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PRODUCT STRUCTURES
IN PYRAMIDS OF HIGHER ORDER
COHOMOLOGY OPERATIONS

D. N. HOLTZMAN

1. Introduction.

Let p be a prime number and let X be a topological space, the integral
cohomology of which is free of p-torsion. In [8], [10], and [11] certain pseudo
primary operations, related to the Chern character, were defined that act upon
the p-localised cohomology of X. In addition, pyramids, in the sense of
Maunder ([14] and [15]), of higher order operations were defined on HZ ¥(X)
using the p-divisibility of these pseudo operations. Several properties and
applications of the resulting pyramids were presented in [10] and [11]. In this
paper, we turn our attention to the interplay between our higher order
operations and the ring structure of HZ (X). Our results include several higher
order Cartan-like formulae which both improve and generalise results in the
literature, improve in the sense of decreasing indeterminacy and generalise in
that of admitting arbitrarily high orders.

We organise our presentation in the following manner. We begin by
recalling in sections 2 and 3 the basic definitions and results with which we
shall be working. Next, in section 4, we consider the multiplicative behaviour of
our pseudo primary and higher order operations and we present several
applications of the machinery developed.

During the writing of [8], from which this paper is excerpted, the author has
indebted himself to several institutions and individuals. It is with great pleasure
that I exploit this forum to express my gratitude. Thanks are due, in the first
instance, to Linacre College, Oxford, to the Catholic University of Nijmegen
and to St. Josephs College of Brooklyn for their generous financial support.
Secondly, professors I. M. James, H. O. Singh Varma, S. Gitler and E. G. Rees
are all owed thanks for a great deal of help and guidance that they have
extended to the author. Lastly, and perhaps most importantly of all, the
author’s very deep gratitude is due to Professor J. R. Hubbuck for the generous
giving of his time, knowledge and perspective during the writing of [8] and
thereafter.
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2. Definitions and basic results.

Let us begin by establishing the context within which we shall be working.
Unless we state otherwise, we shall choose all of our spaces from the category,
the objects of which are topological spaces with the homotopy type of a CW
complex of finite type and for which the integral cohomology is free of
p-torsion. The morphisms of our category are the homotopy classes of
continuous maps of such spaces. We denote this category by % ,.

Let Qp indicate the subring of the rational numbers where the denominators
are all relatively prime to p. We will write H*(X) and K(X) in place of HQ} (X)
and KQg(X), the cohomology and zero-graded unitary K-theory, respectively,
of a space X with coefficients in Q,. Let Z, denote the integers modulo p
Z/pZ. The obvious homomorphisms: ¢: Z - Z,, ¢':Q, = Z,, k: Z - Q,
k:Z — Q,, and I: Q, — Q induce the coefficient homomorphism in cohom-
ology: ¢,, 0 K, k), and 1, respectively.

Given a space X in % ,, we write the standard sketal filtration as follows:
(2.1) KX)=K,X)2K/X)2...2K,X)2 ... 2 *.

Because we will be working frequently with the residue classes mod (p — 1), we
shall fix the notation m=p—1. We will write ch, for the component of the
Chern character in dimension 2n.

Before we can define our pseudo primary operations, we must make several
observations about K-theory in our category % ,. We know from [2] and [12]
that p-localised unitary K-theory splits up into'a direct sum of K-theories, one
for each of the mod m residue classes. Thus, we have:

22) K(X) = '"@1 KX)o .
i=0

Such a decompositic;n is respected by the action of the Adams operations y*
and it induces a mod m splitting on the skeletal filtration (2.1). The following
theorem which is due to Adams and Hubbuck ([2], [3], and [12]) makes this
more precise.

