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DIRECTIONAL DERIVATIVES AND ALMOST
EVERYWHERE DIFFERENTIABILITY OF
BICONVEX AND CONCAVE-CONVEX OPERATORS

MOHAMED JOUAK and LIONEL THIBAULT

Abstract.

In this paper we establish some results about directional derivatives and
almost everywhere differentiability of separately convex and concave-convex
operators between topological vector spaces.

Introduction.

M. Valadier has extended to vector-valued convex operators the concept of
directional derivatives and has given in [24] some properties of this notion.
J. M. Borwein in [5] has established some other properties of directional
derivatives of vector-valued convex operators. J. M. Borwein has also studied
in [5] generic differentiability properties of a convex operator from an Asplund
topological vector space into an ordered topological vector space (see also N.
K. Kirov [12]). Many results about generic differentiability properties of real-
valued convex functions were already known (see [1], [5], [16], [13] and the
references therein). However to our knowledge the only results about
directional derivatives of real-valued concave-convex functions have been
established by R. T. Rockafellar in [19].

Our study is along the lines of existence of directional derivatives and of
almost everywhere differentiability properties of biconvex and concave-convex
operators with values in ordered topological vector spaces. It is divided in four
sections. In the first section we recall some preliminary definitions which will
be of use in the next parts. Section two is devoted to derivatives of convex
operators. Section three studies the derivatives of biconvex and concave-convex
operators and finally in section four we prove some results about almost
everywhere differentiability of biconvex and concave-convex operators.

Received May 4, 1983; in revised form September 19, 1983.



216 MOHAMED JOUAK AND LIONEL THIBAULT

1. Preliminaries.

In this paper E, F, and G denote (real separated) topological vector spaces.
We assume that G, is a closed pointed convex cone in G (sG, +tG, <G, for
all real numbers s,t=0 and G, N — G, ={0}) which induces an ordering in F
by z<7 if ZZ—z € G,. So G is an ordered topological vector space.

A mapping f from a convex subset C of E into G is said to be a convex
operator if

fx+ty) = sf()+1/(y)

for all x,y e C and all nonnegative numbers s, ¢ satisfying s+¢=1. A mapping
g from a convex subset CxD of ExF into G is a biconvex (respectively
concave-convex) operator if for each (x,y) € C x D the mapping f(x,.) and

f(.,y) (respectively —f(.,y)) are convex.
In the sequel we shall always assume that G, is a normal cone that is there

exists a base of neighbourhoods {W} of zero in G such that
W= (W-=G,) N (W+G,).

Such neighbourhoods are said to be full. Usual ordered topological vector
spaces are normal (see for example [18]).

2. Directional derivatives of convex operators.

Let f be a convex operator from an open convex subset C of E into G and let
¢ be a point in C. Following Valadier [24] we shall put for each u € E

Sfe;u) = ingt"[f(6+tu)—f(0)]

when this infimum exists.
If g is any mapping from an open subset X, of a topological vector space X
into another topological vector space Y, then for a € X, and u € X we shall put

21 Dg(a; u) = 1ilrgt"[g(a+tu)—g(a)]

whenever this limit exists.

So if fis convex and G, is closed, then f’(c; u) exists whenever Df (c; u) exists
and then f”(c; u)=Df (c; u) as is easily seen by making use of the monotonicity
of t — ¢t [ f(c+tu)—f(c)]. Let us remark that the reverse is also true when G
is countably Dini (see [5] and [17]) in the sense that every decreasing sequence
in G with an infimum converges to that infimum.

2.1. ProPOSITION. Let f be a continuous convex operator from an open convex
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subset C of E into G and let c-€ C and u € E. If Df (c; u) exists, then
Df(c; u) = limt™ [ f(c+tx)—f(c)] .

x—u

tl0

Proor. Let W’ be a full neighbourhood of zero in G and let W be an open
circled neighbourhood of zero with W+ W+ W< W’. Choose a real number
s € ]0,1] such that

2.2 tT [ f(c+tw)—f(c)] € Df (c; W+ W
for every t € 10, s]. By continuity of f on C there exists a circled neighbourhood
X of zero in E such that

s f(c+sx)—f(©)] € Df(c;w)+W

for every x € u+ X. So on the one hand we have by convexity of f and by the
latter relation

