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A GENERAL DIFFERENTIATION THEOREM
FOR n-DIMENSIONAL ADDITIVE PROCESSES

R. EMILION

Abstract.

We prove the differentiation theorem for n-dimensional additive processes
with respect to a semi-group of L, contractions.

This generalizes the one-parameter theorems ([4], [14], [11]), the n-
parameter local ergodic theorem [11] and the positive contractions case [3].

1. Introduction.
Let L, denote the usual space of equivalence classes of complex valued

integrable functions on a ¢-fine measure space (X, %,pu). Let n>1 be an
integer.

1.1. Denoting P,= (R, —{0})", we consider a strongly continuous semi-
group T=(T),p, of linear L,-contractions. We do not assume the continuity
of T at 0 and as it is said in ([15, p. 552]) the behaviour of T near 0 can be
extremely pathological. See also ([2, p. 550]).

1.2. Let #, (respectively 4,) be the class of all intervals of R”, (respectively the
Lebesgue measure on R"). We recall the

DeriniTioN ([5], [3]). A set function F: .#, — L, will be called a bounded
additive process with respect to T if it satisfies the following conditions:

13. sup {|F()/A, (D | I € £, A,(1)>0}=y(F)<co.
14. T F1)=F(u+I) forallueP,and I € S,
1.5. If I,,...,I, € #, are pairwise disjoint and if I=U}_, I, € #,, then F(I)

=2?=1 F(1).

The main result of this paper is the following
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1.6. THEOREM. Let T and F be as in 1.1 and 1.2. Then

lim+ a "F([0,a]") exists a.e.

a=0

It is well-known that 1.6 contains the Lebesgue differentiation theorems and
the local ergodic ones (see [5], [3]). In fact 1.6 generalizes additive theorems
recently proved in the following cases:

For positive contractions.

n=1, see M. A. Akcoglu-U. Krengel [5], D. Feyel [13], [14],

n21, T continuous at 0 and F(I)={; T, fdt for some fixed f e L,, see T. R:
Terrell [17],

n=1, see M. A. Akcoglu-A. del Junco [3].

For general contractions.
n=1 and real L, spaces, see M. A. Akcoglu-M. Falkowitz [4],
n=1, T continuous at 0 and complex L, spaces, see D. Feyel [14],
n=1 and complex L, spaces [see 11],
n=1, T continuous at 0 and F(I)= [, T, f dt for some fixed f e L, [see 11].

We also mention that the maximal inequality of M. A. Akcoglu [1] yields a
more general version in L, (1<p<o0): lim (o, ... o) 'F([O, (y,. . .,a,)])
exists a.e. as the a; - 0% independently [see 10] (the T, being necessarily
positive [see 7], whereas the L theorem holds for positive contractions (see
M. Lin [16]) and also for general contractions [see 12]

ReMark. All the limits above are taken through any countable set or for
representatives of F (see [5], [3]).

1.7. Let us indicate briefly the various steps of the proof of 1.6.

We first reduce the problem to the case T continuous at 0. Then using the
technique of the sub-semi-groups of Dunford-Schwartz ([9, VII1.7.12-15]) and
the arguments of M. A. Akcoglu-A. del Junco [3], we define almost additive
processes to obtain the Akcoglu-del Junco inequality ([3, 3.5]) for general
contractions. The rest of the proof is a generalization of the one-dimensional
nice proof of M. A. Akcoglu-M. Falkowitz [4] in dimension n and for complex
L, spaces; this avoids the difficulties concerning the singular processes [see 3].

ACKNOWLEDGMENT. The author is grateful to Professor U. Krengel for
bringing reference [4] to his attention, and Professor M. A. Akcoglu for
making the manuscript [4] available to him prior to its publication.
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2. The continuity of T at 0.
First recall the following inequality:

2.1. THeorREM ([11, 4.2]). Let T be as in Section 1.1. Then there exists a
constant c,>1 and a one-dimensional strongly continuous semi-group U
=(U,)>o of L, positive contractions such that:

i

VfelL, Va > 0, oz"'J |T,f|dt§c,,o‘t"f U,(fldt,
[0,a]" (V]

where G=a?"" if 2*"1<n< 2,

2.2. Let C be the initially conservative part of U (see M. A. Akcoglu-R. V.

Chacon [2]), that is
1
C = {j U,fodt>0},
0

where f, € L, and f,>0 ae. If D=X\ C then the strong-continuity of U
implies 1,U,=0 for all ¢t>0.

In the case of positive contractions the following is due to Akcoglu-Chacon-
del Junco ([2], [3]).