2.3. THEOREM. There is a canonical direct sum splitting given by (2.2) such
that:

(i) each K(X)® is closed under the action of ¥* for each k in Z;
(ii) the associated graded group is defined by

Kn(X) YK 3041 (X)0 1= G, K(X)®

and it equals the usual associated graded group G,,K(X) if and only if n=i
mod m. If n£i modm, G,,K(X)?=0.
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Now given that the p-local K-theory breaks up into m summands, we may
consider the associated split, local cohomology. This is related to the split K-
theory as follows:

2.4. ProposiTION. There exists an isomorphism J: H*(X) — K(X), for every
X € %, such that:

(i) J(H2(X)) K 1(X);
(ii) the composition of J with the quotient map 1,,: K,,(X)
— Ky, (X)/K;, 41 (X)= H?*"(X), is the identity map on H*"(X);
(i) we may decompose J into a direct sum

|
-

m
Jo
0

such that JO:H*™(X)D - K, (X)®, where H*(X)® is defined to be
Kon(X) /K 341 (X)9.

Proor. Let (x,,...,x,) be a basis for H2*(X)", for some fixed i, 0<i<m—1.
For each x; (1<j<t) one can choose elements u; € K,,(X)? of exact filtration
2n such that I)(u;) = x;: Let us define J? by x; > u;, for 1 £j<t. Now define J
to be the direct sum of the J® 0<i<m—1. This gives us, in view of (2.3), the
desired results.

From this point onward, we shall only consider “splitting isomorphisms” of
this form, namely those J’s which satisfy (2.4).

2.5. DerFINITION. A cohomology class x € HQ"(X) is said to be integral mod p
if it lies in the image of I,: H*(X) —» HQ"(X).

W¢ have the following theorem of Adams [1]:

2.6. THEOREM. Let n be a complex vector bundle over a CW complex X such
that n is trivial when restricted to the (2q— 1)-skeleton of X. Then p'ch,,,,n is
integral mod p.

We are now in a position to define our pseudo primary cohomology
operations. These will be homomorphisms on cohomology groups defined on
and evaluated in H*'(# ), the subring of H* with even grading and arguments
taken from our category % ,.

2.7. DeFINITION. Let J be a splitting (satisfying (2.4)) and let u be any element
of H*(X), for X ¢ # , and n e Z*, the non-negative integers. Then for each
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q=0 we define a pseudo primary cohomology operation of the first kind and
of degree q by:

1.t poch, , g (u) .

We shall denote this “operation” by &': H*"(X) — H*"*?#"(X). We set the
convention that 6}(u)=0 for ¢ <0.

Invoking Theorem 2 of [1] yields:
2.8. ProposITION. Let X € %, Then the following diagram commutes:

H2n(X) 03 H2n+2qm(X)

Qtl l@:n
HZ2(X) 22 HZ2r+20m(x)

Here and throughout this paper we shall use x to denote the canonical anti-
automorphism of the Steenrod algebra. Moreover, we shall always take 24 to
mean Sq2? in the case p=2.

These pseudo primary operations are not proper cohomology operations in
the usual sense because they fail to be natural. This failure, however, is not
total and the extent to which the 6 deviate from naturality can be explicitly

calculated.
Let X and Y be spaces in # . Let f: Y — X be a morphism in this category.
We may choose splittings:
J: H¥(X) - K(X) and L:H®(Y)—> K(Y).
We define a homomorphism f;; by requiring the commutativity of the
following diagram:
H¥(X) -1 K(X)
(29) i} Lr
H(Y) L K(Y).

By virtue of (2.3) we see that f;, can be written as a sum of linear maps:

(2.10) S = Z fis

where each f; raises degree by 2im and where f,=f*. We have the following
important formula which measures the dediation from naturality of our pseudo

primary operations:
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2.11. TaeoREM. Under the above hypothese:

q
Fr03 = X 0 0L fynst HX) > B A(Y).

Proor. See [11].

One also has a second kind of pseudo primary cohomology operation, dual
in the sense of [16] to the 6%

2.12. DeFINITION. Let J be a splitting and u be an element of H*"(X), X € & >
Then for each g € Z* we may define a pseudo primary operation of the second
kind, 8%, by the formula:

M=

X 070w = 0 e HTHnX),

where we define 85(u)=u and 8%u) =0 for q <0. The result is a homomorphism
of Q,-cohomology groups of spaces in & ,:

53: HZ"(X)*'* H2n+2qm(X),

the formal inverse of 64.
Dual to the deviation from naturality formula for 0% one has:
2.13. THEOREM. With the notation of (2.11):

gq[f* — i pq—ifq_ig‘i,: HZ"(X)—* H2"+2‘1"'(Y).
i=0 -

3. Pyramids of higher order operations.

In this section we shall sketch the inductive construction of pyramids (in the
sense of Maunder) of higher order cohomology operations based upon the
mod p integral “p-divisibility” of our pseudo operations. Both the
homomorphisms 6% and 8¢ will yield such systems, the main characteristics of
which will be presented below. Let us begin by establishing some notation.

