A GENERAL DIFFERENTIATION THEOREM FOR *n*-DIMENSIONAL ADDITIVE PROCESSES

R. EMILION

Abstract.

We prove the differentiation theorem for n-dimensional additive processes with respect to a semi-group of L_1 contractions.

This generalizes the one-parameter theorems ([4], [14], [11]), the n-parameter local ergodic theorem [11] and the positive contractions case [3].

1. Introduction.

Let L_1 denote the usual space of equivalence classes of *complex* valued integrable functions on a σ -fine measure space (X, \mathcal{F}, μ) . Let $n \ge 1$ be an integer.

- 1.1. Denoting $P_n = (R_+ \{0\})^n$, we consider a strongly continuous semi-group $T = (T_t)_{t \in P_n}$ of linear L_1 -contractions. We do not assume the continuity of T at 0 and as it is said in ([15, p. 552]) the behaviour of T near 0 can be extremely pathological. See also ([2, p. 550]).
- 1.2. Let \mathscr{I}_n (respectively λ_n) be the class of all intervals of R_+^n (respectively the Lebesgue measure on R^n). We recall the

DEFINITION ([5], [3]). A set function $F: \mathscr{I}_n \to L_1$ will be called a bounded additive process with respect to T if it satisfies the following conditions:

- 1.3. $\sup \{ ||F(I)/\lambda_n(I)|| \mid I \in \mathscr{I}_n, \lambda_n(I) > 0 \} = \gamma(F) < \infty.$
- 1.4. $T_u F(1) = F(u+I)$ for all $u \in P_n$ and $I \in \mathcal{I}_n$.
- 1.5. If $I_1, \ldots, I_k \in \mathscr{I}_n$ are pairwise disjoint and if $I = \bigcup_{i=1}^k I_i \in \mathscr{I}_n$, then $F(I) = \sum_{i=1}^k F(1_i)$.

The main result of this paper is the following

Received April 25, 1984; in revised form February 18, 1985.

1.6. THEOREM. Let T and F be as in 1.1 and 1.2. Then

$$\lim_{\alpha \to 0^+} \alpha^{-n} F([0, \alpha]^n) \quad exists \text{ a.e.}$$

It is well-known that 1.6 contains the Lebesgue differentiation theorems and the local ergodic ones (see [5], [3]). In fact 1.6 generalizes additive theorems recently proved in the following cases:

For positive contractions.

n=1, see M. A. Akcoglu-U. Krengel [5], D. Feyel [13], [14],

 $n \ge 1$, T continuous at 0 and $F(I) = \int_I T_t f dt$ for some fixed $f \in L_1$, see T. R. Terrell [17],

 $n \ge 1$, see M. A. Akcoglu-A. del Junco [3].

For general contractions.

n=1 and real L_1 spaces, see M. A. Akcoglu-M. Falkowitz [4],

n=1, T continuous at 0 and complex L_1 spaces, see D. Feyel [14],

n=1 and complex L_1 spaces [see 11],

 $n \ge 1$, T continuous at 0 and $F(I) = \int_I T_t f dt$ for some fixed $f \in L_1$ [see 11].

We also mention that the maximal inequality of M. A. Akcoglu [1] yields a more general version in L_p $(1 : <math>\lim (\alpha_1 \dots \alpha_n)^{-1} F([0, (\alpha_1, \dots, \alpha_n)])$ exists a.e. as the $\alpha_i \to 0^+$ independently [see 10] (the T_i being necessarily positive [see 7], whereas the L_∞ theorem holds for positive contractions (see M. Lin [16]) and also for general contractions [see 12]

REMARK. All the limits above are taken through any countable set or for representatives of F (see [5], [3]).

1.7. Let us indicate briefly the various steps of the proof of 1.6.

We first reduce the problem to the case T continuous at 0. Then using the technique of the sub-semi-groups of Dunford-Schwartz ([9, VIII.7.12-15]) and the arguments of M. A. Akcoglu-A. del Junco [3], we define almost additive processes to obtain the Akcoglu-del Junco inequality ([3, 3.5]) for general contractions. The rest of the proof is a generalization of the one-dimensional nice proof of M. A. Akcoglu-M. Falkowitz [4] in dimension n and for complex L_1 spaces; this avoids the difficulties concerning the singular processes [see 3].

ACKNOWLEDGMENT. The author is grateful to Professor U. Krengel for bringing reference [4] to his attention, and Professor M. A. Akcoglu for making the manuscript [4] available to him prior to its publication.

