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NOTES ON CARTAN SUBALGEBRAS
IN TYPE II, FACTORS

SORIN POPA

1. Introduction.

Let M be a von Neumann algebra. A Cartan subalgebra of M is a
maximal abelian x-subalgebra of M whose normalizer generates M and
which is the range of a normal conditional expectation ([5], [7], [14]).

For instance, if M arises by the classical group measure space
construction from a free action of a discrete countable group G on a
measure space (X, u), then L* (X, u) is naturally imbedded in M as a Cartan
subalgebra ([11]). In fact the von Neumann algebra constructed in this
way depends only on the orbit equivalence relation R given by the group
G ([6]). A general construction of a von Neumann algebra from a
countable measured €quivalence relation R over (X,u) was given by
Feldman and Moore in [7]. Actually, their construction depends also on a
two cocycle 7 over R and they show that every separable von Neumann
algebra M with a Cartan subalgebra A arises like this, i.e. there exists a
countable measured equivalence relation R on a space (X,u) and a 2-
cocycle T over R such that M is isomorphic to the von Neumann algebra
M(R,7) constructed from R and 7 in such a way that A4 is carried onto the
natural imbedding of L® (X,u) in M(R,7).

In [3], A. Connes, J. Feldman and B. Weiss proved the striking result
that any countable amenable measured equivalence relation is generated
by a single transformation of the space. When translated in the von
Neumann algebra context (via the Feldman-Moore construction) this
theorem, together with Krieger’s theorem ([10]), show that if M is an
injective von Neumann algebra then any two Cartan subalgebras are
conjugated by an automorphism of M.

This paper originated in the author’s attempt to give a proof of the
Connes-Feldman-Weiss theorem using only operator algebras techniques.
We are indeed able to do this, but the proof we present here is not a new
one, it uses the main ideas of the original proof and may be regarded rather
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as a translation into operator algebra terms of [3]. We treat only the
factorial type II; case where many simplifications occur, but we believe
that the proof of this case gives also an image of what happens in the
general case. The proof is elementary and uses only basic results in
operator theory.

When we prepare the setting for the proof of the Connes-Feldman-Weiss
theorem we also obtain some results of independent interest. For instance
we show that if M is a type II, factor with a subfactor N that contains a
Cartan subalgebra 4 of M, then there exist some unitaries {u;};, in the
normalizer of A in M such that { Nu;},.; are mutually orthogonal subspaces
with respect to the trace of M and such that Nu; fill up M. This shows in
particular that in this case if [M : N] denotes the index of N in M as was
recently introduced by V. Jones in [8], then [M : N] is an integer, if finite.
Also, as when M is a group measure algebra over A, it follows that M may
be decomposed in a direct sum M = X,Au,, where u, are unitaries in the
normalizer of A in M such that each u%u, acts properly outer on A. We also
prove that if M has a Cartan subalgebra then it is single generated.

Let us mention here that recently Connes and Jones gave an example of a
separable type II, factor with two nonconjugate Cartan subalgebras, but
there are no known examples of separable type 11, factors without Cartan
subalgebras.

It is our hope that this expositary account will be helpful to those which
are more familiar with operator theory than with ergodic theory to the
understanding of this remarkable theorem of Connes, Feldman and Weiss
and its beautiful proof.

2. Decomposition relative to a Cartan subalgebra.

From now on M will be a type II; factor, with trace 7,7(1) = 1, and
Il xll, = 7(x*x)'/2 will be the Hilbert norm given by  on M. The completion
of M in the norm | - Il is identified with I?(M,), the Hilbert space of
square integrable operators affiliated with M. If B< M is a von Neumann
subalgebra of M, then Ez denotes the unique normal trace preserving
conditional expectation of M on B. The closure B® of B in I?(M,1) is
| by (B,7p) and if xe M, then Ey(x) is the orthogonal projection of x on
I*(B,75). More generally if ve M is a partial isometry with left support in
B, then an easy computation shows that x — Eg(xv")v is orthogonal to Bv,
so that the orthogonal projection of x on the (not necessary closed) vector
subspace Bvc M < I?(M,) exists and is equal to Egz(xv')v. It will be
. denoted in the sequel by Eg,(x).
Let A = M be a maximal abelian x-subalgebra of M and Bc M a von
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Neumann algebra that contains 4. Then Ng(A) denotes the normalizer of A
in B, that is

Np(A) = {ueB|u unitary, udu’ = A4},
and ¥ A5 (A) denotes the normalizing groupoid of 4 in B,
GNp(A) = {veB[v partial isometry, vv*,v*v e A, vAV* = Av*v}.

