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INTEGRABLE-ERGODIC C*-DYNAMICAL SYSTEMS
ON ABELIAN GROUPS

D. DE SCHREYE

Abstract.

In this paper we introduce a notion of combined integrability and
ergodicity for actions of locally compact, abelian groups on C*-algebras.
We prove that for a fixed, second countable group G, the set [G] of all
covariantly non-isomorphic, integrable-ergodic and faithful C*-dynamical
systems (=, G, f), can be classified by means of H? (G, T), the second
Borel-cohomology group over G. This is a direct generalization of a result
of D. Olesen, G. K. Pedersen, and M. Takesaki on ergodic systems over
compact, abelian groups.

Introduction.

In [10], D. Olesen, G. K. Pedersen, and M. Takesaki classify all ergodic
and faithful W*-dynamical systems (.#,G,a) on a fixed, compact, abelian
group G.

They show that the set [G] of covariantly non-equivalent, ergodic
“and faithful W*-dynamical systems over G admits a multiplication, so
that [G], x is isomorphic to x*(G,T), the group of anti-symmetric
bicharacters of G. The classification in the C*-case then became trivial,
since they could prove that under the conditions of ergodicity and
faithfulness, we have a one-to-one correspondence between W*- and C*-
systems.

These results, as far as the W*-case is concerned, have been generalized
in a number of different ways. In [13], A. Wassermann was successful in
giving the classification for systems on non-abelian groups. H. H. Zettl, in
[15], shows how the ergodicity of the action can be weakened down to the
condition that the fixed-point algebra .#* is contained in the centre Z(.#)
of .#. Finally, turning the attention towards locally compact, abelian
groups it is proved in [4] that here the proper setting for the W*-
classification theorem is that of integrable, ergodic and faithful systems.
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In this paper, we concentrate on the C*-case. We introduce a notion of
integrable-ergodic C*-dynamical systems, and — by showing that to each
such system corresponds a unique system of [4] — we classify them by
means of HZG,T), the second Borel-cohomology group of G. The
conclusion will be that every integrable-ergodic (in short I-E) and faithful
C*-dynamical system (=7, G, ) on a second countable, locally compact,
abelian group G, is of the form (C*,,(G), ad v), where C¥,(G) is the twisted,
red(l;ced group C*-algebra of G, and (v,f)(p) = <{s,p> f(p), feI?(G), seG,
peaG.

I would like to thank my supervisor A. Van Daele for his helpful
suggestions. Also, I am grateful to H. H. Zettl, J. De Canniere, M. De
Brabanter, and G. Henrard for fruitful discussions on this topic and to R.
Rousseau for his hints on references. Many thanks as well to Bea Peeters
for typing the manuscript.

1. Definition and basic facts.

Throughout these notes G will denote a second countable, abelian,
locally compact Hausdorff group with Haarmeasure ds. (#,G,a),
respectively (<, G, ), will be a W*-, respectively C*-dynamical system
over G with a continuous, faithful and ergodic action a, respectively . The
condition of ergodicity on f is that the fixedpoint algebra ./ must be either
C.1 or {0}, depending on whether or not & is unital.

By 5, we denote the set of all xe.# such that s(pas(x*x)ds < o for all
pe(A#,)+ and p, will stand for n,n,. It is well-known that (u,), consists
precisely of those elements in .#, which are a-integrable. More
specifically, in the ergodic setting the conditions

]-) X€ (ﬂa)+ ’ and
2)  thereexistsar,eR, sothat {pa,(x)ds =r,.ll @l forallpe(#,),,

are equivalent, where 2) expresses that {o,(x)ds = r,. 1. By a definition of
A.Connes and M. Takesaki in [2] the action a is called integrable when y, is
g-weakly dense in 4. For (<7, G, ) a similar definition is possible.

1.1. DeFINITION. An x€ & . is called f-integrable whenever there exists a
r.€ R, so that

foB(x)ds =r.llol, pe(o*).,.
The system (o, G, B) is integrable if the set
Mg = span {xe s/ , |x is B-integrable}

is norm-dense in /.
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Let us give one example.