2.3. THEOREM. Let T be as in Section 1.1. Then 1pT,=0,
Ro = Strong-lim Tt'Ll(C)
t—0 .

exists, and

IRo| = strong-lim U, (c) -
t-0*

2.4. CoroLLARY. Let Tand F be asin 1.1 and 1.2. Then 1,F =0 and RoF|=F,
for I € #,. (See [3, Section 2.2]).

Proor oF THEOREM 2.3. Since T is continuous on P,, 2.1. implies that 1pT,
=0. For any x>0 let

M,f=x-"J T,fdt, fel,.

[0, xJ"

First consider the (strongly and weakly) closed space

H = {fe L,(C)| norm-lim M,f exists} .
x—0
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The inequality
IT.M,—M,| < y~"4,(([0, yI"+0)4[0,y]") ,

where A stands for the symetrical difference, clearly implies the following
assertions:

2.5 strong-limTM, = M
(2.6) strong-imM M, = M

y ast—0

, asx— 0",

Let fe L,(C). It is known that strong-lim,_,+ U, f exists (see [2] and also a
direct proof in [10]). Then 2.1. shows that there exists a sequence x; — 0% such
that f*=w—lim; M, f exists. Since M, fe€ H, f* € H. But

M,f* = w—lim MM, f = w—limM,M.f = M.f

by (2.6). Thus fe H and H=L,(C). Let
Ryf = norm-lim M, f, fe L,(C).
x—0*
By (2.6) we get RyM, =M, and R2=R,. Furthermore, the equalities
M. f-T.f = M,Tf-Tf = x~" J (Tes o f—T.f)ds
[0, x]"
and the continuity of T at ¢ imply
TRof = RT.f = T.f for any fe L,(C).
Finally considering the closed space

K = {feL, (0O | norm-lim T,f=R, f}
t—0

we see that for all fe L,(C), M,fe K (2.5) and thus R, f € K, that is
norm-lim T,R,f = R3f and norm-limT,f = R,f.
t—0

t—=0

The last point of the theorem is proved in [11, Proof of Theorem 4.1].

3. Reduction of the dimension.

The following generalizes an inequality of M. A. Akcoglu-A. del Junco [3,
3.5].

3.1. THEOREM. Let T and F be as in 1.1 and 1.2. Let c, and U be as in 2.1. Then
there exists a one-dimensional bounded additive process G with respect to U such
that:
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Va > 0, a™"|Fio .l < ¢,@ "G 5,
where a=02"" jf 281 <n< 2k,

To prove 3.1 we will assume without loss of generality that n=2* for an
integer k=0 (see [3]).

3.2. The sub-semi-groups of Dunford-Schwartz [9]. Recall the following
construction due to Dunford-Schwartz [9, VIIL.7.12-18].

For each x>0 and y € R, let

X —e”® if y>0 and  g,(y) = 0 if y<O.

2.(y) =
2)/ my

If k=1 let

D,(u) = l:[1 € (2 - 1)@, (1)

where m=n/2, t € P,, and u € R".

Starting with the semi-group T=(T),. p, we let T} =|T}| so that T° = (T?),cp,
is a 2*-dimensional strongly continuous sub-semi-group of L,-positive
contractions: T?, ;< T°T? and

strong-lim T, , = T? .

s—0
seP,

If k=1 let
T!f = J o,WT fdu, teP,.
R%

Then T' = (T}),.p_ is a 2~ '-parameter sub-semi-group.

Define similarly the sub-semi-groups T/ for j=0,. ..,k so that T* is a one-
parameter sub-semi-group. Also recall that the semi-group U given by 2.1
satisfies T*< U, for all t>0 [see 11].

3.3. Almost additive processes. Denoting
L ={feL,| fis real valued and positive} ,
we make the following
DeFINITION. Let P= (P)), p, be a sub-semi-group of positive operators on L,.

A set function F: #, — L{ will be called an almost additive process with
respect to P if it satisfies the following conditions.
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34. sup {|IF(D/A,(DI| | 1€ £, 2,(I)>0}=y(F)<oo.
35. PF()ZF(u+I) forallue P, and I € £,
3.6. If I,,...,I, € £, are pairwise disjoint and if I=U*_, I, € #,, then F(I)

=3i F(I).
ExampLE. If f € L} then F;=[, T? f dt is almost additive with respect to T°.

3.7. LEMMA. Let Tand F be as in 1.1 and 1.2, and let T® be as in 3.2. Then there
exists an almost additive process with respect to T°, say F°, such that |F|| < F?
and y(F)=y(F°).