Since Bis finite it follows that ve ¥.A45(4) if and only if there exist a unitary
ue.Ap(A) and a projection e € A such that v = ue (see for instance [9, 2.1]).
In other words: any partial isometry that normalize 4 extends to a unitary
in A3(A4). Note that if v,, v,€%A},(A), then v,v,€%A3(A4) and if in
addition v¥v, =v,v%¥ =0. then v,+ v,€%A4}(4). In particular, if
ve¥ Ny (A) and e, ,e, are projections in A, then e,ve,e¥.A;,(A) and

v—ejve, = v — (e ve0*)v = (1 — e, ve 0¥ )veG ANy (A4).

Suppose that A = B = M*are von Neumann subalgebras, 4 is maximal
abelian in M and ve %.4,,(A4). By a result of H. Dye (cf. [6]; see also
[9, 2.2]), there exists a unique projection e€ A such that Eg(v) = ev and
e < vv*. In particular it follows that Eg(9.4,,(A4)) = 4 A5(A4). This result,
with the preceding remarks, easily yields the following:

2.1 LEMMA. a) Let vy,v€ G N3 (A). There exists a unique projection e € A
such that Ep, (v) = ev, e < vv*. There exists a unique partial isometry
be G Ng(A) such that Ep, (v) = bvg,b*b < vev§.

b) Let vy,0,, v€YNy(A) and suppose that Bv,, Bv, are mutually
orthogonal subspaces. Then the left (respective right) supports of Eg, (v),
Ejg,, are mutually orthogonal.

PROOF. a) We have Eg, (v) = Eg(vv)vo = bv,, where b = evvy, for some
projection e with e < vvdvov*. If b,e%A3(A), btb; S vev§ and e €A, e,
< vv*, are such that b,v, = bvy, ev = e,v, then clearly e = ey ,b = b, .

b). By a) there exist projections e, , e, € A such that E, (v) = e,v, Ep,,(v)
= e,v, e,,e, < vv'. Since By, L Bv, we have

0 = t(v'e e,0) = 1(e e,00") = t(eye;)
so that 0 = ee, = e vi'e,.

Let A = B = M be as before and consider a family of partial isometries
{vi}ics in 9N} (A) such that the spaces {Bv;};; are mutually orthogonal.
Then we denote by
Y. Bv; = {xeM|x = ¥ b,v, for some b;e B with Y ;0,13 < 0},

ieJ i

ieJ
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(the sums are considered in I?(M,7) and make sense because b;v; are
mutually orthogonal vectors). Note that X;.; Bv; is closed in M in the norm
I - II,. Indeed, because if xe M then the projection of x on the closure of
X .;Bvjin I?(M,7) is just T, ; Eg(xv})v; so that it is of the form X;_; b;v; for
some b;e B. Thus, if x isin Z,.,Bv; ' N M, then

x =) bje J;ij.

JjeJ

By the preceding lemma, if ve¥.A4y(A), then Ep,(v) = ev for some
projection e;€ A4, e; < vv*. Since {Bv;};.; are mutually orthogonal, {e;};.;
are mutually orthogonal, so that e = X,_,e; is a projection in A4,

ev= Y ewe ) By,
ieJ ieJ

and v — ev is orthogonal to X,.; By;. It follows that the projection of v on
X,y Bv; exists and it is of the form ev for some e € 4, uniquely determined if
we require e < vv*.

Now let us recall that a von Neumann subalgebra A < M is a Cartan
subalgebra of M, if it is maximal abelian in M and if #};(4) generates M as
a von Neumann algebra. Since .4),(4) is a group we always have

N(A) =span” My (A) = span’ Ay (A)

so that if 4 is a Cartan subalgebra then span .4,,(4) is dense in M in the
norm |l - |, and of course span %.4;,(4) is also dense in M. Since

Ex($ N, (A)) < GN3(A) for AcBc M.

it follows that if 4 is a Cartan subalgebra in M, then it is a Cartan
subalgebra in B ([6]).

Let us also mention that if 4 is a Cartan subalgebra of the II, factor M,
then given any two projections e, ,e, in A, with the same dimension in M,
there exists a partial isometry ve @.4;,(4) such that v'v = e, , vv" = e,. This
fact follows easily by a maximality argument (see for instance [12, 3.4]).

2.2 ProposrTiON. If A = M is a Cartan subalgebra of M and B < M is a
von Neumann subalgebra that contains A, then there exists a family {v;} ;.; of
nonzero partial isometries in 9.4y (A) such that {Bv;};; are mutually
orthogonal subspaces and Z;.; Bv; = M. :

Proor. Let {v;},.; be a maximal family of nonzero partial isometries
such that {Bv;},; are mutually orthogonal. If ., Bv; # M, then there
exists a partial isometry ve¥.4)(4) such that v¢X,;Bv. By the
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preceding remarks there exists a projection e € A such that eve X ; Bv; and
v — evis orthogonal to Z;; Bv;. Since v¢ X ; Bv;we have v —ev # 0, so that

{v;}jes U {v—ev}
contradicts the maximality of {v;} .

