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THE WHITEHEAD TRANSFER HOMOMORPHISM
FOR ORIENTED S!-BUNDLES

ROBERT OLIVER
Consider the following problem.

QuesTioN. Given an oriented circle fiber bundle S*—»E — B and a
homotopy equivalence ¢:B'— B, where E, B, and B’ afl are finite
complexes; is the pullback homotopy equivalence ¢ :¢p*(E) — E always a
simple homotopy equivalence? If not, what can one say about the torsion
of ¢?

This question arose naturally from the theorem that Idg: X ¢ is a simple
homotopy equivalence whenever ¢ is a homotopy equivalence of finite
complexes [13, Corollary 1.4]. If one works with unoriented S*-bundles, it
is easy to find examples where 7(@) = 1, using, e.g., [2, Corollary C]. The
main result here is that examples with (@) $ 1 also occur for oriented
S'-bundles. Proving the existence of such examples is surprisingly
complicated, and provides good test of the current machinery for
describing Whitehead groups of finite groups.

The above problem was studied by Munkholm and Pedersen in [16].
They showed that there is a well defined ““transfer” map

f*:Wh(n,(B)) > Wh(r,(E))

for any bundle S* —» E — B (not necessarily oriented), depending only on
the fundamental group sequence Z — n, E — m, B, and such that for any
homotopy equivalence ¢ :B — B,

(@ :0*(E) > E) = [*(z(p)).

Conversely, any exact sequence Z-»G-£>G — 1 of finitely presented
groups with i(Z)C Z(G) can be realized as the fundamental group sequence
of some oriented bundle S'— E — B of finite complexes (see [29,
Proposition 11.4 and the following remark ]). Such a sequence is described
by the pair (8,i(1)). In other words, given any surjection f:G — G of groups
such that Ker (8) is cyclic and central in G, and given any generator
zeKer (f), there is an induced homomorphism
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B? :Wh (G) » Wh (G)

such that ¥ = f* for any oriented bundle S! — E — B realizing 8 and z.
This map was described algebraically in [16], and the authors there also
listed many cases, when it is trivial. For example, they showed that 87 =1
if G isinfinite and G is finite, or if G is finite abelian, or more generally if G is
finite and Ker (8) N [G,G] = 1.

Since Wh (G) is so poorly understood for infinite G, the natural place to
look for examples of ¥ + 1 is when G and G are both finite. By [16,
Proposition 6.2],

Im (7)< Cl,(2G) = Ker [K,(2G) - K,(Q6) x [[ K,(2,0)]

in this case. This is the first indication of difficulties in detecting elements
in Im(B7): concrete calculations in Cl,(ZG) involve almost automat-
ically calculations with K,(Q,G) and K,(2,G) for primes p|/Gl. The
second indication is that B¥ (Wh(G))/BZ (SK,(ZG)) has exponent at
most 2 (Proposition 1.3) — in fact, as will be seen in Theorem 4.11,
Im (B¥) = B# (SK,(ZG)), if G has normal 2-Sylow subgroup, and we know
of no example where the groups differ. Finally, Cl,(ZG) C Ker (8#), and

SK,(ZG)/C1,(ZG) = [ SK,(Z,G)

is non-zero only when G is fairly complicated — sufficiently complicated
that describing Cl,(ZG) becomes (at best) a rather messy combinatorial
problem. :

Sections 1 and 2 contain background material: Section 1 is mostly a
recapitulation of results from [16], including the algebraic definition of the
B¥ ; while Section 2 is a collection of general results which are needed later
for calculations in localization sequences. Examples with B7 41 are
constructed in Section 3, showing, in fact, that p-torsion can occur in
Im (B7) for any prime p.

The B# are further analyzed in Section 4, in an attempt to explain why
such examples need be so complicated. The main general results there, for
surjections f:G — G of finite groups with Ker (8) central and cyclic are:

(a) B* = B¥ is independent of the choice of generator ze Ker (8) (this is
not at all obvious from the geometry).

(b) for any prime p, if K = {geKer (8): p /|g|}, then
Ker[ﬁ(’;, :Wh(G)-Cl, (ZG)(p)] = Ker[(8/K)*: Wh(G)- Cl, (Z[G/K])]
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(see Theorem 4.10 for more detail). The problem of describing f* is thus
reduced to the case where Ker (f) is a p-group.

(c) if Ker (B) is a p-group for some p, then B* factors as a composite
B* : Wh (G) 2 W/ W}, 82 C1,(2G),

where W5 C W, are defined explicitly in Proposition 4.8.

The problem of describing f* is thus split into two independent
problems: one involving Wh (G), and the other involving Cl,(ZG). For
more detail, see Theorem 4.9 and the following discussion. Some general
consequences of the above decomposition are listed in Theorem 4.11.

In what follows, we work, for convenience, with K, (ZG) rather than
Wh (G): that the +g lie in Ker(8¥) is immediate from the algebraic
definition of 7. By {,, for n = 1, will always be meant the primitive root of
unity e?™ (so that ({,)"™={, for m|n). We use C, to denote a
(multiplicative) cyclic group of order n. For any G and any g€ G,
N(g) = N¢l(g), and C(g) = C4(g) denote the normalizer and centralizer,
respectively. And K5(R), for any Q,-algebra of Zp-order R, denotes the
continuous K, (as defined in Section 2).

Finally, my thanks to Erik Kjgr Pedersen and Hans Munkholm for
bringing this problem to my attention, and for several discussions about it.

-

1.

It will be useful to have the algebraic “transfer” maps defined in greater
generality, as follows. For convenience in notation, (a;) and [a;],
respectively, will be used to denote a matrix over a ring R and its class in
K, (R).