3.1. DeriNiTions. (i) Let {u;} be a vector in the Q,-cohomology of some
space, X € ¥, where u; € H***2™(X), for i between 0 and some given s;
s,neZ*. For a given g>s, we shall denote a sum of pseudo primary
cohomology operations of the first kind of degree q and type s by the
expression
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x5
i=0

defined upon a vector {u;} and taking values in H>"*24"(X).
(ii) Let {u;} be as above. Suppose that there exists a J such that

04w = v

ipge

is divisible in H?*"*24™(X) by p"~*~! for some r>s. Under these conditions we
shall say that [J,{u;}] is a (g,r,s)-pair of the first kind. (Pairs of the second
kind shall be defined below. Until then, and where confusion is unlikely, we
shall suppress explicit mention of kind.)

We construct pyramids of higher order operations from these sums of
pseudo operations in the following way. Suppose, for a given n,s,rand g € Z*
(with g2r>s) and an X € #,, we have a Z,-cohomology vector {x;} with
x; € HZZ'*2m(X), for 0<i<s, such that the following property is satisfied::
there exists a splitting J such that [J, {;}] forms a (q,r,s)-pair for some Q,-
lifting u; of the given Z -vector. If this is the case, we define an operation (of the
first kind) of degree ¢, type s and order (r—s) by:

(32) &y {x;) = e',,[z 61w, /p} /Q(¢;"),

where Q(¥) denotes the indeterminacy of the operation ¥ and where J and
{u;} run over all possible (q,r,s)-pairs associated with the vector {x;} in the
sense described above. It will turn out that the domain of definition of the
operation given in (3.2), the set of Z -vectors which admit at least one (q,7,s)-
pair, will coincide precisely with the kernel of the operation @}~ !-*. Moreover,
the indeterminacy of the operation which is generated by the various choices
made in finding a splitting and a Q,-lifting will be exactly the image of the
operation @y*1,

For a fixed N,q,n € Z* and some fixed X € % ,, we construct a pyramid of
cohomology operations {®}°} where g= N =r>s20. The construction will be
inductive on the order of rhe operations. For any r and s such that N2r>s20
and r—s=1, we get, by virtue of (3.2) and (2.8):

(3.3) oyt =y yP' @ HZIAm(X) - HZIH2m(X) .
i=0 i=0

This is a primary operation and, consequently, is universally defined and has

no indeterminacy. It serves to start the induction. Higher order operations can

be defined in a way consistent with (3.2) and such that:
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3.4 ¢;,s: Ker ¢;—1’s c I=@0 HZIZ‘n+2im(X) — Cok ¢;,s+l .

Furthermore, the operations will obey:

(3.9 Ker#}* < Ker®,”"* and

U

(3.6) Im®;* 2 Im @)+

where (3.6) is to be interpreted in the following strong sense. Given a
cohomology class z in the image of ¢} **! coming from a particular (q,r,s+ 1)-
pair, [J, {u;}], there exists a (g, r,5)-pair [L,{v;}], say, such that ¢} defined
using L and {v;} gives precisely the same cohomology class z with no
indeterminacy.

One can prove the following (see [11]):
3.7. THEOREM. With the above notation, the pyramid { %}, N2r>s520, forms
a well-defined system of cohomology operations satisfying (3.2), (3.4), (3.5) and

(3.6).

