A} . (Cf. [7, p. 259]).

As \mathscr{A} is Abelian, E is completely positive and ([10, Theorem 3.6., p. 194]) ensures the existence of a representation π of \mathscr{C} on a space \mathscr{H}_1 , a bounded operator $V: \mathscr{H} \to \mathscr{H}_1$ so that

$$E = V * \pi(\cdot) V, \ \mathcal{H}_1 = \lceil \pi(\mathscr{C}) V \mathcal{H} \rceil$$

and a normal representation $\rho: \mathscr{A}' = \mathscr{A} \to \pi(\mathscr{C})'$ satisfying $\rho(a)V = Va$, $a \in \mathscr{A}$.

Let $\eta_{\bar{\alpha}}$ be constant 1. The assumptions imply

$$\omega_{V\eta_{\bar{a}}} \circ \pi = \bar{\varphi} \circ E = \varphi \text{ and } \omega_{Va_0^{1/2}\eta_{\bar{a}}} \circ \pi = \psi.$$

Take $\xi_{\varphi} = V \eta_{\bar{\varphi}}$ and

$$\xi_{\psi} = V a_0^{1/2} \, \eta_{\bar{\varphi}} = \rho(a_0^{1/2}) V \eta_{\bar{\varphi}} = \rho(a_0^{1/2}) \xi_{\varphi}.$$

The operator $\pi(\xi_{\psi}, \xi_{\varphi})$ acts on $\pi(\mathscr{C})\xi_{\varphi}$ as does the closed (self-adjoint) $\rho(a_0^{1/2})$, consequently $\pi(\xi_{\psi}, \xi_{\varphi})$ is closable.

Retaining the notation of the above proof, we make a few comments regarding \mathcal{A} .

For a norm-dense set of states on $\mathscr C$, the "standard" states of [2], the projection P is equal to I. For such a φ and any ψ in S_{φ} therefore the $\mathscr A$ occurring in Theorem 1.1 can be assumed to lie in $\pi_{\varphi}(\mathscr C)$ ". Generally the $\mathscr A$ constructed above embeds into $\pi_{\varphi}(\mathscr C)$ via the isomorphism $\pi_{\varphi}(\mathscr C)$ $P \to \pi_{\varphi}(\mathscr C)$. In the case, where $\mathscr C = \mathscr M$ is a von Neumann algebra and φ is normal and faithful, any $\mathscr A$, which in addition to the conditions in Theorem 1.1 (b) satisfies

$$[E(\mathcal{M})] = L^2(X,\mu), \quad E(I) = 1$$

can be embedded into \mathcal{M} via a positive, injective map λ so that $\varphi \circ \lambda \circ E = \varphi$. It suffices to find a similar map λ_0 into \mathcal{M}' . Consider the bounded

operator $u: m\xi_{\varphi} \to E(m) \in L^2(X,\mu)$. When a is a positive function in $L^{\infty}(X,\mu)$

$$(u^*a, m\xi_{\varphi}) = \bar{\varphi}(E(m)a) \ge 0$$

for all positive m in \mathscr{M} . Hence $u^*a \in [\mathscr{M}'_+\xi_{\varphi}]$. As $u\xi_{\varphi}=1$ and $u^*1=\xi_{\varphi}$, the reasoning in ([1, p. 226]) demonstrates that actually $u^*a \in \mathscr{M}'_+\xi_{\varphi}$. Consequently there is a positive map λ_0 of \mathscr{A} into \mathscr{M}' given by $u^*a=\lambda_0(a)\xi_{\varphi}$. Now injectivity of λ_0 is derived from injectivity of u^* , and $\omega_{\xi_{\varphi}}\circ\lambda_0=\bar{\varphi}$ is obvious. Hence $\varphi\circ J\lambda_0(\cdot)^*J\circ E=\varphi$. If it is further assumed that $a_0\in \operatorname{Ran} u$ there is in addition to this a functional χ on \mathscr{M}' so that $\chi\circ\lambda\circ E=\psi$. Simply choose $\eta\in\mathscr{H}$ satisfying $u\eta=a_0$ and put $\chi=(\cdot\xi_{\varphi},\eta)$.