We now prove the main result of this section:

2.3 THEOREM. Let M be a type 11, factor with a Cartun subalgebra A. If
N < M is a subfactor that contains A then there exists a family of unitaries
{;} jes in Ny(A) such that {Nu;};.; are mutually orthogonal subspaces and
EZNu;= M.

PRroor. Let {v;};.; be a maximal family of unitaries in .#j,(4) such that
{Nv;} ., are mutually orthogonal. If £j.;Nv; = M, then we are done. If not,
then, as in the proof of the preceding proposition, there exists a nonzero
partial isometry ve %.4},(A) orthogonal to X;.,Nv;. Let

W = \we% #;(A)|w orthogonal to Y Nvj,wi*r =rj.
J

Given wy,w, € W, we write w; < w,if wowiwy = wy,w, # w, (thatis, wy is
a restriction of w,). (W, <) is clearly inductively ordered, so we can take
we W a maximal element. Then w is not a unitary element, because of the
maximality of the family {v;} ,.,. Lete < 1 —w'w be a nonzero projection in
A. We claim that one can find a set of unitaries {u} ., in M, satisfying the
statement for the triple 4, = N, = M,. Indeed, since 4 is a Cartan
subalgebra in N, there exist partial isometries {w;] ., in %. | y(4) such that
wvevtwt = ww¥ = e,jeJ. Then uj = w;v; are allin ¥.434(4) and they are
unitary elements when regarded in M,. It is easy to see that {N,u{ } ;; are
mutually orthogonal in M,.If ;. ;N uj # M., thenlet wo e ¥ Ny (4,) bea
nonzero partial isometry orthogonal to all N, .u . Take vg a partial isometry
in ¥Ay(A4) such that v&v, = wowd and vov§ < 1 —ww*. This is possible
because

t(wowd) < 1(e) £ t(1 —w*w) = (1 —ww*)

and also because A is a Cartan subalgebra in N. So w + vow, is in Wand
w £ w + vow,, contradicting the maximality of w.

We have thus obtained a family {u},.; in M, satisfying the conditions
for A, = N, = M,. In particular we can take e so that z(e)” ! is an integer.
Lete = ey, ¢4, ..., €, be projections in A such that 7(¢;) = 7(e), 0 S i £ n,
£".0¢, = 1. Since A is Cartan in N, there exist partial isometries {€o;}15i<n
in @Ay (A) such that eyel; = eo,ed:e0; = ¢;. Finally, take
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n
— * 0 :
= i—ZOeOiui i, JEJ.

An easy computation shows that {u;} ;s satisfy the conditions for Ac N
M.

2.4. COROLLARY. Let M be a type 11, factor and N = M a subfactor that
contains a Cartan subalgebra of M. Then the index [M :N] of N in M is an
integer or o (for the definition of the index of a subfactor see [8]).

PROOF. By the preceding theorem, there exist unitaries {u;} ., such that
Nu;},,; are mutually orthogonal and ) Nu; = M. If Py, denotes the
J3J! 4 J Jj

JjeJ
extension by continuity of Ey,, to I?(M,), then Py, ,€N’and

= Juf )Py, )Ju;)),

where J is the canonical conjugation. Since Ju;Je M’ = N’ it follows that
all the projections Py, are equivalent to Py, in N'. Since Z;., Py, =1t
follows by the definition of the index of a subfactor that [M:N]= card J.

2.5 CorOLLARY. Let M be a separable type 11, factor with a Cartan
subalgebra A = M. There exists a sequence of unitaries {u,},, in the
normalizer of A in M such that {Au,},-, are mutually orthogonal and
Z, 504U, =M. B

Proor. Let {M,}, -, be an increasing sequence of type I, subfactors of
M, each of them with a set of matrix units {e];}, ,;; < satisfying:

1) e?jeg‘MM(A)’ n g 1, 2" g lx] _2_ 1;

2) €= €151 + iz M21, 2 2i0j 21

3) Ais generated by the projections {€};} > ;51021
(see for instance [12, 3. 4])

Denote by R = [J,M, . Then R is the hyperfinite factor and 4 = R
« M. Moreover if v = 2,,2 16571, then it is easy to verify that v is a
unitary in the normalizer of 4 and that v and A generate R. Thus v acts
ergodically on A4 so that {Av*},., are mutually orthogonal and X, , Av*
= R. Since M is separable, by Theorem 2.3 we get a sequence of unitaries
{Un}nz1in H3e(A) such that {Rv,},, are mutually orthogonal and Z,Rv,
= M’ Thus {Av*v,} ke , are mutually orthogonal subspaces and fill up M.
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2.6. COROLLARY, I/ M is a separable type 11, factor with a Cartan
subalgebra A, then there exists an orthogonal basis of I*(M,t) with all the
elements unitaries from AN y(A).