THEOREM 1.1. Let R be a ring, and let n€ R be a fixed central element.
Then there is a well defined homomorphism

n* :K;(R/nR)— K(R)

such that, for any Ae GL,(R/qR), any lifting Ae M,(R) of A4, and any B,
X eM,(R) such that AB—nX =1,

# 14X
Furthermore,

(i) if pr,:R — R/nR denotes the projection, then
Im (K, (pr,))S Ker (n*) and Im (n*)S Ker (K, (pr,)).
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(i) For any central unit vin R, (nv)* = n*.
(iii) If f:R — S is any ring homomorphism such that f (n) is central in S,
then the following square commutes:

K (RMR—"">K,(R)
K, (f/m) K.(f)
K (S/f ()S) L2 K (S).

Proor. Except for (ii), this is included in [16, Theorem 1.1]. And (ii)
follows upon noting that for any A4, B, X as above,

AX I 0\/A X\(I 0 A v X
= = R).
[ 5]=[ )G B)(o )] 7" Jeree
Now, if :G — G is any surjection of groups whose kernel is cyclic and
central in G, and if ze Ker (B) is any generator, we set

Bt = (1-2)* = z-1)* = (1-z7")* :K,(ZG) ~ K,(ZG).

Note that these are all the same by (ii) above. By [16, Theorem A], B is the
Whitehead transfer homomorphism for any oriented S'-bundle whose
fundamental group exact sequence is Z-» G £ G, where i(1) = z.

If G is any finite group, we define

Cl,(ZG) = Ker [K,(ZG) - K,(QG) x [ K,(2,G)]

(the product being taken over all primes p).

ProposITION 1.2. Let B:G — G be any surjection of finite groups such that
Ker (B) is cyclic and central in G. Then, for any generator z of Ker (B),

Im (B7)< Cl, (ZG) and C1,(ZG)S Ker (B7).
Proor. The induced maps
K,(Qp):K,(QG) - K,(QG) and K,(Z,B):K,(2,G)— K,Z,G)

are surjective by [8, Corollary I11.2.9]: Qf and the 2, are all surjections of
semilocal rings. So by Theorem 1.1 (i), the transfer maps (1 — z)* on the
rational and p-adic group rings are zero. It follows that

Im (B#)< Ker[K,(2G) - K,(Q6) x [1K,@2,8)] = C1,(ZG).
p

By [17, Lemma 1], the induced map from Cl,(ZG) to Cl,(ZG) is onto.
Together with Theorem 1.1, this implies that
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Ker (87)2 Im (K (B))2 Cl1,(ZG).

The relationship between Im (87 ) and 87 (SK,(ZG)), and the reason why
itis easier to detect elements in B (SK,(ZG)) thanin Im (87 )/8 (SK,(ZG))
will be considered in detail in Section 4. But the first indication of the
important role played by SK,(ZG) comes from the next proposition.

ProrposiTioN 1.3. Let p:G — G and zeKer (B) be as in Proposition 1.2.
Then

exp [B7 (K(ZG)/BY (SK,(ZG))] < 2.

Proor. For any x=)/Ag,eZG, set x=) Ag ' For any M

(xu)e M,(ZG), set M = (X;;); i.e., the conjugate transpose matrix. Then
(M — M) induces an involution of K,(ZG); and similarly for K 1(ZG)

Fix u=[M]eK,(ZG), where MeGL,(ZG), lift M and M™! to
A,Be M ,(ZG), and choose X € M ,(ZG) such that AB — (1 —z)X = I. Then

A1-z71 0 IN(A1-z""\/0 —z"U
@[ (o) (3 )0 )
- I:l:B_—z ,:X] BE @

On the other hand, the involution fixes K{(ZG)/SK(ZG) % (+G) by [30,
Proposition 10.1]; and it fixes Cl,(ZG) by [4, Theorem 2] (the result is
stated in [4] only for odd order nilpotent groups; but holds in general by
the same argument, and the later results of Bak and Rehmann discussed in
Theorem 2.2 below). Since B is negative equivariant with respect to the
involution, and the involution fixes the domain and range of

(B?)': K,(ZG)/SK,(2G) x (£ G) - C1,(ZG)/B} (SK,(ZG)),

the image has exponent at most 2.

The last result in this section also helps to suggest the direction in which
one must go to find examples with g7 +1.

ProrosITION 1.4, Let 3:G—> G and ze Ker (8) be as in Proposition 1.2.
Then Im (B¥) is finite, and has torsion only for primes dwzdmg the order of

Ker (8) N [G,G].

Proor. If Ker (8) N [G,G] = 1, then B is the reduction of some central
extension 1 »Z — G — G — 1. So B# = 1 in this case by [16, Proposition
6.1], and naturality.

The image of 87 is finite since Cl,(ZG) is. It remains to show, for any
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prime p, that Im (8#) is p-torsion free if Ker (8) N [G,G] is. It suffices to
prove this when G is p-hyperelementary: K,(ZG),, is generated by p-
hyperelementary induction otherwise [14]. But if G is p-hyperelementary
and Ker (B) is central and p-torsion free, then Ker (8) N [G,G] = 1; and so
B? =1.

This last result will be sharpened in Section 4.

2.
A fair amount of machinery is now needed before further results on the
B# can be obtained. These background results will be collected here, and
applied in Sections 3 and 4.
IfUAisa Zp-order in a finite dimensional semisimple Op-algebra A (for

some prime p), define
(%) = lim Coker [K,(2,p") - K, (21)]
and, if M C 4 is any maximal Z,-order,
K5(A4) = li;I;n Coker [K,(M,p"M) - K, (A4)].