ProoF oF 3.7. Let I € £, and let 2, denote the class of all partitions of I
into pairwise disjoint intervals. If X, Ye &, then we will write X<V, if Y
refines X so that (2, <) is a directed set. Next, if X=(I,,....,I}) € #, let

k
Fy =% IFU)I.
i=1
It is then clear that || F || <y(F)A,(I) and that X <Y implies F, < F . Therefore
if we put
F} = sup Fy = lim 1 Fy,
Xe?, 2,
then y(F%)=y(F) and TSF{2F},,. Finally, note that it suffices to prove 3.6,
when k=2. For this, observe that if X € #,, Ye #,, and IUJ € 4, then
XUYe?,,, and thus F9,,2F)+FS. Conversely if X € #,,, then, with
obvious notations, X NI € #; and X NJ € 2, and thus F} ;< F)+ F. This
completes the proof of the lemma.

Proor oF THEOREM 3.1. Recall that n=2* If k=1 then, following Akcoglu-
del Junco [3] we let F}={, f{ dt, where

fo = ‘[ ,(vF°(dv), teP,,
R"

£ being well-defined by Lemma 3.7. It is then easy to see that F' is an almost
additive process with respect to T' and that y(F')<y(F°). Further there is a
constant d, such that

@ "Flo,ap < d,,l/;""‘FEo,l/; ">

see Sections 3.4 and 3.5 in [3]. Define similarly the almost additive process F’
for j=0,...,k. F* is then a one-dimensional almost additive process with
respect to T* and
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a—nF?O,a]" _—<: cn&_lF'fO,aT] .
Next, for any x>0, let GX=F¥,  so that
10,x]

Gt,, £ G+ TiGY £ G+ UG

By the proof Lemma 4.1 in [5], we see that there is an additive process (G,);>
with respect to the semi-group (U)), o in the sense of [5], such that GX < G, for
all positive dyadic x, and such that y(G)=y(G*) <y(F). Since G* and (G)), , are
continuous processes, we also have GX< G, for all x>0. Finally it suffices to
put G, »,=U,G,_, for all I=[a,b] € #, (a<b), to obtain the additive process
which verifies the inequality 3.1.

4. Proof of the main result 1.6.

We are now in a position to adapt the one-dimensional proof of M. A.
Akcoglu-M. Falkowitz to the n-dimensional case. The nice truncation
argument in [4] will be slightly modified as we deal with complex valued
functions.

Let Tand F be as in Section 1. Let U, C, D, R, be as in Section 2, and finally
let G be given by Theorem 3.1.

For any x>0 we put

j; = x_"Flo_x]n, Mx = x_"J‘ 'I"dt
[0, x)"

(in the strong topology), and

g = X 'Gpo,51» '

so that f, and g, € L,(C) (by 2.4).

By M. A. Akcoglu-U. Krengel’s theorem [5], we know that g=lim,_,g,
exists a.e. and since |Ry|g, =g, (by 2.3 and 2.4), we have |R,|g=g.

Now, let x;>0 be a sequence such that x; — 0*. Since g,, ge L], g
=g, A g is well-defined and g; — g a.e. and thus in L,;-norm. On the other
hand let ’

cngifx;
fi= f:nl{lf,,lgc..g(}"'_‘—| oy Lyri>cgl

so that | fj| S c,g;. Since g; converges in L,-norm, by passing to a subsequence, if
necessary, we may assume that f=w-lim, f; exists (see [9, p. 292]). Further, on
the set {|f.|<c,g;} we have |f,,—f|=0, and on the set {|f,|>c,g;}, we have

|f;c,_f;| = “fx,l_cngi' = lfxal"cngi
S Cu8x,—CuBi (by Theorem 3.1) .

So, |fs,—fil £ c4(g,,—8g;) holds ace.
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We then obtain for all x>0,

Ifi=Mf1 = |Rofi—M_,f| = |strong-lim M, f, — M_f]|

(by 2.3 and Lemma 3.2 in [3])
[w-lim M, (f,—f)l  (by definition of )

< w-limc,x ™! J Ulf.,—fldt (by Theorem 2.1)
i 0

IA

%
w-limc,z,i‘lj U.(g,,—g)dt

0

T
w | 1Rol8x 0o definition of g;)

X
cf(gx——f" f U,gdt) .
0

Now, since g € L, (C), the last member tends a.e. to c¢2(g—|Ry|g)=0as x — 0*.
But as fe L,(C), 2.3 and the n-parameter local ergodic theorem [see 11]
applied in L, (C) yield

limM, f= Ryf ae.

x=0
We then have
limf, = R,f ae.
x-0

The proof is completed.
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