PROOF. Since 4 is diffuse and separable, there exists a unitary u€ 4 such
that t(u*) =0, keZ\ {0}, and span”{u*|keZ} = A. Thus, if {u,}nn
< N y(A) are such that {Au,},.n decompose M as in the preceding
corollary, then {u"un}keﬁ , satisfy the conditions. .
ne

3. The algebra generated by 4 and JAJ.

Let A be a maximal abelian x-subalgebra of the type II, factor M and
denote by . the von Neumann algebra generated in #(I?(M,t)) by A and
JAJ, where J is the canonical conjugation in the standard representation of
M.

The algebra o associated in this way with a Cartan subalgebra 4 in M
plays a fundamental role in the proof of the Connes-Feldman-Weiss
theorem. Using the decompositions obtained in Section 2, we give now a
more detailed description of .«/.

If # < #(I?(M,7)) is a von Neumann algebra and & € I? (M, ), then we
denote by P 4. the orthogonal projection on %¢& . Thus Pgye A

3.1 Lemma. If ve 9Ny (A), then Py, =P =P, €4, AP, = AP,
= A,PAU'

Proor. The equality P,, =P, follows easily, since Av =0vA"
= AvA ", We first prove the rest of the statement for v = 1€ I? (M, ). So,
let {€f} 25151 n20< 4 be aset of projections such that:

e =1er=elf  +eif!,2"2i=21,n20;
2) {e}},.x generate A.

As shown in [12], since 4 is maximal abelian in M,
2”

Y eixef —E4(x)|| -0 forall xeM.
k=1 ‘

2

2ll
Thus, if P, = ) epJe}J, then
k=1

I P,(x) — Py, (x) ]I, = 0 for all xeM.

But P,e o and P? = P, = P, are projections so that P, converge to P in
the strong operator topology (since M is dense in I?(M,7)) and thus
P, e . It follows that P, = P, = P, because Py 2 Py = Py1€f
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and P is the smallest projection p in & such that p(1) = 1. Moreover,
since the closure of A in I?(M,7) is Py (I*(M,7)) = ?(A,7,,), the
restriction of 4 to P, (I?(M,1))is the standard form of 4 given by Ty4- Thus
AP, is maximal abelian in P,, (I?(M,7)) and since &/ P, is abelian we get
&/ P,, maximal abelian and AP, = &/P,, = o/'P,,.

Now, for arbitrary ve A4y (4) let e = v'v, f = v¢”. Then x - vxv" is an
isomorphism from /e onto &/f (because v commutes with JAJ) so that
vP 4, 0" € o and v(/ P 4, )v" is maximal abelian on vP 4, v". Since vP 4, v"is the
projection on the left support of vP 4, , thatis on vA " = Av",therest of the
statement follows by spatial isomorphism.

From the preceding lemma it follows the result by Feldman and Moore
([7,2.9]) that if A is a Cartan subalgebra of M then & is maximal abelian.
More precisely:

3.2 COROLLARY. If B is the von Neumann algebra generated by N (A),
then Py, € of and o/ Pg; = /' Py, . In particular if A is a Cartan subalgebra
of M. then of is maximal abelian in B(I1*(M,T)).

PRrOOF. By the preceding lemma if ue A4"y(A4), then P, e o/ < &/ and
APy, = 'P,,. But

Bl' = “Au’
ue>»{(A)

so that

Ppi= \/ Pyeof and /Py = o Pp,.
ueAy (4)

Suppose now that A is a Cartan subalgebra of M. If {v,},, - is a sequence
of elements in %.43(4), then X, ,P,, =1 if and only if {Av,},., are
mutually orthogonal subspaces and £, Av, = M. By Lemma 3.1 in this
case we can identify o/ with the algebra of elements L2300 P 4y, where
{@4} 0 are norm bounded sequences in 4. The expression of xed as
x= anoa,,PAvn is unique if we require a, to be supported on v,v;¥. This is
of course the case, if v, are all unitaries.

Let ¢ be a normal state on 4. Then one can define in a natural way a
normal semifinite weight ¢ on o such thatifae A, , ve ¥A(4), a < vv*,
then @(aPy,) = @(v*av):if {u,},>0 are unitaries in A} (4) and Z,50Py,,
= 1, then @ acts on &/ as

def ) .
( Y anPAu> =Y o(ura,u,), .

ll__
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where X, >0a,P4, € & ;. This is of course well defined so we need only to
show that ¢(aP,,) = @(v*av). Let v = X;5¢5,u;, where s, are partial
isometries in A and Zy|s;| = vv* (cf. section 2). Since & is maximal
abelian and {lskluk} k>0 are mutually orthogonal we get

Pyy=Py = PM(Esku,‘) Z Ay, ’SklP.Muk ZoisklpAu,‘-

Thus aPy, = Zy»0a|s| P4, and since s,v = |sk[uk we obtain

P(aP,,) = (Za|sk|PAuk) - I otalslu) = X o*also)
= (p(v*a(2|sk| @(v*av).