These groups turn out to be the most convenient to use when making
calculations in K, of p-adic orders and algebras. That K5 (A)is independent
of the choice of M follows easily from the fact that any two maximal orders
in A are conjugate in 4 (see, e.g., [24, Theorem 17.3]).
If A is a Z-order in a finite dimensional semisimple Q-algebra 4, then by

definition 4

SK; (™) = Ker[K,(A)— K,(4)],

SK,(91,) = Ker[K, (,) > K, (4,)]

for any prime p (9, =2, ®, U and 4,=Q, ®y4); and
Cl, (%) = Ker[SK, (%) - [T SK, (41,)].
p

~ There are several itypes of localization sequences which can be used to
describe and make calculations in SK(2) and Cl, () (see, e.g., [5] or
[11]); the following one will suffice for our purpose here.

THEOREM 2.1. Let A be any Z-order in a ﬁﬁite dimensional semisimple Q-
algebra A, and let M A be a maximal order containing U. Fix a prime p.
Then there are exact sequences
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(1)  K5(d1,) - Coker[K,(M[1/p])p = K5(Ap)p] S Cly (M)~ 1

and

@) 1> Cly () - SK,(A) - [] SK,(91,) - 1.
prizne

Furthermore,

(@) 5(31,) = lim K, (A /p"A)

(ii) Coker[K,(M)— K5(M,)] = Coker[K,(MM[1/p]) » K5(4,)]-
(iii) Fix AeGL,(N) such that
[A]eKer[K,(U)— K, (¥,) ® K, (M[1/p])] & Cl; ().

Lift A to elements x, € St(‘flp) and x, € StM[1/p]). Then x,x; '€ Kz(/ip),
and [A] = d(xy x5 Y).

Proor. SteP 1. To show (i), first fix some

3) ([u))i s € lim Ker[K, (91,,p"91,) - K, (41,)],

where u, e 1 +p"‘i[p foralln. Foranym>n2=1,
Uy = u,(mod’K, = Ker [(1 + p"9L,)—- K (9,p"91,)]).
The K, are closed in the p-adic topology [18, Lemma 1], and so

u, = lim u, =1(mod K,).

m=—* o

In other words, [u,] = 1 for all n, and the limit in (3) s trivial. On the other
hand, since K,(2/p" ) is finite for all n (see, e.g., [20, Theorem 2.4]), the
exact sequences for the pairs (I »»P",) induce a short exact sequence

1 — limCoker [K,(%,,p"9(,) —» K,(41,)] - lim K, (U/p"A)
— lim Ker [K, (81,,p"41,) = Ky (91,)] - 1;
and (i) follows.

Step 2. By [12], Cl,(9) = 1. By [23, Theorems 4 and 5], there are exact
sequences
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. 1K) — K,(M[1/p]) » K, (WR,/0) > K (W) — K, (R[1/p])

@) -
1- K,(M,) - K,(4,) — K (M,/0) — K, (R,) > K, (4,),

where J S 932,, is the Jacobson radical. The bottom row is clearly still exact
if K, is replaced by K%. Also,

Ker [K (M) - K, (M[1/p]) ® K;(M,)]< CL (M) = 1.
So the snake lemma applied to (4) induces an isomorphism
() Coker [K,(IR) - K5(M,)] = Coker [K,(M[1/p]) ~ K5 (4,)].
By [20, Proposition 1.2], there is an exact sequence

5 (91, - Coker [K,(0) - K5 (M,)] 2> Cl, () — 0

(note that K‘z(ﬂjtp) is finite, by [7, Corollary 4.4 and Theorem 4.7]).
Sequence (1) now follows upon combining this with (5). The description in
(iii) of the boundary map follows from [20, Proposition 1.1]. Finally, the
exactness of (2) follows from the localization sequences in [5], [11], or
[20]: note that

SK,() = [[SK,@,)
q
by [12]; and that SK,(91,) is trivial for almost all q (since 9, is maximal

and Aqw a product of matrix algebras over fields for almost all g).

If A is a finite dimensional semisimple Q-algebra, and IMC 4 is a
maximal order, then for any prime p we set
C,(4) = Coker [K,(M[1/p]) - K5(4,)] = Coker [K, (M) —» K5(@,)].

These groups have been completely described: by Bass, Milnor and Serre
[9], when A4 is a product of matrix algebras over fields; and by Bak and
Rehmann ([7] and [6]) in the general case. The description is in terms of
norm residue symbols.

If K is any finite extension of O,,, and u S K* is any group of roots of
unity in K, then a symbol with value in u:

(5 ):K*XK*—> u
is defined (see, e.g., [26, Section XIV.2]). For convenience, we will let
(" )x:K* XK*— (ug),
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denote the symbol with values in (u),, the group of all p-power roots of
unity in K. If K is a number field, then

(o )k (Kp)* X (Kp)* = (k)

will denote the product of the symbols for the various K , for prime ideals
p|p. This last does, of course, depend on p; but we leave that out to keep the
notation from getting too complicated.

Finally, if B is a finite dimensional central simple K-algebra, then
nrp g :B*— K* will denote the reduced norm homomorphism (see, e.g.,
[24, Section 9]). Note that when B = M,(K), then nrgy is just the
determinant map.

THEOREM 2.2. Let B be a simple algebra which is finite dimensional over its
center K. For any prime p, (ug), denotes the group of p-power roots of unity in
K.

(i) If K is a finite extension of Q, for some prime p, then there is an
isomorphism
4g:K5 (B)(p)—z‘* (1x)p
such that for any ue K* and ve B*,
. Ap({u,0}) = (u,nrg(v))k-

(i1) Assume K is a finite extension of Q, and fix a prime p. If, for some real
valuation KS R, R ®x B is a matrix algebra over R, then C,(B) = 1.
Otherwise, there is an isomorphism

A’B : Cp(B)'EH (“K)p
such that, for any ue (Kp)* and ve (Bp)*,
Ap({u,v}) = (unrgx(v))x, ({u,0}€Cy(B) = K5(B,)/K2(M[1/p])).

Proor. We refer to the results in [7] and [6]. The authors only work
there with division algebras; but the results are easily extended to matrix
algebras over division algebras.