208 R. EMILION

2. The continuity of T at 0.

First recall the following inequality:

2.1. THEOREM ([11, 4.2]). Let T be as in Section 1.1. Then there exists a constant $c_n > 1$ and a one-dimensional strongly continuous semi-group $U = (U_t)_{t>0}$ of L_1 positive contractions such that:

$$\forall f \in L_1, \ \forall \alpha > 0, \ \alpha^{-n} \int_{[0,\alpha]^n} |T_t f| dt \leq c_n \bar{\alpha}^{-1} \int_0^{\bar{\alpha}} U_t |f| dt,$$

where $\bar{\alpha} = \alpha^{2^{-K}}$ if $2^{k-1} < n \leq 2^k$.

2.2. Let C be the initially conservative part of U (see M. A. Akcoglu-R. V. Chacon [2]), that is

$$C = \left\{ \int_0^1 U_t f_0 dt > 0 \right\},\,$$

where $f_0 \in L_1$ and $f_0 > 0$ a.e. If $D = X \setminus C$ then the strong-continuity of U implies $1_D U_t = 0$ for all t > 0.

In the case of positive contractions the following is due to Akcoglu-Chacondel Junco ([2], [3]).

2.3. THEOREM. Let T be as in Section 1.1. Then $1_DT_t=0$,

$$R_0 = \text{strong-}\lim_{t\to 0} T_{t|L_1(C)}$$

exists, and

$$|R_0| = \operatorname{strong-lim}_{t \to 0^+} U_{t|L_1(C)}.$$

2.4. COROLLARY. Let T and F be as in 1.1 and 1.2. Then $1_DF_I = 0$ and $R_0F_I = F_I$ for $I \in \mathcal{I}_n$. (See [3, Section 2.2]).

PROOF OF THEOREM 2.3. Since T is continuous on P_n , 2.1. implies that $1_D T_t$ = 0. For any x > 0 let

$$M_x f = x^{-n} \int_{[0,x]^n} T_t f dt, \quad f \in L_1.$$

First consider the (strongly and weakly) closed space

$$H = \{ f \in L_1(C) \mid \text{norm-} \lim_{x \to 0} M_x f \text{ exists} \}.$$

The inequality

$$||T_t M_v - M_v|| \le y^{-n} \lambda_n (([0, y]^n + t) \Delta [0, y]^n),$$

where Δ stands for the symetrical difference, clearly implies the following assertions:

$$(2.5) strong-lim T_t M_v = M_v as t \to 0$$

(2.6) strong-lim
$$M_x M_y = M_y$$
 as $x \to 0^+$.

Let $f \in L_1(C)$. It is known that strong- $\lim_{t\to 0^+} U_t f$ exists (see [2] and also a direct proof in [10]). Then 2.1. shows that there exists a sequence $x_i \to 0^+$ such that $f^* = w - \lim_t M_{x_i} f$ exists. Since $M_{x_i} f \in H$, $f^* \in H$. But

$$M_x f^* = w - \lim_i M_x M_{x_i} f = w - \lim_i M_{x_i} M_x f = M_x f$$

by (2.6). Thus $f \in H$ and $H = L_1(C)$. Let

$$R_0 f = \text{norm-} \lim_{x \to 0^+} M_x f, \quad f \in L_1(C)$$
.

By (2.6) we get $R_0 M_x = M_x$ and $R_0^2 = R_0$. Furthermore, the equalities

$$T_t M_x f - T_t f = M_x T_t f - T_t f = x^{-n} \int_{\{0,x\}^n} (T_{x+t} f - T_t f) ds$$

and the continuity of T at t imply

$$T_t R_0 f = R_0 T_t f = T_t f$$
 for any $f \in L_1(C)$.

Finally considering the closed space

$$K = \{ f \in L_1(C) \mid \text{norm-} \lim_{t \to 0} T_t f = R_0 f \}$$

we see that for all $f \in L_1(C)$, $M_x f \in K$ (2.5) and thus $R_0 f \in K$, that is

norm-
$$\lim_{t\to 0} T_t R_0 f = R_0^2 f$$
 and norm- $\lim_{t\to 0} T_t f = R_0 f$.

The last point of the theorem is proved in [11, Proof of Theorem 4.1].

3. Reduction of the dimension.

The following generalizes an inequality of M. A. Akcoglu-A. del Junco [3, 3.5].

3.1. THEOREM. Let T and F be as in 1.1 and 1.2. Let c_n and U be as in 2.1. Then there exists a one-dimensional bounded additive process G with respect to U such that:

210 R. EMILION

$$\forall \alpha > 0, \alpha^{-n} |F_{[0,\alpha]^n}| \leq c_n \bar{\alpha}^{-1} G_{[0,\bar{\alpha}]},$$

where $\bar{\alpha} = \alpha^{2^{-k}}$ if $2^{k-1} < n \le 2^k$.