In particular we can associate to 7| 4 the weight ¥ on /. In this case

f(zanPAu,,> = Zr(u:anun) = ZT(CI,,)'

Let us show that 7 is invariant to the automorphisms implemented on .«/ by
the unitaries in A4},(A). So let ve ¥.4),(A4) and for each k = 0 decompose
vy as vy, = X, 5,4, Where s, are partial isometries in A and Zk;olskl
= vv* (cf. section 2). Since &/ is maximal abelian and {|s|u}; >, are
mutually orthogonal we get

Pao=Poyr =Py = k;) RﬂsbuPAv = kéoalskIPA“" and since s,v = |s|uy
we obtain
PaP ) = ¢Ya|si|Paw) = X o(tialsi|u)
% Ko
= Toals|o) = paEls)o) = p(ca).

In particular we can associate to 7, the weight 7 on /. In this case

f(zanPAu,.) = ZT(M;CI"M”) = ;T(an)'

Let us show that 7 is invariant to the automorphisms implemented on &/ by
the unitaries in A4},(4). So let ve ¥.4",(A) and for each k = 0 decompose
VU, @S VU = L, 5,4y, Where sy, are partial isometrics in 4 and Z,|s,| = vv’
forall k > 0 (in fact it is easy to see that also Xy |sy,| = vv" foralln = 0). If &
= X,a,P4, € o, then
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vav" = v( Z a,cPAu,t ; va'vP 4, ¢

Y v’ P g, = ; Z;vakv | Skn| )P au, s
Ko n=o\ kS

so that if @ = 0, then

f(vdv") = f(v(Za,,PAun>v') = k;()t(k;ouakv'lsk,,o

= ;t(akv'ﬂsk,,lv) = ;t(akv'v) = T(dv'v).

These computations will be used in section 4.

3.4 REMARK. Since any automorphism of M is spatial in #(I*(M,1)), it
follows that the type of the algebra ¢’ is an invariant for the maximal
abelian x-subalgebra A of M. This invariant was first considered by W.
Ambrose and I. Singer (unpublished) and by L. Pukanszky who showed
that in the hyperfinite II, factor there are singular maximal abelian *-
subalgebras A4,, n 2 1, such that the corresponding algebras o7, (where <7,
is the von Neumann algebra generated by 4, and JA4,J), are homogeneous
of typel,on1—P, ;,n =1 (on P, , they are always commutative by 3.1).
Our preceding corollary shows that in fact, if <7}, is I, homogeneous on
1—P, ;andn = 2,then A4, has trivial normalizer so that it is automatically
singular.

" We end this section with the following:

3.4 THEOREM. Ifthe separable type 11, factor M has a maximal abelian -
subalgebra A such that the von Neumann algebra of generated by A and JAJ
is maximal abelian in #(I>(M,<)), then M is single generated. In particular if
M has a Cartan subalgebra then M is single generated.

The idea of the proof is as follows: since &/ is maximal abelian over
I?(M,7), it has a bicyclic vector, i.e. there exists a square integrable
operator ¢ affiliated with M such thatspan * A¢4 = I>(M,). If £ would be
selfadjoint, then take hoe M, such that ¢ is affiliated with the von
Neumann algebra 4, generated by h,. Take also he A ,, {h}” = A. Then the
von Neumann algebra M generated by h + ih, contains 4 and A, so that

M, "> span AAyA > span A{A = span AJAJE = AE = I*(M,T)

and M, = M. If £ is not selfadjoint, then we use the following:

3.5 LEMMA. Let Be #() be a commutative von Neumann algebra and for
L e denote by P, the orthogonal prolectlon Py, onto B' BT .If E,ne s then
the set
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= {1eC N\ {0}|Psy sy # PV Py}
is countable.