(2.3) tT IS e+tx)—f()] € sT' [ f(c+sx)—f ()] -G
c Df(c; )+ W—-G.,

for all x € u+ X and t € ]0,s]. On the other hand for each x € u+ X and each
t € ]0,s] we have by relation (2.2) and by convexity of f once again

24) [ fc+t)—f()] = tT'[flc+t)—f ()]
' +t I f(c+tu+t(x—u)—f(c+tu)]
eDf(c; w+W—t"[f(c+tu—t(x—u)—f(c+tuw)]+G, .
Moreover for each x e u+X and each t € ]0,s] as u—x € X we have by
relations (2.2) and (2.3)
—t I f(c+tu—t(x—u)—f(c+tu)]
= —t7'[f(c+t(u+ @=x)=f (@1 +t7'[fc+t)—f ()]
€ —Df(c;u)+ W+G,+Df(c; w+W
and hence by relation (2.4)
t U fc+tx)—f(c)] € Df(c; W+ W+W+W+G,

< Df(c; W +W'+G, .

Therefore making use of relation (2.3) again we obtain
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t'f(c+tx)—=f ()] € Df (c;u)+ (W' +G,) N (W ~G,) = Df(c; y+ W

for every x € u+ X and every t € J0,s] and the proof is complete.

REMARK. This proposition could also been proved by invoking the fact that g
is locally Lipschitzian on C in the generalized sense given in [22]. However the
above proof which does not make use of auxiliary results has seemed to us
better in the context of this paper since it is in the line of the proof of
proposition 3.1 and hence prepares the reader for the proof of this proposition.

3. Directional derivatives of biconvex and concave-convex operators.

In this section we shall study some properties of derivatives of binconvex and
concave-convex operators.

3.1. ProrosITION. Let g be a concave-convex (respectively biconvex) operator
Jfrom an open convex subset CxD of ExF into G and let (c,d) € Cx D and
(1,0) € E x F. Assume that g is continuous on a neighbourhood of (c,d) and that
Dg(c,d; 4i,0) and Dg(c,d; 0,7) exist (respectively Dg(c,d; —u,0) also exists with
Dg(c,d; —i,0)= —Dg(c,d; 4,0)). Then Dg(c,d; u,v) exists. In fact

Dg(c,d; u,0) = Dg(c,d; u,0)+ Dg(c,d; 0,0)
and

Dg(c,d; 4,5) = lim t '[g(c+tu,d+tv)—g(c,d)] .

(u, ) — (3, 0)
tl0

Proor. Put a:=Dg(c,d; #,0) and b:=Dg(c,d; 0,7). Let W be a full
neighbourhood of zero in G. Choose an open circled neighbourhood W of zero
in G with W+ W< W'. By Proposition 2.1 there exist a real number r>0 and a
neighbourhood U’ x V' of zero in E x F such that g is continuous at (c+ri,d)
(respectively (c—rii,d)) and (c,d +r?), .and such that

3.1) t Y glc+tu,d)—g(c,d)] e a+ W
and
(3.2) t™'[g(c,d+tv)—g(c,d) e b+ W

(respectively relations (3.1) and (3.2) hold and r~![g(c—rii,d)—g(c,d)] € —a
+W)forallueda+U,ved+V and t € ]0,r]. Moreover from relations

r-i[g(c+ri,d)—g(c,d) e a+ W
(respectively r~![g(c—F,d)—g(c,d)] € —a+ W)
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and
r-[g(c,d+ro)—glc,d)] e b+ W

and from the continuity of g at (c +rii, d) (respectively (c —¥i,d)) and (c,d +rb)
it follows that there exist a real number s € ]0,r] and a neighbourhood U x V
c U’ x V' of zero in E x F such that

(3.3) r g(c+ru,d+tv)—g(c,d+tv)] € a+ W
(respectively r~![g(c—ru,d+tv)—g(c,d+tv)] € —a+ W)
and
(3.4 r-i[glc+tu,d+rv)—g(c+tu,d] e b+ W
for all t €]0,5], ue #+U and v e o+ V. Therefore as g is concave-convex

(respectively biconvex), for each t € ]0,s],eachu € i+ U and each v € 5+ V we
have on the one hand

t Hg(c+tu,d+tv)—glc,d+tv)] = r [glc+ru,d+tv)—g(c,d+tv)]