1.2 ExampLE. The easiest and best-known integrable, ergodic and
faithful W*-dynamical systemsis (L* (G), G, a'), where a; 1 (f)(t) = f (¢t — 5).
It contains the C*-system (C, (G),G, '), B = a! Ico(c)’ which is still faithful
and ergodic. Since (C, (G)*), consists of all positive, bounded measures on
G, we have for any f e C.(G):

§oBi(f)ds=§§ f(t— s)dsdu,(t)
= § £()ds. 1y G),

where ¢ = Ho I (Co(G)*)4.

One of the main statements of [ 4] is that for an ergodic and faithful W*-
dynamical system the integrability of « is equivalent to the condition that
for each pe G there exists a unitary operator u,€ M, so that

a(u,) = {5,p),, SEG.

Example 1.2 shows that this is no longer true in the C*-case. Since C,(G)is
non-unital it does not contain unitaries. This observation also holds in
general.

1.3. LEMMA. Let G be non-compact and (£, G, f§) an integrable-ergodic
C*-dynamical system, then o/ is non-unital.

Proor. Suppose that &/ contains 1 and let ¢ € &/* be a state. Then, for
each xe o with [ x — 1l < 4 wehave|pp,(x) — 1| < 4 for all se G. But then
§@Bs(x)ds = co, so that x ¢y and ji; # /.

Opposite to what we have in the W*-setting, the map ¢:x € u; — { B,(x)ds
hasitsimagein o/** and notin . In fact, using the ergodicity and Lemma
1.3, e(x) e o implies x = 0. On the other hand, putting «/; = & + C.1, our
definition states that ¢(x) is a scalar multiple of 1, which is precisely what we
have in the W*-case.

We conclude the section with a second, more sofisticated example, which
was brougt to our attention by H. H. Zettl.

1.4. ExaMpLE. Let pe G and denote j the action of G on C(T) defined by
B f)v) = f((s,ppv). For G=2Z and taking the crossed product
G % ;C(T), we obtain all rational and irrational rotation C*-algebras,
as they were introduced by M. Rieffel in [12]. More in general, for G
discrete, G X ;C(T) are the generalized rotation algebras, studied by
M. De Branbanter and H. H. Zettl in [3].

On G x5 C(T) we have the dual action (§)* of G, implemented by the
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unitary representation g —»v,®1 of G on I?(G)® I(T), where (v, f)(s)
= {s,q) f(s). Thereis also a second actiony of T on G X ;C(T), given by y,,
=ad(1® T,), with (T, &)(v) = &(iv), EeI?(T). This gives rise to a C*-
dynamical system (G % ;C(T), G x T,B), where

ﬂ(q,u) = (quAo Yu

We show that it is faithful and integrable-ergodic.
To see this, take £ € C(T) and fe L' (G), then the operators n(£)4,, with

(m(&)E® &))(t,v) = (F-(£))(v). g(t). E(V)
and
(A€ ® O)(t,v) = [ f(s)g(t —s)ds . L(v),
are norm-dense in G X ;C(T). Denoting E*(v) = &(mv), one verifies that

B @A) = T(EA 4o,

from which the faithfulness of f§ is obtained.

To prove the ergodicity, first observe that s — (v — {s,p)>v) determines
a continuous homomorphism of G in the group of all isometries on T. So,
by [6; Proposition 3.3], (C(T),G,p) is an almost periodic system in the
sense of [6; Definition 3.2], and from [6; Theorem 4.8] it follows that
G % ;C(T) is contained in

C*{m,A,|f.ge CL(G)} ® C(T).
Thus, '
G xiC(T) < B(I2(G))® C(T).

Next, let x be a fixedpoint for B in G X ;C(T). To any ¢ € C(T)* we can
associate a bounded operator

(1® ¢):B(2(G))® C(T) » B(Z(G))
defined by
1B )(x® &) = x.0(8), xe B(L(G)), LeC(T).
For ge G we then have

(1®@)(x) = 1® @)(B.1)(x))
= (1® ¢)((adv,® 1)(x))
= adv,((1® ¢)(x)),
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and since {v,|§€ G}’ = L (G), there exists a Jo€L”(G) so that (1 @ ¢)(x)
= mf .