Proor. For { € 5# denote by P; the orthogonal projection Py, onto BE.
Thus P;€ B, P;€ B, and since B is commutative, B = B’ so that P < P,.
Now, if PP, = 0, then P;P; = 0 so that by ([13,§ 7]) P;,, = P: + P, for
any A% 0. So in this case L is empty. If P =P, P, #0, then P is
a projection (since P, P, are in B which is abelian) and we denote by

¢y =(P—P)(¢), &= P(&) i = (B, — P)(n), nz=P(n). It follows that
P, =P.—P, P =F—-P, P, =P =P, and PH,,-PP(;H,,SP
for all 1eC. Slnce P, P, and Pc +2n, are mutually orthogonal projec-
tions, Py , P, ,and P &t dn, ‘are also mutually orthogonal (because B’ > B),
so that for any A # 0 we have

Pevin="Pe ritsrimnein=Pe+ Pe i+ Py =PV P—(P=P, ).
Thus the set L may be characterized as
={AeC\{0}|P — PPy, ;, # 0}.
We infer that if 4,,4,€ C \ {0}, A; # 4,, are such that
P—PP,,,,#0 and P—PP;,,, #0,

then P— PP;,, , and P—PP.,,  are mutually orthogonal. Indeed,
because then the projection g = (P — PP, ;,,) (P — PP;, ;,,) satisfies q(¢
+41m) = q(& +A,m) = 0, so that 4,q(n) = —q(&) = A,9(n) and thus g(¢)
= q() = 0;since g < P,, q < P,, this is impossible unless g = 0. We have
thus proved that the projections {P — PP ;,} 1. are mutually orthogonal.
Since they are all dominated by P, which is countably decomposable in B,
L is countable.

To end the proof of the theorem, let ¢ = £, +i,, where ¢, &, are
selfadjoint square integrable operators affiliated with M. By the preceding
lemma there exists t€ R \ {0} such that

AT +1,) =L, VAL =LE(M,1).
Since &, + t&, is selfadjoint, we are done.
(
4. The Connes—Feldmann—Weiss theorem.
4.1. THeoreM (Connes-Feldman-Weiss [3]). If A;, A, are Cartan

subalgebras of the hyperfinite type Il; factor R, then there exists an
automorphism 6 € Aut (R) such that 6(A4,) = A,.

From the hyperfiniteness of R the proof will use only the existence of a
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hypertrace ®, on R, i.e. of a (nonormal) state ®, on #(I*(M,t)) having R
in its centralizer. Actually one needs only the existence of a state on .o/
invariant to all the automorphisms of .o/ implemented by unitaries in the
normalizer of 4 in R. The restriction to ./ of the hypertrace @ satisfies this
property, since if ve ¥.4,(4), then v is in the centralizer of ®, hence

@y (vav") = ®, (av'v) for all de .

So in fact it will be proved that if M is a separable type II, factor with
hypertrace and A is a Cartan subalgebra of M, then there exists an
increasing sequence of 2" X 2" matrix subalgebras {M,},>; in M each of
them with a set of matrix units {e;}»>;;>1 satisfying
&5l + €5 =€l

such that {e};}, , are all in 4 and generate it as a von Neumann algebra and
such that ( Un >1Mn)” = M. This clearly implies the statement and besides
it shows that an injective type II, factor having a Cartan subalgebra is

isomorphic to the hyperfinite factor R, although the proof will not use [2].
The whole proof of the theorem relies on the following.

4.2. LEMMA ([3,9]). Let A be a Cartan subulgebra of R, {vy, v, ..., t,) a
selfadjoint set of partial isometries in Y./ r(A) and ¢ > 0. There éxists a type
I,m subfactor M of R with a set of matrix units in the normalizer 4.4 g(A)
sch that |Ep (v) —v;ll, <e,n>i>1.

The idea is to prove first that ([3, Lemma 8]):
(x) There exixts amatrix subalgebra N, = R with the unit ey in A and with
a set of matrix units in 9N r(A) such that
I En,(eovieq) — (v; — (1 —eo)v;(1 —e N, <ellegll,, n=ix=1.
Then by a maximality argument the lemma will follow easily.
To prove (x) one uses Day’s trick. So, let
| & = {¥(v; v¥)— (- v}v;))n2i21| ¥ a normal state on o/}.

Then 2 is a convex subset in (7, )" and its closure in («/*)" in the duality
topology t((«/*)", o#") contains all elements of the form (®(v;- v¥)
—@(* v#v;))ni>1 With ® a state on o¢. In particular it contains

©,...,0)= (‘Do('vai))ngigl-

Thus, the o((«,)", o#") closure of & in (&,)" contains 0. Sincé & is
convex, this coincides with the norm closure of % in (2/,)" so that there
exists a normal state ¥ € o/, such that
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W, v}) —P(-viv)ll <e/2n, n=iz1.

Since the normal semifinite weight Ton o/ constructed from the trace 7, 4, as
in section 3, is faithfull on o, ¥ is a Radon-Nykodim derivative of T and so
it may be approximated in norm with a state of the form (- d), where

d= Z akPAu,,e'd+s f(d) = zr(ak) = 1’
k=0

to have:

1) |t xvid) — T(%vjvd)| < e/2nl %], e, X#0,nZi=1.