(i) This follows from [7, Theorem 4.7] and [6, Corollary].
(ii) By [7, Theorem 5.2] and [6],

1 if some K — R splits B

Coker [K(B) — ;KZ (B))] = { px  otherwise.

Here, the sum is taken over all primes g, and the isomorphism in the second
case is given by norm residue symbols and reduced norms.
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Let M S B be any maximal order. For any prime g,
5(@,) = lim K, (/g M)

is a pro-g-group [20, Theorem 2.4]. So the localization exact sequences of
[23, Theorems 4 and 5], applied to the pairs M[1/p]< B, B,S B, and
M, < B,(q + p) take p-locally the form:

1 “'Kz(m[l/P])(p) “’Kz(B)(p) - ; KZ(sﬁtq/J)(p)_) SKx(Sm)(p) -1
q=p
1-K5By)p~  LK5Bp = 2 KaMe/T)py— Y. SK (M), — 1.
q q¥p q*p
Here, J denotes Jacobson radical. By [12],
SK;(M) = Y SK,(M,) and SK,(M,),,= 1.
q
It follows that
C,(B) = Coker [K,(M[1/p]) - K‘;(B,,)](,,)’_—V_ Coker[B) —» Y K% (Bq)(p),
q

and (ii) now follows from (1) above.

In order to apply Theorem 2.2 in concrete calculations, some formulas
and relations for norm residue symbols are needed. The following two
theorems will suffice for our purposes here.

THEOREM 2.3. Fix some prime power p"(n =1), set { ={ p» and let
K= OI,(C). Let Tr: K — 0,, be the trace map. Then

@) foranyuel+ (1—0)2Z,[(], Cu)x= (R, where
R = %Tr(log u)) if pisodd
R=( +2"_1)'%Tr(log(u)) ifp=2andnz?2,
(i) forany uel+(1-— C)ZP[C], A=Cug =105, where |
S= %,,I-Tr (-l—f_—clog(u)>,

(i) if uu'el+(1— C)ZP[C] are such that log(u) = log (u'), then for
any i¢p"Z (that is, (' + 1):
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A== (1= Cu)k
Proor. These are due to Artin and Hasse [3]. Note that (iii) follows

immediately from (ii) if i = 1, and hence (by symmetry) whenever pti. It
holds in general since for any k < n and any i prime to p:

C:p" H (1 Cl+]p

TueoREM 2.4. Fix a prime p, fix finite extensions K2 F2 Q,, and let
1S K* and uS F* N [ be groups of p-power roots of unity. Then for any
ue F* and ve K*,

(,Ngjp(v)), = ((u,v)ﬁ)[ﬁ‘/‘].

PROOF Set p' =|/i| and p* = |u|. Fix some extension K(«)/K such that
«” = u. The diagram

K*——<  Gal (K(a)/K)

JVN KIF lres

F* — s Gal(F(«*")/F)

commutes by [26, Section XI.3], where s and s are the reciprocity maps,
and res is induced by restriction. By [26, Proposition XIV.6],

(“,NK/F(U)) = S(NK/F(U))(OCPH)/ P
= [§)(@)/a]"™" = ()"

Next some means is needed for lifting an element in the image of a
transfer map from Cl,(ZG) to C,(QG).

LEMMA 2.5. Let R be any ring, and let (¢ b)e M(R) be such that ac = ca,
and ad — cb = 1.

(1) IfaeR*, then

D)2 Y e
(ii)) If ceR*, then

)+ ) )

(iii) If a,ce R*, then

(xﬁal_l h21(a) x§2 )(x'fcz_1W21(C)xf_2ld)_1 = {C,a}EKz(R)
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Proor. The first two statements are clear. For the third, recall that
- —- -1
hy1(a) = x21x1_2a l3"513‘2—113‘12"211 and w,q(c) = x5, X127 X2

are liftings of (%, 0) and ( "_1), respectively, to St(R), Using [15,

a

Corollary 9.4 and Lemma 9.6], we get:
(x5% h21(a)” ‘xla"’)(x‘:cz“vvn(c)xi';d)“
=x% 'hy (@) xF T wag(e) e (@ th—cld = —a” )
= ha1(@) ' XEy X Xg waa(e) !
= hyy(a)" 'wyy(ac)wy (€)™ = wyy(ac)wy (c) " thy (a)~ !
= hy1(ac)hy(c)™ thyy (@)™ = {c.a).

This is now applied to lift the image of the transfer map via 0. The next
proposition, while it does not cover all cases, will suffice for most purposes
here.

PRrOPOSITION 2.6. Let 1 C— G-£>G — 1 be a central extension of
finite groups, and let z e Ker () be a generator. Write QG = QG X R, where
R is the product of all simple components of QG where z + 1. Consider the
induced homomorphisms

K,(ZG)-»K,(2,G)L—K,(Z,G).
Then, for any ue K (ZG) and any i€ B, * (i, (1)),
BZ (u) = 8(1,{1 — z,4})e C1, (ZG).
Here, 0:C p(QG) — C1,(ZG) is the boundary map of Theorem 2.1, and
(1,{1—z,a})e C,(QG) xC,(R) = C,(QG). -

Proor. Writeu = [M] for some M € GL,(ZG). F ix liftings A,Be M,(ZG)
of M and M ™1, respectively, and chooce X € M,(ZG) such that AB — (1
—z)X = I. Then, by definition,

A X
rw=[,1.5]

Recall that Ker (B) is a p-group. Hence:
(1) Z[G][1/p] = Z[1/p][G] x U for some Z[1/p]-order AL R.

(2) Ais invertible in M, (2,G) (since B(A) is invertible).
Furthermore, 4 is invertiblein Z[1/p][G]; and 1 — zis invertible in A since
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1/pe U and z has order p'>1 in each component of R (see, e.g., [31,
Proposition 7-4-1]. Using Lemma 2.5, one gets corresponding liftings of
(1{2 g) to
X,€5t,(M,(Z,G)) and X,eSt,(M,(ZG[1/p])).