To prove 3.1 we will assume without loss of generality that $n=2^k$ for an integer $k \ge 0$ (see [3]).

3.2. The sub-semi-groups of Dunford-Schwartz [9]. Recall the following construction due to Dunford-Schwartz [9, VII.7.12-18].

For each x>0 and $y \in \mathbb{R}$, let

$$\varrho_x(y) = \frac{x}{2\sqrt{\pi y^3}} e^{-(x^2/4y)} \text{ if } y > 0 \text{ and } \varrho_x(y) = 0 \text{ if } y \le 0.$$

If $k \ge 1$ let

$$\Phi_t(u) = \prod_{i=1}^m \varrho_{t_i}(u_{2i-1})\varrho_{t_i}(u_{2i}) ,$$

where m = n/2, $t \in P_m$ and $u \in \mathbb{R}^n$.

Starting with the semi-group $T = (T_t)_{t \in P_s}$, we let $T_t^0 = |T_t|$ so that $T^0 = (T_t^0)_{t \in P_s}$ is a 2^k -dimensional strongly continuous sub-semi-group of L_1 -positive contractions: $T_{t+s}^0 \le T_t^0 T_s^0$ and

strong-
$$\lim_{\substack{s\to 0\\s\in P_-}} T^0_{t+s} = T^0_t$$
.

If $k \ge 1$ let

$$T_t^1 f = \int_{\mathbb{R}^n_+} \Phi_t(u) T_u^0 f \, du, \quad t \in P_m.$$

Then $T^1 = (T_t^1)_{t \in P_m}$ is a 2^{k-1} -parameter sub-semi-group.

Define similarly the sub-semi-groups T^j for $j=0,\ldots,k$ so that T^k is a one-parameter sub-semi-group. Also recall that the semi-group U given by 2.1 satisfies $T_t^k \le U_t$ for all t>0 [see 11].

3.3. Almost additive processes. Denoting

$$L_1^+ = \{ f \in L_1 \mid f \text{ is real valued and positive} \},$$

we make the following

DEFINITION. Let $P = (P_t)_{t \in P_n}$ be a sub-semi-group of positive operators on L_1 . A set function $F: \mathscr{I}_n \to L_1^+$ will be called an almost additive process with respect to P if it satisfies the following conditions.

- 3.4. $\sup\{\|F(I)/\lambda_n(I)\| \mid I \in \mathcal{I}_n, \lambda_n(I) > 0\} = \gamma(F) < \infty.$
- 3.5. $P_u F(I) \ge F(u+I)$ for all $u \in P_n$ and $I \in \mathcal{I}_n$.
- 3.6. If $I_1, \ldots, I_k \in \mathscr{I}_n$ are pairwise disjoint and if $I = \bigcup_{i=1}^k I_i \in \mathscr{I}_n$, then $F(I) = \sum_{i=1}^k F(I_i)$.

Example. If $f \in L_1^+$ then $F_I = \int_I T_t^0 f dt$ is almost additive with respect to T^0 .

3.7. LEMMA. Let T and F be as in 1.1 and 1.2, and let T^0 be as in 3.2. Then there exists an almost additive process with respect to T^0 , say F^0 , such that $|F_I| \le F_I^0$ and $\gamma(F) = \gamma(F^0)$.

PROOF OF 3.7. Let $I \in \mathcal{I}_n$ and let \mathcal{P}_I denote the class of all partitions of I into pairwise disjoint intervals. If $X, Y \in \mathcal{P}_I$, then we will write X < Y, if Y refines X so that $(\mathcal{P}_I <)$ is a directed set. Next, if $X = (I_1, \ldots, I_k) \in \mathcal{P}_I$, let

$$\bar{F}_X = \sum_{i=1}^k |F(I_i)|.$$

It is then clear that $\|\bar{F}_X\| \leq \gamma(F)\lambda_n(I)$ and that X < Y implies $\bar{F}_X \leq \bar{F}_Y$. Therefore if we put

$$F_I^0 = \sup_{X \in \mathscr{P}_I} \bar{F}_X = \lim_{\mathscr{P}_I} \uparrow \bar{F}_X,$$

then $\gamma(F^0) = \gamma(F)$ and $T^0_u F^0_I \ge F^0_{u+I}$. Finally, note that it suffices to prove 3.6, when k=2. For this, observe that if $X \in \mathscr{P}_I$, $Y \in \mathscr{P}_J$, and $I \cup J \in \mathscr{I}_n$ then $X \cup Y \in \mathscr{P}_{I \cup J}$ and thus $F^0_{I \cup J} \ge F^0_I + F^0_J$. Conversely if $X \in \mathscr{P}_{I \cup J}$ then, with obvious notations, $X \cap I \in \mathscr{P}_I$ and $X \cap J \in \mathscr{P}_J$ and thus $F^0_{I \cup J} \le F^0_I + F^0_J$. This completes the proof of the lemma.