As we pointed out that 7 is invariant to conjugation by elements in
YN Rr(A), we get:

() |{(X(vidv; — dvivy))| < e2/2nl XM, nzi= 1.

In particular, for each n =i =1 take X to be the adjoint of the partial
isometry in the polar decomposition of v;dv; — dviv;€ . Since T(d) = 1 it
follows that:

(3) Zf(|v§a~v,~ — dvivy|) < (€%/2)7(a).

By the Namioka trick {see [2,2.1.4] or [1, 1.2.2]) this last inequality yields
a similar one satisfied by a nonzero spectral projection of 4. So we may
assume that in (3), a = Z}-oa,P 4, is a nonzero projection in &/ or
equivalently that a, are projections and at least one is nonzero. Let vfu,
= X, si;4; be the decomposition of v}u, e %.A(4), where sj; are partial
isometries in 4 and

;Ols;wl = U:vi, kéo, nzlél

As was shown in section 3 we have

m
viav; = ;)( Z .U:akvi|sij|)P Auys
j k=0

and by the definition of 7 we get:

n m m
_;1 .Zot(u} kzoajv;akv,-[s;‘jl — aviv;|u;)
i j= =

“)

uy) < ¢/2) 3, tijam;)
j=o

m
k;Ov,?akv,»]s;,jl — a;

= i:Z:l ‘igbr(u;

Since all the terms in the sums implicated in the above inequality are in 4
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which is commutative, it follows that there exists a nonzero projection e in
A such that:

%) .; _ioeu

Now we take into account that|s;| v} u, = sj;u;so that|s;|v¥ = siuuf and
we get:

(6)

m
u; < (2/2) Zoeu;-ajuj.
i~

m
3 k;)ajv;akv,-ls;‘j] —avi;

M:

m
Z AU MAV; — a0;0;
Any nonzero projection in 4 smaller than e still satisfy (6) so one can
choose it such that the partial isometries eud, euf,...,eu} have the right
supports mutually orthogonal and compatible with a4, ay,...,a,
respectively, that is, eu} a; = eu} or eufa;= 0 for each m = j = 0. This
is possible because for all n # m, u}¥u, acts properly outer on 4. Let
I={0=5j< m|eu, = eu¥a;}, and for j, kel let e; = u;jeuy. Then clearly
{€jt} j,xer are matrix units, e;, € 4% (A) and we get from (6):

m
u; < (e%/2) Zoeu}ajuj.
=

1

i

m

. .
Y Zt(e” Y. skauutaw;— a;vof|)
i=1 k=0

m

n m
(7) = i-=21 ,Z' t(eu}‘|ajkzos;,jajuju,’:‘akv,-— a;v;0¥|u;)

< (2)2) ior(eu;"a,uj) = (?/2) Z;T(eji)'

(Note that the strict inequality in (6) implies that I # &). But e;;a;u;ujf a,
= ¢;;u;eur ay is equal to zero if k¢ I and to ey if keI so that (7) becomes:

@®) ) er(

v ) < (e%/2)(eo).

skiepv; — e;;vF
,;I Iad g T A
where e, = ) ¢;;. Finally we obtain:

Jel

g jez; ;skl €, U; UF — eq UF
2 X

n
i=1 jel kel

) n
O %

i=1 jel

2

2

i
skj ejk v; U? - e” U?‘

2
2

Z s,,lej,,v —ejjvg v;
kel

2

) < (2/2)(eo) = (€%/2) ll ey I12

Z Skyejn Vs — €j;vf vy

zr( '
1 jel kel

IIM;
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We can now take a set of matrix units {e};} in ¥.4'z(4), refining {e,;}, with
the same support e, , such that if N, denotes the algebra generated by {e2},
then | Ey, (sijeo) — skieoll, and | Ey, (v;0}eo) — vv¥e |, are small enough
to insure that still we have:

(10) S ENO<zs;;,.e,kviuf) —eort 12 < @) ey 12
i=1 k,j

(this is possible because all v; v} e, and s;; e, belong to Ae,).
Since Ey (€0 v;€o) is the closest point to v; e, in No we get:

i 2
(11) >

ENo(eo U; eo) — ;€ < (82/2) ” €9 ”%.
In particular, since {v;},5,5; = {v}},5;>1, We have

2

m 2 n 2 n 2
Z €oli€p —Viep || = Z eot;(l—ep)|| = Z (1 —ep)vieo
i=1 2 i=1 2 i=1 2
2
< (82/2) eO )
2
so that:
n 2
(12) Z ENo(eovieO) — (= (L —ep)v;(1 —ep))f| < e €o ”%
i=1 2

and (x) is proved.