(respectively ¢t~ *[g(c +tu,d+tv)—g(c,d +tv)]= —r *[g(c —ru,d +tv)—g(c,d
+tv)]) and hence by relation (3.3)

(3.5) t '[glc+tu,d+tv)—g(c,d+tv)] e a+ W+G.,
and similarly
t glc+tu,d+tv)—g(c+tu,d)] < r [glc+tu,d+rv)—g(c+tu,d)]
and hence by relation (3.4)
(3.6) t [g(c+tu,d+tv)—g(c+tu,d)] e b+ W—G, .
So if we write
tg(c+tu,d+tv)—g(c, d)]
=t [g(c+tu,d+tv)—g(c+tu,d)]+t[g(c+tu,d)—g(c,d)]
and if we invoke relations (3.1) and (3.6) we see that

t~ Y g(c+tu,d+tv)—glc,d)] e a+b+W+W—-G, < a+b+W -G,

forallt€]0,s}, uea+U and ve v+ V.
In the same way by writing

t~'[g(c+tu,d+tv)—g(c,d)]
=t [g(c+tu,d+tv)—g(c,d+tv)] +t " [g(c,d +tv)—g(c,d)]
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and by making use of relations (3.2) and (3.5) we obtain
t"He(c+tu,d+tv)—g(c,d)] e a+b+W+W+G, < a+b+W +G.,
for all t € ]0,5], u e 1+ U and v € v+ V and hence
t ' glc+tu,d+tv)—g(c,d] e a+b+ (W +G, )N (W —-G,) = a+b+W'.

Therefore Dg(c,d; i, ) exists
Dg(c,d; u,0) = Dg(c,d; u,0)+ Dg(c,d; 0,0)
and
Dg(c,d; #,0) = lim ¢~ [g(c+tu,d+tv)—g(c,d)] .

(u,v) = (ii.0)
t}0

By slightly strengthening conditions on the positive cone G, we can derive
from the above proposition some important consequences.

3.2. DerinITION. Following Penot [17] (see also [5]) we shall say that G is

countably Daniell if every decreasing sequence in G with a lower bound has an
infimum and converges to that infimum.

Many examples and properties of countably Daniell ordered topological
vector spaces can be found in [17] and [S] (see also [22] and [24]).

Let us recall the following result (see Proposition 3.7 in [5] and Proposition
3 in [24]) which will allow us to state Corollary 3.4.

3.3. PROPOSITION. Let f be a continuous convex operator from an open convex
subset C of E into G. Assume that G is countably Daniell. Then for each ¢ € C the
mapping Df (c; .) exists on E and is a continuous positively homogeneous convex
operator.

3.4. CorOLLARY. Let g be a concave-convex operator from an open convex
subset C x D of E x F into G which is continuous on a neighbourhood of (c,d) € C
x D. Assume that, G is countably Daniell. Then the mapping Dg(c,d; ., .) exists
on E x F and is a continuous positively homogeneous concave-convex operator.
Moreover

Dg(c,d; u,v) = Dg(c,d; u,0)+ Dg(c,d; 0,v)
for every (u,v) € ExF.

Proor. This is a direct consequence of Proposition 3.1 and 3.3.

Of course with appropriate assumptions one can state similar results for
biconvex operators.



DIRECTIONAL DERIVATIVES AND ... 221

Let us recall the following definition.

3.5. DerINITION. A mapping g from an open subset X, of a topological vector
spade X into a topological vector space Y is Gateaux differentiable at a point
a e X, if Dg(a; .) exists and is a continuous linear operator from X into Y.

If moreover

limt~![g(a+tx)—g(a)]

x—ru

110
exists for every u € X one says that g is Michal-Bastiani differentiable or simply
M-B-differentiable at a (see [15], [4], [3], [17]).
It is not difficult to see that if g is M-B-differentiable at a then g is Hadamard
differentiable at a in the sense that for each compact subset K of X the limit in
relation (2.1) exists uniformly with respect to u € K.

Another important corollary of Proposition 3.1 can now be given.

3.6. CorOLLARY. Let g be a biconvex or concave-convex operator from an open
convex subset C x D of E x F into G which is continuous on a neighbourhood of
(c,d). Assume that g is partially Gateaux differentiable at (c,d) in the sense that
g(.,d) and g(c, .) are Gateaux differentiable at ¢ and d respectively. Then g is M-
B-differentiable at (c, d).