Note that Im (87 ) is a p-group by Proposition 1.4. Hence, by Theorem 2.1
(iii) and Lemma 2.5 (iii), 7 (u) = d(X), where

X =X X;'=(1,{1-2[A4]})eC,(QG) xC,(R) = C,(QG)
and [4]eK, (ZI,G) is the class of 4. By construction,

B«([A]) = i (w).
It remains to show that [ 4] can be replaced by any iie Kl(sz) such that
Py (@) =i, (u), For any such i,
a[A] ' =[1+ (1 -2)z]eK,(Z,G)
for some x€Z,G (z generates Ker (8)). In C,(QG) = C,(QG) X C,(R):
(L{1-za})=1{1-z1+(1-2)x}) 1,{1—2z[4]}).
By Lemma 2.5 again, if xe ZG, then

01,{1~z,k+ (1—2)x}) = [1 ok ’1‘] ~1;

~ and by continuity this holds for all xeZ,G. So
A, {1—2,d)) = o(1{1 - z,[A]}) = B* ).

In order to apply the Artin-Hasse formulas to the symbols arising
through Proposition 2.6, it is necessary to be able to calculate logarithms of
the units which arise there. In practice, this will be done by describing units
via their logarithms.

Fix a prime p, and let A be the ring of integers in some finite unramified
extension F of Op. Let ©= be a p-group, and let I(An)S An be the
augmentation ideal. By [18, Proposition 3], the logarithm series converges
on 1+ (pA +1(Ar)), and induces a homomorphism

log:K,(An) —» Hy(n; Fr)

where 7 acts on Fr by conjugation. Furthermore, if ¢ € Gal (F /O,,) is the
Frobenius automorphism (¢(4) = 4# (mod p)for 1€ 4);andif ® € End (Fr)
is defined by setting

Q(Zligi) = Z‘P(Ai)gf;
then the map
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Lgn = (1 —1/p®)°log:K;(An) - Ho(n;Fr)

has image in Hy(n;An) by [18, Proposition 10]. The following theorem
lists the properties of I',, which will be needed later.

THEOREM 2.7. Let © be any group, and let A be the ring of intégers in any
finite unramified extension F of Qp. Let

e:An > A, Tr:A—2,, Tr: A~ Z/p, w: Hy(n;An) - 12
denote the augmentation map, the trace, the trace mod p, and the map
w(z/ligi) = Hg;nu")’
respectively. Set I(An) = Ker (¢). Then
(i) Im(T,,) = Ker[w:Hq(n;An) - n?*] if p is odd
= Ker [(w,Tro ¢):Hy(n;An) » n?® xZ/2] ifp=2

(i1) Assume A = Zp. For anyueK (an), if
k

() = Z Aigi,

then

k
log (u Z

PRroor. By [18, Theorem 2], we have
Im (T,,) = ['(1 + pA) + T'(1 + I(An))

IIM;,

[(g.—1>+ 6 1)+ g 1)+ ]

1

@) _ =T'(1+ pA4) + (Ker (w) N I(Ar)).
If p is odd, then the exponential map converges on pA; so
) log (1 +pA) = pA.

If p =2, then log (1 +24) = 2(4 — A?) (mod 4); exp (4)4) converges for
A€ A; and so (using also [18, Lemma 4]),

3) log (1 +24) = (2(4 — A?),41) = 2Ker[Tr:4 — Z/2].
Together with the inversion formula: |
A-1/pp) ' (A) = —pe~'(A) =P’ 2(A) - P20 >(A) — ... (Aed),
(2) and (3) imply that
Irl+pd)=4 if p is odd
=Ker(Tr) ifp=2.



THE WHITEHEAD TRANSFER HOMOMORPHISM ... 65

Together with (1), this implies (i).
Finally, (ii) is immediate from the definition of I' (note that the sums in
brackets are finite, since each g; has p-power order).

The next two propositions will make it possible to apply the Artin-Hasse
formulas to certain symbols involvingue K (an), based on knowing I"(u)
rather than u or log (u).

ProvosiTiON 2.8. Fix a prime p and a finite group G, let B be a simple
component of QG with center K, and let F & K be any subfield. Let J (ZI,G)
denote the Jacobson radical. Let pr:O‘,G - 3p denote the projection, and let
nrg g, Ngj, trgx, and Trgp denote the (reduced) norm and (reduced) trace
maps. Then, for any uel + J(ZI,G), with

k
log () = Y. 4ig;€Q,G,
i=1

(1) log (N, kg g (pr(w))) = Trgp trpx (pr (log(u)))

1 k X
=B L At @),

Here, yp y denotes the character of B as an FG-module. In particular the
expressions in (1) depend only on the value of log (u) in Hy(G :OI,G).

PRrooF. Since F » is torsion free, it is enough to prove this for u" for any
N # 0. In particular, since (Z/p[ G])* is finite, it suffices to prove the result
whenuel + pZ,,G. By definition of the norm and trace maps, it suffices to
show that

log (det (1 + pM)) = trace (log (1 + pM))eL,

when M e M,(A), and A is the ring of integers in any finite extension L of
Q,. But this is standard: just note that

log (det (1 + pM)) = lim [p~"trace (1 + pMy’" —1)]
= trace (log (1 + pM)).

The last formula (involving y ) now follows directly from the definition of
the character; and the fact that [B: K]'/? - trp/ is the ordinary trace for B
over K [24, formula (9.7)].

ProrosiTioN 2.9. Fix a prime p and a p-group m.
(i) Let x # 1bealinear character of n,andlet{ = { p..(" 2= 1) be a generator
of Im (x). Fix ue K, (Z,n), and write
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Lu) = _i Aigis x(g:) =
Then (1=, 24 ®))aq) = (R, where
R=14 %4+ ¥ ALp]- 10" 3 ds

(and [x] denotes the greatest integer in x).