As to the relation between φ and ψ , a more concrete representation can be given on the positive real axis. Let γ be the measure $\mu \circ a_0^{-1}$ on $[0,\infty[$. Then for any given a in $L^{\infty}(X,\mu)$ obviously

$$|\mu((f \circ a_0)a)| \le ||a||_{\infty} ||f||_{1}, f \in L^1(\gamma).$$

There is therefore a function $E_1(a)$ in $L^{\infty}(\gamma)$, so that

$$\int_{X} (f \circ a_0) a d\mu = \int_{[0,\infty[} f E_1(a) d\gamma, \ f \in L^1(\gamma)$$

and composing E with E_1 , one obtains a new positive map E of \mathscr{C} into $L^{\infty}(\gamma)$ so that

$$\varphi(c) = \int_{[0,\infty[} E(c)(x) d\gamma(x), \ \psi(c) = \int_{[0,\infty[} x E(c)(x) d\gamma(x), \ c \in \mathscr{C}$$

and so that $E(\mathscr{C})$ is dense in $L^2(\gamma)$. Regrettably these conditions do not guarantee uniqueness of the measure γ , nor of the algebra $\mathscr{A} = L^{\infty}(\gamma)$.

Two normal, faithful states φ and ψ on a von Neumann algebra \mathcal{M} are said to "commute" if their modular automorphism groups commute $\sigma_t^{\varphi} \circ \sigma_s^{\psi} = \sigma_s^{\psi} \circ \sigma_t^{\varphi}$, $\forall s,t \in \mathbb{R}$. This is (cf. [5, p. 383]) equivalent to the existence of a positive, self-adjoint, injective operator h_{ψ} , affiliated with \mathcal{M}^{φ} , so that

$$\psi(m) = \varphi(h_{\psi}mh_{\psi}), \ m \in \mathcal{M}$$

(or symmetrically $\varphi = \psi(h_{\omega} \cdot h_{\omega})$).

The latter condition is used for a general (non-faithful) ψ in the next proposition.

Recall that if ξ is a cyclic and separating vector for \mathcal{M} , then $P_{\xi}^{1/4} = [\Delta_{\xi}^{1/4} \mathcal{M}_{+} \xi]$ and $P_{\xi}^{1/2} = [\mathcal{M}_{+}^{1} \xi]$.

PROPOSITION 3.2. Assume that φ is a faithful, normal state for a von

Neumann algebra \mathcal{M} . Then the following are equivalent for a normal state ψ :

(1) There is a positive, self-adjoint operator h_{ψ} affiliated with \mathcal{M}^{ϕ} so that

$$\psi(m) = \varphi(h_{\psi}mh_{\psi}), \ m \in \mathcal{M}$$

(2) The state ψ has an implementing vector

$$\xi_\psi \in P_{\,\xi_\omega}^{1/4} \cap P_{\,\xi_\omega}^{1/2}$$

with respect to π_{ω} .

(3) Condition (c) of Theorem 1.1. holds with $\overline{\psi} = \psi$.

Proof. (1) \Rightarrow (2). The vector $\xi_{\psi} = \pi_{\varphi}(h_{\psi})\xi_{\varphi}$ implements ψ . We are through after verifying the implication

$$h \in (\mathcal{M}^{\varphi})_+ \implies \pi_{\varphi}(h) \xi_{\varphi} \in P^{1/4}_{\xi_{\varphi}} \cap P^{1/2}_{\xi_{\varphi}}.$$

First

$$J\pi_{\omega}(h)J\xi_{\omega}=\pi_{\omega}(h)^{*}\xi_{\omega}=\pi_{\omega}(h)\xi_{\omega}$$

and $\pi_{\varphi}(h)\xi_{\varphi} \in P_{\xi_{\varphi}}^{1/2}$. Next $\Delta_{\varphi}^{1/2}(\pi_{\varphi}(h)\xi_{\varphi}) = \pi_{\varphi}(h)\xi_{\varphi}$ implies that

$$\pi_{\varphi}(h)\xi_{\varphi}=\Delta_{\varphi}^{1/4}\pi_{\varphi}(h)\xi_{\varphi}.$$

Hence $\pi_{\varphi}(h)\xi_{\varphi} \in P_{\xi_{\varphi}}^{1/4}$.