PROOF OF THEOREM 3.1. Recall that $n=2^k$. If $k \ge 1$ then, following Akcogludel Junco [3] we let $F_I^1 = \int_I f_I^0 dt$, where

$$f_t^0 = \int_{\mathbb{R}^n} \Phi_t(v) F^0(dv), \quad t \in P_m,$$

 f_t^0 being well-defined by Lemma 3.7. It is then easy to see that F^1 is an almost additive process with respect to T^1 and that $\gamma(F^1) \leq \gamma(F^0)$. Further there is a constant d_n such that

$$\alpha^{-n}F^0_{[0,\alpha]^n} \leq d_n \sqrt{\alpha^{-m}}F^1_{[0,\sqrt{\alpha}]^m}$$
,

see Sections 3.4 and 3.5 in [3]. Define similarly the almost additive process F^j for j = 0, ..., k. F^k is then a one-dimensional almost additive process with respect to T^k and

$$\alpha^{-n}F^0_{[0,\alpha]^n} \leq c_n\bar{\alpha}^{-1}F^k_{[0,\bar{\alpha}]}.$$

Next, for any x > 0, let $G_x^k = F_{[0,x]}^k$ so that

$$G^k_{x+y} \, \leqq \, G^k_x + T^k_x G^k_y \, \leqq \, G^k_x + U_x G^k_y \; .$$

By the proof Lemma 4.1 in [5], we see that there is an additive process $(G_t)_{t>0}$ with respect to the semi-group $(U_t)_{t>0}$ in the sense of [5], such that $G_x^k \leq G_x$ for all positive dyadic x, and such that $\gamma(G) = \gamma(G^k) \leq \gamma(F)$. Since G^k and $(G_t)_{t>0}$ are continuous processes, we also have $G_x^k \leq G_x$ for all x>0. Finally it suffices to put $G_{[a,b]} = U_a G_{b-a}$ for all $I = [a,b] \in \mathcal{I}_1$ (a < b), to obtain the additive process which verifies the inequality 3.1.

4. Proof of the main result 1.6.

We are now in a position to adapt the one-dimensional proof of M. A. Akcoglu-M. Falkowitz to the *n*-dimensional case. The nice truncation argument in [4] will be slightly modified as we deal with complex valued functions.

Let T and F be as in Section 1. Let U, C, D, R_0 be as in Section 2, and finally let G be given by Theorem 3.1.

For any x>0 we put

$$f_x = x^{-n} F_{[0,x]^n}, \quad M_x = x^{-n} \int_{[0,x]^n} T_t dt$$

(in the strong topology), and

$$g_x = \bar{x}^{-1}G_{[0,\bar{x}]},$$

so that f_x and $g_x \in L_1(C)$ (by 2.4).

By M. A. Akcoglu-U. Krengel's theorem [5], we know that $g = \lim_{x\to 0} g_x$ exists a.e. and since $|R_0|g_x = g_x$ (by 2.3 and 2.4), we have $|R_0|g = g$.

Now, let $x_i > 0$ be a sequence such that $x_i \to 0^+$. Since g_{x_i} , $g \in L_1^+$, $g_i = g_{x_i} \wedge g$ is well-defined and $g_i \to g$ a.e. and thus in L_1 -norm. On the other hand let

$$f_i = f_{x_i} 1_{\{|f_{x_i}| \le c_n g_i\}} + \frac{c_n g_i f_{x_i}}{|f_{x_i}|} 1_{\{|f_{x_i}| > c_n g_i\}}$$

so that $|f_i| \le c_n g_i$. Since g_i converges in L_1 -norm, by passing to a subsequence, if necessary, we may assume that f = w-lim_i f_i exists (see [9, p. 292]). Further, on the set $\{|f_{x_i}| \le c_n g_i\}$ we have $|f_{x_i} - f_i| = 0$, and on the set $\{|f_{x_i}| > c_n g_i\}$, we have

$$|f_{x_i} - f_i| = ||f_{x_i}| - c_n g_i| = |f_{x_i}| - c_n g_i$$

 $\leq c_n g_{x_i} - c_n g_i$ (by Theorem 3.1).