Pictorially, we may represent this pyramid (where N =5, for example) by
Figure 3.8.

x¢2,1 451,0
9

3.8. FIGURE. A typical pyramid of the first kind.

3.9. REMARKS. (1) The above diagram represents a pyramid of cohomology
operations generated by the pseudo primary operation 6% Here we have taken
N =5 and have allowed r and s to run over all values in the range S=r>s5=0.
By (3.4) and (3.5), we see that every operation is defined on the kernel of the
operation one step down and to the right of it. By (3.4) and (3.6), we calculate
the indeterminacy of a given operation by computing the image if the
operation one step below and to the left. Because (3.6) holds in the strong sense
given above, we find that the union of the images on a diagonal coincides with
the image of the uppermost operation.

(ii) The operations in (3.7) are natural and stable under double suspension.
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3.10. THEOREM. There exists a chain complex in the sense of Maunder [14]
such that the associated pyramid of operations coincides, modulo indeterminacy,
with {®°} when the former is restricted to the category 7,

The pseudo operations of the second kind also admit a similar construction
and provide us with a system of higher order operations, dual to those of (3.7).
We shall require some notation:

3.11. DeriNiTioNs. (i) Let @3.,6%"" be a direct sum of pseudo primary
operations of the second kind. We shall say that such a sum is of type s and of
degree q (q=s). It will be defined on any element u € H*"(X) and will take as
value a vector of elements in @5_, H2"*2@~Im(X),

(ii) Let n,q,r,s € Z* be given such that g=r>s>0. Let u be an element of
H?"(X) such that:

1) @ 65 'u=0modp*"! and

i=0
s

2) @O0 u=0modp 7Y, 1<jSr—s—1.
i=0

Under such conditions we shall say that [J,u] forms a (q,r,s)-pair of the
second kind.

The construction of our pyramids of the second kind will mimic our above
presentation to some extent. We shall proceed as follows. Suppose for a given
_nqr,seZ* as above, and an X € # » WE have a cohomology class
x € HZ2"(X) such that there exists a splitting J which forms a (g,r, s)-pair of
the second kind for some Q,-lifting u of our given class x. Then it follows that

D 6 i = v} = 0 modp !
=0 7

and thus we are free to divide {y;} by p"~*~! in the context of Q,~cohomology.
Doing so and reducing mod p determines the coset value of our (r—s)th order
operation of the second kind acting on x. We denote this by:

(312) . 6;,sx — Q’*[(;IBO 0‘3‘l'u/pr—s-l]/Q((f);~5) ,

where J and u are allowed to run over all suitable values. As before, it is the
choices involved in producing a (g,r, s)-pair associated with x which generate
the indeterminacy Q(®/*). In contrast to the higher order operations of the first
kind, however, the choice of splitting offers no contribution to the
indeterminacy. This is a result of the rather more stringent conditions that
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pairs of the second kind must satisfy in contrast to pairs of the first kind. It will
turn out that the value of the indeterminacy of &} * shall be precisely the image
of the operation &, !** with no indeterminacy. The domain of definition will be
the kernel of the operation @7 °*!. That is to say, our operations of the second
kind will be defined such that:

(3.13) &y Ker@**' < HZY(X) » Cok &, 1s.
Moreover, the following two properties will be exhibited:

(3.14) Im ¢}*
(3.15 Ker @7* = Ker @;**! .

I

Im®;~"*  (in the strong sense of (3.6)) and

Now, for any fixed N between q and 1 we have the following result (see [11]):

3.16. TueoReM. (i) With the above notation, the pyramid (@), N=r>s20,
Sforms a well-defined system of higher order operations satisfying (3.12-3.15).

(i) The operations in such a pyramid are Spanier dual to those in the
corresponding pyramid given in (3.7), when both sets of operations are defined.

We may depict such a pyramid as in Figure 3.17 (again we have chosen
N=5).

@50
q
F4,0
(pq
(D4'1
q
(pﬁ,o (pz,l
+H1,0 52,1 73,2 ~ 5H43 H5.4
¢q (pq ‘pq (pq (pq

3.17. FIGURE. A typical pyramid of the second kind.

3.18. REMARKS. (i) In comparison with (3.8), the pyramid of operations of the
second kind is reflected about a vertical line through its centre. After this
reflection, the domains and indeterminacies are computed as in (3.8).