Bywa similar argument we also obtain that for each y € & (I? (G))* there is
a Ay € C satisfying (y ®1)(x) = 4,. Combining the 2 relations, we get

Yimp) = (0 ®9)(x) =4y . 0(1),

so that the operator ¢(1)"'m . is obviously independent of ¢. In addition
we conclude from the above that

W ®e)e)™ . m; ®1) = () @) (x),

which, by weak*-density of #(I?(G))* ® C(T)* in (B(I*(G)) ® C(T))*,
means that x = ¢(1)™!.m, ®1. Finally, using [7; Theorem 4.10] and
x€G x ;C(T), we get that fq, must be translation-invariant. Thus, f,€C.1
and f is ergodlc

The major problem, however, is the integrability. Let ¢ € (G X 5C(T)),
then by [11; Proposition 7.6.8] there exists a norm-continuous, bounded
function ¢: G — C(T)* so that for ne No,sl,sz, .,8,€G and &,,¢&,,...,
£ne C(T)
@) Ztﬁ(s —5)(F_s, (5 E) 20
and, for £ C(T) and feL‘(G)

em(&)As) = [ P(s)(&). f(s)ds.

Furthermore, ¢ (s)e C(T)*, so that for some bounded Radon-measure m, ,
onT

P(S)(&) = [ EV)dmy,,(v).

Now let K!(G)denote the set of all I! (G)-functions such that f has compact
support and take f € K*(G). Then

SG ST (p(ﬂ(q u)(n(f)if))dqdy
=§e 1 S S @) (5,0 f (s)dm,, s (v)dsdudq
= [ E@)du §4 §6my.s(T)<s,9) f (s)dsdq.

Using (1), with £; equal to a constant function v — 4;, we get

Y SpAididm, o (v) 2 0.
LJ

So, since s —» m,, ((T) = ¢ (s)(1)is clearly continuous and bounded, it is also
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positive-definite. Bochner’s theorem may be applied, so that there exists a
positive, bounded Radon-measure m,, on G, with ¢(-)(1) = mj. Then, by
Fubini’s theorem, [8; Theorem 31.27] and the inversion theorem, we get

§¢ §amy s (m)<s,q) f (s)dsdgq
=Je (@ ()Q). NH*(—q)dg
= (¢ §a flg—r)dmy (r)dg
= fef(@dgq. $©0)Q).

Next, by positive-definiteness of ¢ (- )(1) again, ¢ (0)(1) = 0, so that [11;
p.258] gives ¢(0)1) = ¢ (0)l = llp . Therefore we may conclude that

S GS 79 (Biaw (m($)Ar))dgdu
= {Ewdp.§of (@)dq.l ol

and since the operators n(¢)A,, fe K'(G), are norm-dense, 8 is integrable.

2. The classification theorem.

Let (/,G,p) be a faithful, integrable-ergodic C*-dynamical system,
then 7:9/, - [0,0], x — S(p,Bs(x)ds, where @ is a state on &/, defines a
faithful, lower semi-continuous weight on .«/. The lower semi-continuity of
7 follows from the existence of a net {7;},; of continuous functions t;:2/ .
- [0,+ 0],

X = SKI(pﬁs(x)dsn

where K; is compact in G, such that 7 = supt;.

Denote 7, = {xe o |[t(x*x) < oo} and let #, be the completion of the
pre-Hilbert space #, for the norm arising from the inner product {£,,¢,>
=1(y*.x), x,yen,. We then get a faithful, non-degenerate *-repre-
sentation of &/ on ), given by n.(x)¢, = £,,.

Next, let # be the o-weak completion of 7 (/) in (5 ). We can see that
B is unitary implemented on #, by U, where U, = gy, S0 that the
action of G on «f can be extended to .#. The extended action « = ad U is
continuous, since t is lower semi-continuous. So, we obtain a W*-
dynamical system (4, G,a).