Proor. This is a direct conseqeunce of Proposition 3.1 and of the above
definition.

4. Almost everywhere differentiability of biconvex and concave-convex
operators.

The importance of strictly linear functionals in the study of differentiability
of convex operators has been illustrated by J. M. Borwein in [5].

4.1. DEFINITION. A continuous linear functional [ in the topological dual G’ of
G is said to be strictly poisitive if {l,z)>0 for all z e G, \ {0}.

If G is locally convex and if the convex cone G, has a convex base B, that is
G, =U,;,tB and 0 ¢ cl B, then by separating 0 and cl B by the Hahn-Banach
theorem one gets that G admits strictly positive linear functionals (see [5]).

Moreover if G is a separable normed vector space, then by Proposition 2.8 in
[5], G admits a strictly positive linear functional.

4.2. PROPOSITION. Let f be a continuous convex operator from an open convex
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subset C of E into G and let a be a point in C. Assume that G is countably Daniell
and admits a strictly positive continuous linear functional | and assume that lof is
Gateaux differentiable at a. Then f is M-B-differentiable at a.

Proor. This is a direct consequence of the preceding Propositions 2.1 and
3.3 and of Proposition 4.2 in [5].

4.3. CoROLLARY. Let g be a continuous biconvex or concave-convex operator
from an open convex subset Cx D of Ex F into G and let (c,d) be a point in
C x D. Assume that G is countably Daniell and admits a strictly positive continu-
ous linear functional | and assume log is Gateaux differentiable at (c,d). Then g is
M-B-differentiable at (c,d).

Proor. This is a direct consequence of Propositions 3.1 and 4.2.

Before stating our result about almost everywhere differentiability of
biconvex or concave-convex operators let us recall the notion of Haar null sets
introduced by J. P. R. Christensen.

4.4. DEFINITION. Let X be a separable Fréchet (locally convex) vector space
and let N be an universally measurable subset of X, that is N belongs to the m-
completion of the Borel tribe #(X) for each finite measure m on %#(X). One

says that N is Haar null in X (see [9]) if for every probability measure P on
B(X)

P(x+N) =0 forevery xe X .

This notion generalizes the one of Lebesgue negligible sets in R" and has
many important properties. For instance X \ A4 is topologically dense in X
whenever A4 is Haar null in X.

However the best result justifying the importance of Haar null sets is the
following. '

4.5. ProrosiTION (see Theorem 7.5 in [9]). Let f be a function from an open
subset A of a separable Fréchet space X into R. Assume that fis locally lipschitz
in the sense that for each a € A there exists a continuous semi norm p on X and a
neighbourhood U of a in A such that

If)—fW)| € p(x—y) forall x,yeU.

Then there exists a Haar null set N = A in X such that f'is Gateaux differentiable
at each point in AN\ N.
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Theorem 7.5 in [9] is not stated exactly as above but it is easy to see that the
proof given in [9] still holds.

We can now state our result about differentiability of biconvex or concave-
convex operators.

4.6. PROPOSITION. Assume that E and F are separable Fréchet spaces and that
G is countably Daniell and admits a strictly positive continuous linear functional.
If g is a continuous biconvex or concave-convex operator from an open convex
subset C x D of E x F into G, then there exists a Haar null set NcCxDinExF
such that g is M-B-differentiable at each point of (C x D)\ N.

Proor. Let | be a strictly positive continuous linear functional on G. Then
log is a real-valued continuous biconvex or concave-convex function on C x D.
Therefore for each point (c,d) e CxD there exists an open convex
neighbourhood Cy x Dy=C x D of (c,d) in E x F and two real numbers m and
M such that

m < log(x,y) < M for all (x,y) € Cy x D,

and hence by Proposition 3.5 in [11] the function log is Lipschitz around (c, d).
So log is locally Lipschitz on C x D and by proposition 4.5 there exists a Haar
null set NcCxD in ExF such that log is Gateaux differentiable on
(C x D)\ N. Thus by Corollary 4.3, g is M-B-differentiable at each point in
(C x D)\ N, which completes the proof.

REemMARK. If G is normed, then (as in [6], Theorem 3.1) it is not necessary by
the remark following Proposition 4.1 to assume that Gadmits a strictly positive
continuous linear functional since there exists a separable vector subspace
H <G with clg[f(C x D)]<H.
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