(i) Again, as in (3.9), we point out that the indeterminacy can be expressed
in terms of the image of a single operation with no indeterminacy. This is a
result of the strong inclusion given in (3.14).

(iii) The operations of the second kind are natural and stable under double
suspension.

3.19. THEOREM. There exists a chain complex in the sense of Maunder [14]
such that the associated pyramid of operations coincides, modulo indeterminacy,
with the operations of (3.16), when the former is restricted to the category % .
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3.20. REmARKs. The operations @7° and @* turn out to coincide with several
specific examples of higher order operations that appear repeatedly in the
literature. For example in # ,:

(i) #2° is the operation &, of [13] for p an odd prime. That is to say, &, is
the stable secondary cohomology operation associated with the following
Adem relation:

(2B~ —(q— D2~ P = 0 (oddp).

(ii) For p=2, #3 is &,; of [6] and [7]. Thus, #3 turns out to be the
secondary operation associated with:

Sq!Sq* + (Sq2Sq!)Sq*'~2+Sq*Sq! = 0.

(iii) When p=2 and q is arbitrary, $2° is the secondary operation studied in
[4], [5], and [6] (to name a few) based upon the relation:

Sq'Sq%?+ (Sq'Sq? +Sq*Sq")Sq**"2 +S8q%1Sq! = 0.

4. Products.

Let us make a brief examination of the ring structures of the Q,-modules
with which we have beeen working, H*(X) and K(X), X € # . Before we can
turn our attention to the multiplicative behaviour of our higher order
operations, we must consider the effect of our splitting isomorphisms on the
product structure of these two modules. ‘

The first point to be made is that it will not be possible, in general to find a
splitting isomorphism J: H®'(X) —» K(X) that will be a ring isomorphism.
However, for any two given elements of positive grading x and y, say, in
H®'(X), it will indeed always be possible to find a J such that J(x)-J(y)=J (xy).
In general, however, multiplication of two elements J(x) and J(y) produces
“error terms” in filtration higher than that of J(x)- J(y). However, we do have:

4.1. ProposiTION. (i) Let x € H**(X) and y € H*(X) for some X € F . Let J
be any splitting isomorphism satisfying (2.4). Then,

J(x) J(y) = J(xy) mod K3, 1 2,4+ 1(X) .
(ii) HQ®(X)=KQ(X) as rings.

Proor. This is obvious.

In order to deal with these error terms in a systematic way, we make the
following definition.
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4.2. DeFINITION. Let M{: H?"(X) x H*(X) — H*"*2k*2im(X) be the map-

ping defined by (u,v) — J~!(J(u)-J(v)), restricted to the dimension 2n+ 2k
+2im, for i20.

It is evident from the definition that:

(4.3) JTHI@J@) = ¥ M{(uv)

i20

and that M(u,v)=u-v. Where confusion is unlikely, we shall suppress the
superscript J. Using the above notation we have ([8]):

4.4. PROPOSITION.

o) Bun =3 Y MG 0);

r=0 i+j=q-r

(i) proy (M, () = Y 05(u)0() .

itj=q

i

r

4.5. CoroLLARY. (i) If J is a ring homomorphism, we have:
By = Y 0w H0);
itj=q

(ii) if J is such that J(u-v)=J(u) J(v), then:
) = Y 65w 850) .

i+j=q

What (4.4) tells us is that on the pseudo primary level, a product formula with a
general splitting isomorphism contains a series of error terms, the images of the
M/s, for i=1. One of the main results of this section is that the presence of
these terms is a primary effect only. That is to say a pyramid of higher order
operations exhibits a product behaviour that does not include these error
terms.

4.6. DEFINITION. Suppose we are given a relation of the form:

() A S O
0%uv) = Y 0097w 0 (),
i=1
where all of the coefficients «, are prime to p and where all of the operations are
either of the first kind or all of the second kind. Suppose, moreover, that there
exist pairs [J,u-v], [J,u] and [J,v] such that:
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(i) [J,u-v] is a (g, N, 0)-pair of the first (second) kind,

(i) [J,u] simultaneously forms (q—s,A4,,0), (9—s5,,A45,0),... and
(q—s,, A4,,0)-pairs of the first (second) kind.