(ii) Let B be a simple summand of Qn such that B ~ M ,,(Q(()) for some {
= {, withp"> 2. Let V be the irreducible B-module, and define

F:Ho(n;2,m)— 2, by F(YAg) =Y A dimq (V¥)

(Where V&C V is the subspace fixed by g;). Let pr: Q n— B denote the
projection. Then, for any ue K (Z ),

(¢, nrg o (pr ))gp = (FT@ if p is odd
= (=0FT®) ifp=2.

Proor. (i) We may assume = is abelian. By Theorem 2.7,

i [~ D+1pEr—1)+1/p* @ —1)+...];

"M"'

log (u) = —1
and so
k k
log () = -2 ¥ 4t 3 [€H=D+1/p@=1)+...]

So by Theorem 2.3, (1 —{, x,(u))q; = {®, where

(1)
— -1 C . p ; S . psi — . psi
R=—Tr Z o+ > L[ -1)+1/p((P—1)
" 1-¢ -1,% i=1

+...])].

Here, Tr:Q,{ - Q, denotes the trace map,
p"Tr(()=1-1/p ifp"|i
) =-1p ifp" |ibutp"fi
=0 if p"1 i,

Note that
— A=) =420 43 4.+ ("= 1)L
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1t follows that
=p "Tr((*+23+..)

®
= CUDE =D+t Q=0 =)+ a1k

—p-1
2p

Also, for any 0 < seZ,
Sl 1)) = ST 4 0 = [/ = ULl
S Tr{ 1o = :

Since the last expression depends only on s (mod p"), this holds for all se Z.
It follows that

1 C s ps __
- ?Tr(l——_—c[@ ~1)+1/p(¢ 1)+...])

=l )Gl ) f-

The formula for R now follows upon substituting (3) and (4) into (1).
(i) FixuekK, (an), and write ()= Z:‘z Aigi- Then

log (1) = L5 ¥4 lei= 1)+ 5 60 ~1)+...]

by Theorem 2.7. So by Proposition 2.8,
log (nr g, (pr () = trq; (pr (log (1))

1
= P Yhit DAL ele) ~m) + 3 G eh) = m)+...],
where y :m — Q( is the character of V (recall that y(1) = m).
Fixgen,andlet {{,,{,,...,{,} be the eigenvalues for g. If | ;| = p*, then
(using (2) above)

‘Tr[p +@G-1)+- (C" 1)+—:(C" -+...]

P 1 1 1 1 1 .
=|Sw—l—ce - 1= [+] 5= || == |=0 ifu21
[P"l p P’ ][ P] [P ][ 1’]
=( P \1-1\ =1 if u=0.
p-1 p



68 ROBERT OLIVER

It follows that
1 pm .
?Tr[E—:T + (x(@)—m) + 1/p(x(g?) — m)+ J = dimgq,(V?)
for gen; and hence that
P~ Tr(log (nr gy, (pr ()))) = ¥ A,dimq, (V5).
The result now follows from the Artin-Hasse formula (Theorem 2.3).

Since the algebraic structure of the rational group rings will sometimes
play a role in calculations, we note the following facts.

THEOREM 2.10. (i) If 7 is a finite group of exponent n, then the center of any
simple component of Qn is isomorphic to a subfield of Q(,. In particular, for
any prime p||1t| , C,(Qn) has exponent dividing n.

(ii) If m is a p-group, where p is an odd prime, then Qn is a product of matrix
rings over fields Q{  for various k.

(iii) If = is a 2-group, then Qnr is a product of matrix rings over division
algebras isomorphic to

Qfax, QLo+ 2], Q[La— (2], or Qa[f].

Proor. The first statement follows from [10, Theorem 15.16] (and
Theorem 2.2). For the second statement, see [25, Sections 2 and 3].

Finally, the following result will be needed in Section 4.

ProvposITION 2.11. Fix a prime p, and fix n = 1 such that p ¥ n. Then, for
any abelian p-group of rank <2 the transfer map

t:Cl, (2L, [n]) > Cly(Zn)
is an isomorphism.

Proor. This follows directly from results in [1, Section 2]. Alternatively,
" if p is odd, the result is shown in [20, Theorem 4.3]. If p = 2, then the
transfer map

trf: C,(Q¢,[n]) » C,(Qn)

is onto by [15, Corollary A.15]; and so t is onto by the localization
sequence of Theorem 2.1. Let M S Q be the maximal order, and consider
the maps
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/Kg M,)
5(Z;m)
\

!
¢
C,(Qn) = Coker [K, (M) — K5 (M,)]

where @, ¢ are induced by the inclusion Z,n C 9t,, and f is the projection.
Then, by [20, Theorem 4.4] (and Theorem 1.1]:

Cl; (Z¢,[n]) = Coker (¢) and Cl,(Zn) = Coker (¢).

Since t is onto, it will suffice to shrow that these cokernels are abstractly
isomorphic, or that Ker (f)C Im (@).

Write Qn = [}, Fi, where for each i, F; = Q(,. for some n. Then, by
Theorem 2.2,

Ker (f) = [[{K5(Z,):F; = Q} = [T{(£1):F; = Q}.

Note also that for any n = 2, and { = {,», then in K‘Z(chz..):
{Cac} = {Ca —C}1+2"'1 = 1.

Thus, since rk(n) < 2, Ker (f) is generated by elements ¢({ +g, +h}) for
fihen. Hence Ker (f)S Im (@), and Cl, (Z{,[n]) = Cl,(Zn).

-

3.

Concrete examples of central extensions 1 — {z) — GLG—1 of p-
groups for which g7 # 1 —in fact, for which g7 (SK,(ZG)) +1 — will now
be constructed. The determination of Ker (87) for arbitrary f is at best an
extremely tedious combinatorial problem, where (as indicated by
Theorems 2.1 and 2.2) the chief difficulty is to describe the image of
K,(2,G)in C,(QG).