(2) \Rightarrow (3). If $\pi_{\varphi}(\xi_{\psi}, \xi_{\varphi})$ is essentially self-adjoint this follows from the proof of Theorem 1.1.

The vectors $\xi_{\psi} \pm i\xi_{\varphi}$ are both separating for $\pi_{\varphi}(\mathcal{M})$ in that

$$\omega_{\xi_{\varphi} \pm i\xi_{\varphi}}(\pi_{\varphi}(m))$$

$$= (\psi + \varphi)(m) \pm i((\pi_{\varphi}(m)\xi_{\varphi}, \xi_{\psi}) - (\pi_{\varphi}(m)\xi_{\psi}, \xi_{\varphi}))$$

$$= (\psi + \varphi)(m)$$

Consequently $J(\xi_{\psi} \pm i\xi_{\varphi}) = \xi_{\psi} \mp i\xi_{\varphi}$ are both separating for $\pi_{\varphi}(\mathcal{M})'$ and cyclic for $\pi_{\varphi}(\mathcal{M})$. This implies that

$$\operatorname{Ran}\left(\pi_{i0}(\xi_{ik},\xi_{i0})\pm iI\right)=\pi_{i0}(\mathcal{M})(\xi_{ik}\pm i\xi_{i0})$$

are dense in *M*. Essential self-adjointness follows (cf. [7, p. 257]).

(3) \Rightarrow (1). This is seen from Proposition 2.4. When $\bar{\psi} = \psi$, $\psi \circ \hat{E} = \psi$ holds. If a_0 is the Radon-Nikodym derivative of ψ with respect to φ on $\mathcal{A} \cap \mathcal{M}^{\varphi}$. (Cf. the proof of Theorem 1.1.) one finds

$$\varphi(a_0^{1/2}ma_0^{1/2}) = \varphi(a_0^{1/2}\hat{E}(m)a_0^{1/2})$$

$$= \psi(\hat{E}(m))$$

$$= \psi(m).$$

ACKNOWLEDGEMENT. I would like to thank Professor Ola Bratteli for reading an early version of the manuscript and making valuable comments.

REFERENCES

- O. Bratteli and D. Robinson, Operator algebras and quantum statistical mechanics, I: C*- and W *-algebras, symmetry groups, decomposition of states, Springer-Verlag, Berlin - Heidelberg - New York, 1979.
- C. C. Chu, On standard elements and tensor products of compact convex sets, J. London Math. Soc. (2) 14 (1976), 71-78.
- 3. T. Kato, Perturbation theory for linear operators (Grundlehren Math. Wiss. 132), Springer-Verlag, Berlin Heidelberg New York, 1966.
- H. Kosaki, Positive cones associated with a von Neumann algebra, Math. Scand. 47 (1980), 295–307.
- 5. G. K. Pedersen, C*-algebras and their automorphism groups (London Math. Soc. Monographs 14), Academic Press, London New York, 1979.
- D. Petz, Ergodic theorems in von Neumann algebras, Preprint, Hungarian Academy of Science, no. 55, Budapest, 1981.
- 7. M. Reed and B. Simon, Methods of modern mathematical physics, I: Functional analysis, Academic Press, New York San Francisco London, 1972.
- 8. C. F. Skau, Positive self-adjoint extensions of operators affiliated with a von Neumann algebra, Math. Scand. 44 (1979), 171-195.
- 9. C. F. Skau, Finite subalgebras of a von Neumann algebra, J. Funct. Anal. 25 (1977), 211-235.
- M. Takesaki, Theory of operator algebras, I, Springer-Verlag, Berlin Heidelberg New York, 1979.
- 11. M. Takesaki, Conditional expectations in von Neumann algebras, J. Funct. Anal. 9 (1972), 306-321.

INSTITUTT FOR MATEMATIKK UNIVERSITETET I TRONDHEIM, NTH 7034 TRONDHEIM NORWAY

CURRENT ADDRESS:
MATEMATISK INSTITUT
AARHUS UNIVERSITET
NY MUNKEGADE
8000 AARHUS C
DENMARK