2.1. LEMMA. (A, G, a) is an integrable, ergodic and faithful W*-dynamical
system.

Proor. The faithfulness of ad U is clear, while the integrability follows
from the integrability of . To prove the ergodicity, let x, be a fixed point in
# and take a and b integrable in .#, denoting
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ag = {;UaU¥ds, by = [,;UbU¥ds.
Then,
§oU:(§ UsaU¥xobds)Utkdt = agxobg.
Thus, if
R = {{; U,x U ds| x integrable in .#}” = C.1

and ye®R', yaoxobo = agxoboy, so that agyxob, = axeyb,. But since
ay,bo€ C.1, we have yx, = xoy or xo€ 2" = C.1.

In [10], for a compact group G, D. Olesen, G. K. Pedersen, and
M. Takesaki prove that (<, ) can be reconstructed from (.#,a) by taking
), Where

M° = {x € M|s— ay(x) is norm-continuous}.

In the locally compact case, however, .#°¢ can no longer be used for this
purpose, as we can see from the abelian G-system (L*(G), G,a'). Since
(I*(G))¢= C¥G), this algebra is unital, contradicting Lemma 1.3.

What we will prove here is that & = %, with #¢= (4N p,)~""1. To
do this we want to use the classification theorem 2.7 of [4], for integrable,
ergodic and faithful W*-dynamical systems. Unfortunately, this theorem
was formulated for W*-systems with a separable predual, and although
this is a very natural condition to impose on von Neumann algebra’s, the
equivalent condition on an underlying C*-subalgebra is completely
unacceptable. This problem is solved in the following lemma.

2.2 LEMMA. Let (#,G,a) be a W*-dynamical system, with o integrable,
ergodic and faithful, and G second countable, then #, is separable.

Proor. First observe that with the technique of [4; Lemma 1.13] we can
construct a continuous cross-section p — u, from a neighbourhood of any
point in G into the group G,, of unitary elgenoperators for a. Using the
second countability of G, these can be linked together, so that we obtain a
Borel-measurable cross-section p — u, of G onto G,, which is continuous at
0. Also, for any x € u,, the map

pe G — X(p) = [{s,p> " as(x)ds

is continuous.

Next, let # be faithfully represented on a Hilbert space # and take
Ee # | £l = 1. By the continuity-conditions on the maps u, and £( - ) and,
again, the second countability of G, it is not hard to see that {u,¢|pe G} and
{X(p)¢|pe G} generate separable sub-Hilbert spaces % and 5% of .
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Since o, (X(p)) = {s,pDX(p), « is ergodic and | X(p)ll <|p(x)| (see [4;
Lemma 1.13]), we can define a bounded, scalar function £, on G by f.(p)
= uy X(p). With F we denote the map xepu, — f,. Observe that by the
separability of #% and 7, there exists a countable, orthonormal set
{&}ien, In I, 5O that for all peG

)= .;1 <XP)E, &) <&isup>-

Therefore, f.€ [*(G).

We now extend {{;}cn, to a total orthonormal basis {{;},c; of #. By
arguments similar to the ones of [4; Lemma 1.10] and using the monotone
convergence theorem for nets of lower semi-continuous functions as it was
formulatedin [1; Proposition 5], we have

x 112 = §<os(x*x)E,E>ds
Zl(“s(x)f & |Pds

GJeJ

=3 | |- e o) dp

jeJ

- j z|<>e<p>c,c,->|2dp
¢Jjel

= [o (x*(@)x(p)E,E>dp
=£13,

which shows that F:u, — I2(G) N L*(G), x — f,, is an isometry of a dense
part of the Hilbert space #, associated to the left Hilbert algebra 5, N #¥
into I?(G). Thus, dim #, < d1mL2(G) %o, since G is second countable.

So, by [4; Theorem 2.7], (#, G, ) is covariantly isomorphic to some (G
x,C,G, adv), where we Z} (G,T), the group of the Borel-measurable 2-

cocycles of Gin T, and (v, f )(p) {s;p) f€ I2(G). If the 2-cocycle is trivial,
we get the abelian case (#(G),G,adv), where .#(G) is the group von
Neumann algebra of G. Obviously, this system is covariantly isomorphic
to (L*(G),G,a') of Example 1.2 and under the same isomorphism,
(Co(G),G,B") corresponds with (C¥*(G),G,ad v), where C¥*(G) is the reduced
group C*-algebra of G.