So instead, for fixed B as above, we consider the family of pushout
sequences '

1 <zy > G A6 -1

for s 2 0, where G, = (G,z,:[G,z] = 1, (z,)"=2z). For any 0 <s<t,
regard G, as a subgroup of G, (where z, = (z,)? ). The diagram

Cl,(2G,)
B?).,
K. 26) /

trf

WCII G,
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commutes (see [16, Section 6]); so the Ker ((8), ) are non-increasing. For
large s, the symbols {z,,-} come to “dominate” in K,(Z,[G,]) in a way
made more precise in Proposition 3.2. Sufficiency conditions for showing
B ), (SK(ZG)) # 1 are then given in Theorem 3.3 below, after which
specific examples are worked out in Propositions 3.4 and 3.5.

LEMMA 3.1. Let B:G— G be a central extension of p-groups, for some
prime p, and let H C G be a subgroup such that B(H) = G. Then

Im [K5(2Z,H) - K5(@2,6)] = Im[K5(2,6) - K52,G)).
Proor. Let o = |H. By [21, Proposition 2.1], there is the following
commutative diagram with exact rows:
0—» Coker (H,(x)) - Coker (K5 (2,2)) - H,(G;2,G)/{g ®h:[a~ ‘g0 h] =1)
= lf 1 12 = |fs
0 Coker (H,(B)) - Coker (K5(2,8))~ H1(G;2,G)Kg ®h:[f~'g,p~*h] =1)
where f,, f,, f; are all induced by the inclusion HS G. That f; is an
isomorphism is immediate. That f; is an isomorphism follows from the
five-term exact sequences
H,(H)22% H,(G) % Ker (1) — H®— G?*—0
~ |Id
H,(G)H18), H, (G) % Ker (B)— G**— G—0
(see, e.g., [27, Section I1.3]). So f, is injective, and K4(Z,a) and K%(Z,B)
have the same image.

This is used to show:

~ ProvrosiTioN 3.2. Fix p, let G be a p-group, and let H < G and z€ Z(G) be
such that G = (H,z). Set q = exp (H), and let ¢ denote the composite

@:K5(2,G) 2% C,(QG) —» C,(QG)/,C,(QG)
(i.e., dividing out by g-torsion). Then
P(K5Z,G)) = (¢({z,1 + (1—z)g}):g€G).
Proor. Set G'= G/z. By Lemma 3.1,
Im[K%(2,G) - K5(2,G")] = Im [K5(2,H) - K 5(2,G")].
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By [21, Theorem 1.4],

Ker [K5(2,G) - K5(2,G')] = ({g.1 + (1—2)h} :g,he G,gh = hg>.
It follows that
K5(2,G) = K5@Z,H) + {{h,1 + (1—z)g} :he H,hg = gh)

1)
+<{{z,1+(1-2)g}:geG).

That
exp (({h,1+ (1 —z)g}:he H,ge H,hg = gh))|exp (H) = q
is clear. By Theorem 2.10 (and Theorem 2.2),
exp (96 (K5 (2,H)))|exp (C,(QH))|exp(H) = q.
Hence
9(K5(Z,G)< {o({z1+ (1-2)g}):g€G) +,C,(QG);
and the result follows.

If 1-C—G£5G -1 is any central extension of p-groups, then we
define an isomorphism
- Cn[G,G]
¥ {zeC:z=[g,h],g.heC>

3 Coker[SK, (ZB):SK,(2G)—~SK,(ZG)]

as follows. For any we C N [G,G], choose fie K, (2,G) such that I 5(d) =
1—-wand g, (u)e SK, (Z,,G); then %(w) is represented by any lifting of f,, («)
to SK,(ZG). That this defines an isomorphism to Coker (SK,(Z,B)) is
shown in [18, Proposition 16]. That

Coker (SK (Z,B)) = Coker(SK, (ZB))

follows from the exact sequence of Theorem 2.1(2), and the fact that
Cl,(ZB) is onto [17, Lemma 1].

THeOREM 3.3. Fix p, let Gbea p-group, and fix H < G and ze Z(G) such
that G = (H,z). Fix w=2z"¢[G,G]. Set G = G/z, let B:G — G be the
projection, and let

p* = BF:K,(26) - C1,(ZG)

be the induced transfer homomorphism.

Set q = exp (H), and let S be a set of irreducible complex characters of G
such that for each y € S, z% acts non-trivially on the corresponding irreducible
QG-representation V,. For each y €8, set
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p*x = (order of z% acting on V) > 1
p™ = (order of w acting on V,) = max {1,pk~"}
p" = dim¢(V)).

Define a homomorphism

F:2G - [] z/p*

X€S
by setting, for geG,
F(g) = (dim¢ (V9)),es (V4 = {veV,:gv = v}).
Finally, define

X = (Xx)xese H Z/ka
XES
by setting

x if my =0 (i.e., if w fixes V).