So, $|f_{x_i}-f_i| \leq c_n(g_{x_i}-g_i)$ holds a.e.

We then obtain for all x>0,

$$|f_x - M_x f| = |R_0 f_x - M_x f| = |\text{strong-lim } M_x f_{x_i} - M_x f|$$

$$(\text{by 2.3 and Lemma 3.2 in [3]})$$

$$= |w - \lim_i M_x (f_{x_i} - f_i)| \quad (\text{by definition of } f)$$

$$\leq w - \lim_i c_n \bar{x}^{-1} \int_0^{\bar{x}} U_t |f_{x_i} - f_i| dt \quad (\text{by Theorem 2.1})$$

$$\leq w - \lim_i c_n^2 \bar{x}^{-1} \int_0^{\bar{x}} U_t (g_{x_i} - g_i) dt$$

$$= c_n^2 \left(|R_0| g_x - \bar{x}^{-1} \int_0^{\bar{x}} U_t g dt \right) \quad (\text{by Lemma 3.2 in [3] and definition of } g_i)$$

$$= c_n^2 \left(g_x - \bar{x}^{-1} \int_0^{\bar{x}} U_t g dt \right).$$

Now, since $g \in L_1(C)$, the last member tends a.e. to $c_n^2(g - |R_0|g) = 0$ as $x \to 0^+$. But as $f \in L_1(C)$, 2.3 and the *n*-parameter local ergodic theorem [see 11] applied in $L_1(C)$ yield

$$\lim_{x \to 0} M_x f = R_0 f \quad \text{a.e.}$$

We then have

$$\lim_{x\to 0} f_x = R_0 f \quad \text{a.e.}$$

The proof is completed.

REFERENCES

- M. A. Akcoglu, A pointwise ergodic theorem in L_p-spaces, Canad. J. Math. 27 (1975), 1075– 1082.
- 2. M. A. Akcoglu and R. V. Chacon, A local ratio theorem, Canad. J. Math. 22 (1970), 545-552.
- M. A. Akcoglu and A. del Junco, Differentiation of n-dimensional additive processes, Canad. J. Math. 33 (1981), 749-768.
- M. A. Akcoglu and M. Falkowitz, A general local ergodic theorem in L₁, Pacific J. Math., to appear.
- M. A. Akcoglu and U. Krengel, A differentiation theorem for additive processes, Math. Z. 163 (1978), 199-210.
- M. A. Akcoglu and U. Krengel, A differentiation theorem in L_p, Math. Z. 169 (1979), 31-40.
- M. A. Akcoglu and U. Krengel, Two examples of local ergodic divergence, Israel J. Math. 33 (1979), 225-230.
- A. Brunel, Théorème ergodique ponctuel pour un semi-groupe commutatif finiment engendré de contractions de L₁, Ann. Inst. H. Poincaré, 9 (1973), 327-343.

- N. Dunford and J. T. Schwartz, Linear operators, Part I; General theory (Pure and Appl. Math. 7), Interscience Publ. Inc., New York, 1958.
- 10. R. Emilion, Continuity at 0 of semi-groups on L_1 and differentiation of additive processes, to appear.
- 11. R. Emilion, Additive and superadditive local theorems, to appear.
- 12. R. Emilion, Semi-groups in L_{∞} and local ergodic theorem, to appear.
- D. Feyel, Compléments sur la convergence presque sûre des familles résolues. (Séminaire de théorie du potentiel 4, Paris, 1977-1978) eds. R. Gerard, J.-P. Ramis (Lecture Notes in Math. 713), pp. 51-55. Springer-Verlag, Berlin - Heidelberg - New York, 1979.
- 14. D. Feyel, Sur une classe remarquable de processus abéliens, Math. Z., to appear.
- E. Hille and R. S. Phillips, Functional analysis and semi-groups, (Amer. Math. Soc. Colloq. Oubl. 31), American Mathematical Society, Providence, R.I., 1957.
- M. Lin, On local ergodic convergence of semi-groups and additive processes. Israel J. Math. 42 (1982), 300-308.
- R. T. Terrell, Local ergodic theorems for n-parameter semi-groups of operators, in Contributions to ergodic theory and probability, (Proc. Ohio State University, 1970), ed. L. Sucheston, (Lecture notes in Math. 160), pp. 262-278. Springer-Verlag, Berlin - Heidelberg - New York, 1970.

LABORATOIRE DE PROBABILITÉS UNIVERSITÉ PARIS VI 4 PLACE JUSSIEU 75005 PARIS FRANCE