This can easily be generalized towards the non-abelian case. Flrst from
[5], we recall some facts on the twisted group algebras LL(G).

Let we Z3(G,T) and f,geI!(G), then the function f *,g and f*°,
G — C, defined by
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(f *8)P)=§f(p— 9w -q.9)g(p)dg,
and

f*@)=owp,-p)~ ' f(-p),
are both in I}(G). One easily verifies that IL (G) = (L}(G), %, *®) is an
involutive Banach algebra.

Next recall that T x,,G denotes the locally compact group of all (u,p),
pe T and pe G, with multiplication defined by

(m.p). @) = (n.v.0(p,9),p+4q),uveT, p,qeGC.

C. M. Edwards and J. T. Lewis then consider 2 maps, which we will denote
A and Q, linking LL(G) to I}(T X, G). The map A: L1(G)— IX(T X, G)
is defined by

(Af)(.p) = uf B), fe Lp(G),
while Q:I}(T x,G) — I, (G) is given by
(QF)(p) = §F(u,p)~ 'du, FeL (T x,G).

The following statements summarize the results givenin [5; Lemma 3.1 and
Lemma 3.2].

2.3. LEMMA. A is an isometric *-isomorphism from L% (G) onto a closed 2-
sided ideal of I}(T X ,G). Q is a norm non-increasing *-homomorphism from
INT % ,G) onto I.,(G).

Next, let m,. ,,and 4, denote the multiplication-operator by w(-,p) and
the translationoperator by p on I?(G). Then, a faithful, non-degenerate
representation A? of I} (G) is defined by

22(f) = § £ @)A,my . pdp.

Taking the o-weak completion of A°(IL(G)) in #(I?(G)), we obtain the
twisted group von Neumann algebra .#,(G) of G. If instead, we take the
norm completion of it, the twisted, reduced group C*-algebra C¥*,,(G) of G
is obtained. Of course, these notions are no different from the twisted cross-
products C X, G, as they were defined in [14].

What we will show is the following. Suppose that p — u, is a Borel cross-
section for (.#,x). Then # =~ .#,(G) under the natural isomorphism ¢,
@(u,) = Amy. ), of [4; Lemma 2.6]. We prove that ¢(«f) = @(A)
= C;'jw(G), so that in particular, for each integrable-ergodic, faithful C*-G-
system, there exists we Z,EG,T), so that («,B) = (C*,(G),ad v).

First, one technical result.



198 D. DE SCHREYE

2.4. LEMMA. Let x € p,, then there exists a function 0, € L* (supp X,T), so
that for all fe I (G) we have

af(x) = Sh(P)“pdp,
where h = f(— )l x(— )16, }(G).

Proor. Using Fubini’s Theorem and the fact that both f and x are
integrable, we get

§ )0, (x)ds = § £ (p) § (s,p> ot (x)dsdp
= { f(»)%(—p)dp.

By ergodicity of a, p—>wv, = x(p) | X(p)ll~* defines a new Borel cross-
section on supp X. Also, on the same set, we have another Borel-measurable
function 0, defined by 0,(p) = u,v;. We get '

o, (x) = § f(—=p) I £(—p) 10, (p)u,dp

and since p — [l x(—p)ll is bounded and continuous by the proof of [4;
Lemma 1.13],

h(p) =1 (=p)1%(—=p) 1 6.(p)
is an I! (G)-function, satisfying the conditions.
2.5. PROPOSITION. @(# ) = C¥,,(G).
Proor. It is sufficient to prove that .# is the norm-completion of
{§/ 0u,dplfe L(G)}.

For the inclusion & , take x € #€ N y, and let { f;},.; be an approximate unit
of I} (G) in the sense of [8; Theorem 33.11]. Since the functions { f;},.; have
integral 1 and decreasing compact supports, and since x € #¢, we have

I§ fi(s)as(x)ds — x 1l — 0.
On the other hand, f;e I}(G) and x € y,, so that by Lemma 2.4 there exist
functions h; e I}(G) such that
§fis)ay(x)ds = §hy(p)u,dp.