Consider now the set of all families of matrix subalgebras {N} having
mutually orthogonal supports {e;} in A, such that each N; is generated by
some matrix units in ¥.4z(4) and such that if e = Ze;, then

Z“ Egn,(evie) — (v;— (1 —e)v;(1 —e)) 12 < e2llel.

This set is clearly inductively ordered with respect to inclusion, so we can
take a maximal family {N9},.,; suppose that the supports ef of N7 do not
fill up the unity and take e = Ze?, f =1 —e # 0. By the first part of the
proof applied to the partial isometries fv;f in R, there exists a nonzero
matrix algebra N, = R;, supported on some e, € 4, generated by matrix
units from ¥.4;(A4) and satisfying:

Z ENo(eovieo) — (foif — (f—eo)vi(f—e0))

2
< e*lleyll3.
2

It follows that:
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Z IEg NN, (€ +eo)vi(e +e)) — (v:— (1 — (e +e0))v;(1 — (e + ) 13
=ZHE$w@ma—wp41—amu—ewg

+ Z“ ENo(eoU,‘eo) = (foif = (f=eo)t;(f— c'0))”%
< e?llell? +e2llegl2 = e?lle +e,ll3,

which is in contradiction with the maximality of the family {N?};.

So at this moment we have a family of matrix algebras {N?},; with the
supports {e?} in A satisfying Ze) = 1 such that each N} is generated by
matrix units from ¥.A4(A) and

n
Z “ vi_E@N?(vi) ”%<82,
i=1 i

since R is separable the family is countable so we may suppose J = N.
Thus, for m sufficiently large:

n
Y llo,—E. (v) 2 < €2,
i @ NeC

= N
i=1 j=lj

A standard argument shows that we can slightly modify N9,m>j = 1, such
that their minimal projections have dimension of the form k27", k,re N.
Then we can find a 2" X 2" matrix algebra M, with 1,, = 1g, with a set of
matrix units in ¥.A4%(4), such that N = My, m2j 2 g, and the proof of
4.2 is completed.

The proof of 4.1 is now quite simple: Suppose A = R is a Cartan
subalgebra. Let {v;};en = %A4R(A4) be a dense subset (in the norm || - II,). We
construct by induction an increasing sequence of matrix subalgebras
{M,},>1 of R, each of them with a set of matrix units {e};},+5;;51, such
that

1) efied, Zief;=1;
2) ejjare in YAR(A) for all i j,n;
3) every ek, for p < n, is the sum of some ef;;
4) ||EM"(U,~)—v,-“2 < 2—", 1 é i _S_ n.
Suppose we constructed these algebras for n < m. Consider the set
V={ey,vey|m+12i21.22r,521}.

.Then V is a finite set of partial isometries in the normalizer of Ae7, in R e



NOILS ON CARTAN SUBALGLBRAS IN 1VPI 11, 1 AC TORS 187

So by 4.2 there exists a set of matrix units {e;} ;51 1in G N (Aer,) such
that if N denotes the algebra generated by {e;;}, then 1y, = €7, and

IE, (e1,0:e51) — e1,v5e5, 1, < 27(m* D2~k
It follows that if {€]}*'} = {e},em} and M,,, , is the algebra generated by
{er* 1} then the conditions 1)-4) are fulfilled. Indeed, because
2
IEy . @)—vl3=Y

r,s

m
EM,,,H(e:":'viess) - er"”rviess

2
ENo(eTrUieﬂ < 2k,,, . 2k,,,2—2(m+ 1) . 2—2k,,,
2

M) m+1zix1.

&

=2

Since {v;},c are dense in ¥A3(A) from 4), we get G AR(4) = (Un M,)” so
that (|J, My)~ = R. Moreover A, = {e};}/, = A and since A, is maximal
abelian in (| J, M})~, Ao = A. This ends the proof of 4.1.

FINAL REMARK. The proof of the general case of the Connes-Feldman-
Weiss theorem is not much more complicated, than the type II, case. In
fact, if M has a Cartan subalgebras A and ¢ is a normal faithful state on A4,
then ¢ © E , is a normal faithful state on M and we may suppose M < #(#)
is represented so that w,, = ¢ ° E, for some bicyclic vector ;e #. Then a
similar result as Proposition 2.2 holds. Moreover, if J is the canonical
conjugation associated with &, then by [12, 2.1], it follows that the proof
of 3.1 works as well to show that o/ = (4 UJAJ) is maximal abelian
in #(s#) and that using an analogue of 2.2 one can decompose .« as in Sec-
tion 3.

Then to prove Lemma 4.2 one defines the weight ¢ on .o associated with
@°E, (as in Section 3) and instead of using the invariance of ¢ to
conjugation by elements u in A4 y(4) one uses the fact that ¢goAdu is a
Radon-Nykodim derivative of ¢.
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