(iii) [J,v] simultaneously forms (s, B,,0), (s, B,,0),. .. and (s,, B,, 0)-pairs of
the the first (second) kind, where 4;+ B;=N+1 for all i between 1 and r.
Suppose now that N is the greatest integer for which this can be done. Under
these circumstances we shall say that [J,u*v] is an admissible product pair of
order N for the given relation.

Suppose now that u and v are elements in H>"(X) and H*(X), respectively
for some space X in .#,. Let us denote by x and y the respective Z -reductions
of these elements. We shall now show that when provided with the appropriate
admissible product pairs one may obtain a pair of “higher order Cartan
formulae” that improve upon and generalise several such formulae in the
literature.

4.7. THEOREM. (i) With the above notation, we suppose that [J,uxv] is an
admissible product pair of order N for the relation:
(a) Buv) = Y 0w Hw.
i+j=q
Then, modulo the total indeterminacy, we have:
(b) B 0x-y) = Y 000 P0y)
i+j=q .
where A;+B;=N+1 for each (i,j) pair such that i+j=gq.
(ii) With u, v, x and y as above, let us suppose that [J,u*v] is an admissible
product pair of order N for the relation:

. q '
© Bu-v) = Y 6w &w- Y poy (M, ().
itj=q r=1
Then modulo the total indeterminacy we have:
d o 0xy) = ¥ Ofx) 87%(y)
itj=q

where A;+B;=N+1 for each (i,j) pair such that i+j=gq.

Proor. (i) We shall proceed by induction on the order N. The primary case
is trivial as it is just the ordinary Cartan formula for the reduced Steenrod
powers.

Consider the case of N=2. By (4.4-i) we have mod p?:

© Puv) = Y 3(u)-65(v)+p‘ ¥ lMl(éy(u),@E(v».

itj=q +i=q-
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By hypothesis we know that every term in the equation above is divisible by p.
Which half of a product of terms is actually divisible by p is determined by the
existence of pairs. Dividing (e) by p yields, modulo p:

() B70(x-y) = ¥ &{°(x)- 8y +T.

Here, for each pair (i,j) such that i+j=gq, it is clear that (4,, B)) is either (1,2)
or (2,1), depending upon which term of the product admits a pair of order 2.
The value of T is given by:

@® T- e;[ » Ml(éz(uw&(v»].

itj=q—-1

Let us consider an arbitrary term of T, say M, (9" (u), &} (v)) for i+j=q—1. By
definition, this is the first “error term™ in the product &(u) & (v). But by
hypothesis [J,uxv] is an admissible product pair of the second kind for (a). It
follows that 8% (u)-8’(v) is p-divisible. Now by definition of M, we see that this
term must also be p-divisible. It follows that T=0. This proves the theorem for
second order operations of the second kind.

As inductive hypothesis let us assume that we have the formula (b) for N <s.
We wish to show that (b) holds for operations of order (s+1) as well.
Consider:

(h) Gt 0xy) = ¥ 00 BN+ T

i+j=gq
This is (4.4-i) evaluated mod p**! divided by p* and reduced mod p. As above
T’ will consist of the error terms of the operations of order up to and including
s. By inductive hypothesis, however, these operations all have no error terms. It
follows that T'=0. This completes the proof of (i).

(i) The second half of (4.7) follows almost immediately from (4.4-ii).
Evaluating this equation mod p", dividing by p¥ ~! and reducing mod p gives:

9
(k) Oy + Y BNTOM,(x,y) = Y @000 2700) .
r=1 i+j=q
Since Im®,,"" is contained in Im @)™ and this is contained in the
indeterminacy of the right-hand side of (k), we have the desired result. This
completes the proof of (4.7).

4.8. ReEMARKS. (i) Notice how in both halves of this proof, the actual values of
the M,(-,-) were not needed. This, however, should not be surprising as the
value of M;(-,") is dependent upon J and higher order operations allow J to
vary.
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(ii) Note that we have avoided the use of operations of type greater than zero
in (4.7). This was done purely for the sake of notational simplicity. No
generality was lost.