For the second inclusion, we examine the *-algebra

B = {{(f *,8)()u,dp|f,gc L (G) N *(G)}.

From [4; Lemma 1.10] it is obvious that B = .#%. Now, take any nest
{Ku}nen, Of compact neighbourhoods of 0 in G with Haar-measures
{m(K,)} ,en,» and define '
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En(N,P) = ﬂ%(—)XK,,(p)X[e"/", e (#),

peTand peG. Then, {Eu} nen, is an approximate unit in L! (T X, G) and,
using Lemma 2.3, one can check that the same holds for {e, = Q(E,)} .y, in
L}(G). For every fe I}(G) N I?(G) we have

||§(f *we,,—f)(p)updp“ = IIA“’(f *we,,)—fll
< ||f *we,,—f"l—»O,
so that
B! = {§ f@)u,dp| fe L (G) N (G}~
= [ f()u,dp|fe L (G)} 1.

Finally, we prove that every faithful, I-E:-system (., G, §) is of the form
(C;’jw(G), G, ad v). Half the result is obtained in the following lemma.

2.6. LEMMA. There exists a 2-cocycle we Z2(G, T), so that (£, G, B) is
covariantly isomorphic to a C*-subsystem of (C¥,(G), G, ad v).

Proor. By Lemma 2.1 we have the W*-system (.#, G, ad U) associated
to (7, G, B). Obviously o/ = .#%,so that by Proposition 2.5, ¢(of)is a C*-
subalgebra of C;‘jw(G).

It remains to show that ¢ : o/ — C;'jw((f) is onto, or equivalently, that for
every fe I (G), {of (p)u,dp is in o/
Denote

H = {peG|there exists a compact neighbourhood K pof pin G, so that
§x f(@ugdge o forall fe }(G)}.
We will show that H = G.

2.7. LeMMA. Let peG, for which there exist feI'(G), a compact
neighbourhood K , of p in G and ¢ > 0, so that |f(KP)| < Je,+ o[ and

Sof @udge o,
then pe H.
Proor. Let he K'(G), then
§eh(—q) f(@udg = §;h(s)B,(§ of (q)u dq)ds
isin 7.
Now, {h|he K'(G)} is dense in L*(G), thus for each g e L} (G) there is a net
{h;}ier in K*(G), so that
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h; — (f7'.g.2g)(—")in (G).
Then, since |f ~!| < 1/con K,,,

SKPhAi( —q)f (qu,dq — SKpg(p)updq in .

For the following lemma, we need a Borel measurable cross-section p
— u, which is continuous at a given element p; of G, and for which g — uyis
continuous at another point p, # p, in G as well. Such a map can be
constructed by the same technique as we used to obtain the cross-section in
the proof of Lemma 2.2.

2.8. LEMMA. H is a subgroup of G.

Proor. Let xe puy N /¢ and fe K!(G) with f (0) # 0. Then from Lemma
2.4 we have

§of (=pX(=p) 16, (pYu,dp = §of (5)Bi(x)ds e .

Moreover, x >0 implies ¥(0) # 0 and by continuity of p — f(p)l X(p)ll
there must be a compact neighbourhood K, of 0 and a constant ¢ > 0, such
that

|£(=p)|. 1%(=p)Il > ¢, forall peK,.

Thus Oe H.

Next, if feI*(G), K, = G and ¢ > 0 satisfy the conditions of Lemma
2.7 at peG, then the same is true for gq— f(—q)w(g, —q) %,
K_,={-g|qeK,} and c at —p. So —pe H along with p.

Proving that p, + p,€ H, for p,,p,€ H \ {0} is a lot harder. For each
f.ge I}(G), we have that

SeUk, -f) *altx,, - 8)@udp = §¢ fEhpdp.§y gP)uydpe o,

so that by Lemma 2.7 it will be sufficient to find f,ge I!(G), a compact
neighbourhood K, , ,, of p; + p, and ¢ > 0, such that

|(XKN'f) *w(XK”'g)(p)l >, for pEKpﬁ-pz‘

First we show that there exist f, g€ I' (G) for which | (xx_ . f) *, (xx -£)|is
continuous at p; + p,. Since p, # p, + p, we know that there is a Borel
measurable cross-section p — v,, continuous at p, and so that p - v} is
continuous at p; + p,. Let o'(p,q) = v,0,05.,, then by taking g in a small
enough neighbourhood V,, of p,, p— o'(p —g,q) will be continuous at
p1 + p,. Furthermore, there is a function he [* (G, T) satisfying

(p.q) = h(p)h(9)hp +9)~ @' (p,g).
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We get

|k, f) *oltk,,- 8)P)| =
=§eOk, - /- WP—a).(tk,,-&- 1) @). ' (P—q,9)dq|.
We now take ge I} (G) with suppg = V,, and fe I}(G) so that xx_.f.his
continuous at p; +p,. "
The 2-variable function we now have under the integral is a continuous
p-function at p, + p,, for every g, and is bounded as a g-function by a fixed
integrable function, for every p. So, the Dominated Convergence Theorem

applies and | (xx, -f) *u(tx,, .g)| is continuous at p; + p,.
It remains to show that for some fand g satisfying the conditions we
already imposed, we have

((k,,-f) *o(k,,-8)P1+p2) # 0.
This can be done by taking fand g such that

(tk,,-&-Mg) = @'(p1 + P2 — 4,9)
for qesupprm.g.h and f.h > 0. Then,

|k, -f) *otk,, -8 +p2) = §  (f.B)(pi+p2—q)dg>0.
suppg NK,,

Observe that from its definition, H is obviously open. We also have:

2.9. LeMMA. H is dense in G.

Proor. We investigate the set {B,(x)| /e ! (G), fe L}(G) and x € ,}. In
the proof of Proposition 2.5 we saw that this is a dense set in 4. Also, in the
proof of Lemma 2.4 we obtained for these elements

Br(x) = § f(=p) I2(=p) Il 6,(p)u,dp.

Observe that every p in the open support of the function g — f(—q).
I2(=q)ll . 6,(q) is in H, since ¢ » f(—q) | X (—q) |l is continuous and
|64(q)| =1 forall g€ G.

We now assume that H is not dense in G, then there exists an so€ G so
that {so,p)> = 1for all pe H. So, by the remarks above, f,,(8,(x)) = B,(x)
for every element from that dense set. But then, f,, = 1, which contradicts
the faithfulness of S.

Combining the Lemmas 2.8 and 2.9 with the fact that H is open, we get H
= (. With this conclusion the classification theorem is within reach.

2.10. THEOREM. Let (/,G,B) be a C*-dynamical system with an
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integrable, ergodic and faithful action B and a second countable, abelian
group G, then there exists a 2-cocycle we Z%(G,T) so that

(4,G,B) = (C¥,(G),G,adv).

Proor. Let f € I} (G) and take he C,(G), so that || f— hll, < e, ¢ > 0. For
each pesupph we have a compact neighbourhood K, so that

ng Ju,d, € o/, forall geI!(G).

Since supph is compact, there exist {p,p,,...,p.; in G with supph
< Ji-; K, Then

n

Sh(q)“qdq?Zf h(g). 1:11 %p,)(q) . ugdyq,

i=1
so that {h(qu,dge o/ and (f(q)u,dg as well.

2.11. ExampLE. An immediate consequence of the above theorem and
Example 1.4 is that for each pe G, G x #C(T) is isomorphic to a twisted,
reduced group C*-algebra on G XZ. The question then rises as to how the
connection between a character pe G and the associated we Z#(G xZ,T),

G xC(T) = C},(G x2),

can be expressed.