(iii) There are several second order “Cartan formulae” in the literature to
which (4.7) might be compared. Let us consider one in particular, (3.4) of [13].
If we take p to be odd, g=3 and N =2 and apply (4.7-i), above, we get that if a
J exists such that [J,u*v] is an admissible pair for the relation:

3
B = ¥ 57w 0,0,

=0

then
3
F30(x-y) = Y 4:%(x)- B2(y)
i=0

in HZZM*2+5m(X)/Im #3, with Ag=A,=B,=B,=2.

If we take these same hypotheses and apply (3.4) of [13] (where we have
taken k=3 and j=1), we get the same result but with greater indeterminacy.
The value of Q in Kobayashi’s result is

Im [#3 +f*HZ2"+2+6m(K(Z,2n) x K(Z,20)] ,

where f is the map, f: X —» K(Z,2n) x K(Z,2t) defined by f(z)=(g(2), h(2)),
where g: X — K(Z,2n) and h: X — K(Z,2t) are such that g*(y?")=x and
h*(y*)=y, with y* the modp reduction of the fundamental class of
HZ*(K(Z,2i)).

(ivy We note that Q(A*(#)=H"/(A"®... ®A*) (where we have
factored out (r+ 1)-fold products), the rth indecomposable quotient associated
with Q,-cohomology theory applied to the spaces in %, is the associated
graded ring of Q,(K°(# ). Consequently, our higher order operations, ¢ and
@, restrict to indecomposable quotients in HZS'(F ).

We conclude with a pair of particularly “nice” product formulae for certain
higher order operations. Let x, y, u and v be as above. We have:

4.9. THEOREM. Suppose that $3%% is defined on x and on y. Then &%, is defined
on x, on y and on x-y and modulo the total indeterminacy one has:

B4 (x-y) = PE2(x) y+x-BL(y) .

Proor. The hypotheses imply that the following congruences are satisfied for
pairs [J,u] and [J,v]:
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(i) 627w = 0%"(v) =0 modp?~?, for 0<i<q+1, and
(i) 6% J(u) = 0377 9(v) = 0 modp**~J, for q+2=5j<2g9—1.
By (4.4-i), we have mod p?:

2q 2q-r

(i) 29(u-v) = Z 034 (u)- 0 (v) + Z P Z M, (0207 (), 6, (v)) .

But (i) and (ii) above imply that (iii) is equivalent to:
(iv) 83%(u-v) = 029(u)-v+u-63%(v), modp?.
Moreover, the hypotheses imply that each term in (iv) is individually divisible

by p?”!. Stronger yet, they guarantee that each term in (iv) admits the
definition of ®%?. The result now follows from the definitions.

4.10. Remark. Taking g =2 in (4.9) yields the results of theorem (8.4) of [4].
As in (4.8-iii), however, the value of the indeterminacy has been reduced in our
case. The difference in our value of Q and that of Adem is, once again, the
image of f*H?"+2*+2am(K(Z,2n) x K(Z, 2t)).

A similar result to (4.9), couched in rather different terms, is the following.
We take x, y, u and v to be as above. Suppose that [J,u] and [J,v] are both,
simultaneously, a (24,4,0)- and a (g, q,0)-pair of the second kind, for some
splitting isomorphism J. Then we have:

4.11. THEOREM. With the hypotheses given above [J,uxv] is an admissible pair

for:
() &)= Y 6w 0w and

i+j=2q

(i) O%u-v) = Y O o).

i+j=q

Moreover, modulo the total indeterminacy, we have that
(i) D% (x-y) = B3 (x) y+x ¥4 (y) and
V) BL0(x-y) = B y+x-BL0).

Proor. The result follows from the following set of congruences which are, in
turn, implied by the hypotheses:
(@ & w) = 627(v) = 0 modp*™’, for 1Si<q-1,
(b) #7'w) =05(v) =0 modp?’, for 15i<q—1 and
© Pw =0%0v) =0w =080 =0 modp?’.
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