To see this, we examine the W*-system (G x 5L°°(T), G xT,n), where a
= ad (v ® T). Arguments similar to the ones of Example 1.4 show that a is
faithful and ergodic. Also, a is integrable, since f is integrable,

(G X,C(T)Y' = G X,L*(T) and = als x,cqr)-

Now, let £5: T - T, u — u and

Usm =T(o) "4, 5€G and nelZ,
then u ,, is a unitary eigenoperator in G x »L°(T) and

Olq,u) (u(s n)) = <S Q>#" * Us,m)»
for all e G, pe T. Therefore, the 2-cocycle associated to (G x ;L°(T),
G x T,a)is given by
w((s,n), (t,m)) = K&, p>)",

and if we can show that (G x L""(T))‘c G x ;C(T), then by Proposition
2.5, w is also the 2-cocycle assoc1ated to G x C (T).

G x ;C(T) S (G ﬁL‘”(T))“
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is clear, since the operators n(¢)A,, ¢€ C(T), fe K'(G), are a-norm-
continuous, f-integrable (thus, «-integrable), and norm-dense in
G x ;C(T). To prove the second inclusion, by Proposition 2.5 it will be
sufficient to show that

Zzh(s,n)u(s,,,)dse G xﬁC(T)’

for every he I}(G XZ). Obviously, it is also enough that this holds for
heC C(G xZ), so that it remains to show that

§h(s)undse G X ,C(T),

for he C.(G). This is the case, since

§ h(s)m(Eo) " Asds = m(Eo) ™" A
Observe that with the construction of Example 1.4 we do not obtain every
twisted, reduced group C*-algebra over G XZ. With an easy computation
one verifies that the anti-symmetric bi-characters on G XZ are of the form

X((S,n), (t9m)) = ‘/’(SJ) . <ms - nt,p},

with  an anti-symmetric bi-character on G and pe G. Therefore, by [9;
p-29],
H}(G xZ,T) = {o((s,n), (t.m) = o) (s,){t,p)" |, € H}(G.Z), pe G},

implying that only the systéms (Cro(G x Z),ad v) for which w, is trivial can
be obtained through a construction of the type (G x ;C(T), B).

Let us conclude with a remark on the unitary eigenoperators. The
representation A” of I!(G) and the projective representation p — A Mo - p)
of G are closely related. As we know from [4], 4,(G)is not only the o-weak
completion of the *-algebra A°(LL(G)), but also of the linear span of the
operators A,my, . .

In the C*-case, and for a compact group G, it still does not matter
whether we start off with the linear span or with A°(LL(G)). In both cases
the norm-completion is C¥*,,(G). For a non-compact group, however, by
Lemma 1.3, an integrable C¥ .(G) never contains any of the A pMe(.p) S
Conversely, the C*-algebra c* {A,me . nlpe G} neither contains any of the
operators A°(f), f € I} (G), dlfferent from 0. This can easily be seen from the
abelian case, where C*{1,} = A.P.(G) under the isomorphism imple-
mented by Fourier transform, C;"m(G) =~ Co(G) under the same iso-
morphism and Co(G) N A.P.(G) = {0}. In fact, the basic reason for C*{u,}
not containing { f (p)u,dp, is the lack of continuity on p — u,.
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All this seems to indicate that next to the faithful, I-E. C*-G-systems, we
get a second class of C*-systems over G which admits classification by
means of H2(G,T). Namely, the faithful and ergodic systems of the form
(C*{u, Ipe Cg} B), where p—u, is a projective representation of G,
satlsfymg Bs(u,) = {s,p>u,, for each seG and peG.

However, with the techniques of [ 6; Lemma 3.1], it is not hard to see that
the action B of (C*{u,}, G,B) can be extended to G,, the Bohr-
compactification of G, in a continuous way by putting

Blu,) = <$,pdu,, S€G,and peG.

This means that the systems we obtain are the C*-analogue of a special case
of the almost periodic W*-dynamical systems described in [10]. Their
special feature is that the associated pure point spectrum Sp,(f) for these
systems is G itself. Therefore, by [10; Theorem 7.4], they admit complete
classification by means of x2(G ;. , T). For each of the systems, there is a 2-
cocycle w in Z%(G,T), so that (C*{up} G,p) is covariantly isomorphic to
(Cto(Gyisc.), G, ad v).
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