Then B* (#s(W)) * 1 if X éIm (F). More generally, B* (SK, (ZG)) is cyclic of
order at least equal to the order of X in Coker (F-I'g).

x _{p"t""‘t if m,>0
0

Proor. Wecan clearly assume H # 1; thatis,g > 1.Sinceze Z (G), zacts
on each ¥, via multiplication by same root of unity {,, where |{| > g by
assumption. Since g =exp (H) < |{,|, this shows that all eigenvalues for
elements of H, and hence of G, acting om V,, lie in <{,>. Thus for €S,

@) Qx = Q(,) and || = gp*: = p*.
Hence, we can define a homomorphism
R =[]R,:C,(QG) - []z/p*
XS
as follows. Each y corresponds to a simple summand B, of QG with center
Qy; let ‘
I ) % QG—-B .
be the projection map. Then R, is defined to be the composite
z: Cp(QG) L2k C,(B,) s (> L2072k

Here, A, = Ap, is the norm residue symbol isomorphism of Theorem 2.2.
Now con81der the maps
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K,(Z,G) % C,(QG) % C1,(ZG) 3 B* (uy(w))

R
Xell z/ph

XES

where the top row is exact by Theorem 2.1. By definition, %g (w) lifts to some
ek, (ZI,G) with I'g(%) =1 —w. So by Proposition 2.6,

B (45 (W) = 0(1,{1 ~z,i}) e C1, (2B,

where, upon writing QG = QG x 4,
(1,{1-zi})e C,(QG) @ C,(4) = C,(QG).
To prove the theorem, it hus remains to show:
(2) Im (Re)S< Im (F); and
(3) RQ,{1-2zu})=X.

SteP 1. By construction, and (1), all g-torsion in C p(QG) lies in Ker (R).
So by Proposition 3.2,

4) Ro(K,(2,G)) = {R({z,u}):ue (Z,6)*}.
By Proposition 2.9, for any ue (ZPG)* and any y €S,
(o, (P (1)) gy = LT
(F L Aigi) = Y Aidim (V).
So R({z,u}) = F(Lg(u)) for all such u, and by (4):
Ro(K,(2,G))S Im (F).
This proves (2).

Step 2. Recall that for any xS, w acts on V, via multiplication by (7.
Since we [G,G], this implies that

1= detc (w,V,) = (L8)™; |L8] = p™:;
and so n, = m,. Thus
X, = p"meZ/pk

is defined when m,, > 0.
We have I'(i7) = 1 — w. By Theorem 2.7,
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log (u) = [(1—w) + 1/p(1 — wP) + 1/p?(1 — wP’) +...]
+ Zli(gi _g:)e 0‘1)67
where g; is conjugate to g; for each i. Then, for each y €8S,
log(det(pr, (1)) = tr(pr, (logu)) = tr(pr, (1 —w) +1/p(1 — wP)+...))
= p"(l . Cp) +pn— 1(1 _Cpr*'l) +... +pn—m+ 1(1 _ Cpr+..—1)

(where we setn = n,, { = {,, and m = m,, for short).
By definition of R,

(RA-28) = (1 — ¢, det (pry (u)))q,-
By the Artin-Hasse formula (Theorem 2.3), R, ({1 — z,4}) = 0 = X, when
m=0.If m > 0, then |{| = p"*™, and using (5) we get:

R,({1-zda})=—p~ ™ Tr<1f_€ . log(det(pr,(ﬁ)))) (Tr = Trqy0)

=—-p ™ Tr TC_C[ "(]__CP').'_‘“+pn—m+1(1_cpr+m—1)]>

[

=-—p'm Tr( Y P+ +¢ +...+C”'+')>
j=0
=—prm ,pn—m+1 . Tr(cp’*"‘“) (ICI - pr+m)
=—pTmep (=pt ) = = X,
This proves formula (3).
We now construct concrete examples to show that for any prime p, there

are surjections of p-groups whose Whitehead transfer map is non-zero.
This is easiest for odd p.

THeEOREM 3.4. Fix an odd prime p Define
H = {a,,a,,a3,04:[a;,[a;,a,]] =1 = a?, alli,j,k);
and set
G = (H,z:[z,H] = 1,2° = [a,,a,][a3,a,]).
Set G = G/z. Then the transfer map
B* = B! :K,(ZG) - K,(2G)

for the extension 1 — {z) - G-£->G — 1 is non-zero.
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Proor. Note first that H is a central extension of the form
1-[HH]->H%>H*®~1,
where
H* = (a;= a(a))y = (C,)*; [H,H] = {[a,a;]) = (C,)".

In particular, (z) N [G,G] = <z*>, and p = exp (H). Set w = z?, so that in
the notation of Theorem 3.3, g = p" = p.

Step 1. We consider subplanes — 2-dimensional subspaces - of
H? x~ (C,)*. Set

# = {PC H®:P asubplane, z/¢ [H, o™ ! P]}.

Fix some Pe, let {X,X,,X3,X4} be any basis of H?® such that P
= {(X,,X,), and choose elements x;e ™ !(X;)C H. Note that

[H.H] = {[x3,x4], [H,a" ' P]) = <z*,[H,a" ' P]).
Hence, upon replacing x, by x/, for some 1 <i < p—1, we may assume
that
[x3,x4] = 2% (mod [H,a™'P]).

Define a homomorphism 7:G — GL (p,C) by setting (here { = {2, for
short):

1z) =1, 1(xy) = t(x;) = t([Ha" 'PD =1,

0 1 0 ... O 1 0 ... ... 0
0 0 1 0 0o ¢r :
T(x3) =] : t(x)) = | : g2
0 0 0 ... 1 : . :
" rp-1)
(100 .. 0 [0 . eYr ]

Let x(P) and V,p be the corresponding irreducible character and
'representation.

For any r,s not both zero modp, 7(x3x%) has trace zero, and all
eigenvalues are pth roots of unity; hence the eigenvalues must be
{1,(7,¢%2,...,{~ 1P}, The same then holds for eigenvalues of t(gx%x3) for
anyge {[H,H],x,,x,>; whileif ge G — H, then all eigenvalues of 7(g) have
order p2. It follows that for ge G,

dimu(V4p) =1 ifgeH, alg)e HO— P
1) c\V up)
=(0orp otherwise.
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Note that while x(P) depends on the x; as well as P, the dim (V5 5)) do not.
Let

S = {x(P):PeZ}.
Then, in the notation of Theorem 3.3, k,=m,=n,=1 for all yeS.
Consider the map and element

F2,6-T1@p.  Xe[l@p
PeS PeS

defined by

F(g) = (dimc(V)))es; X = (Xpyes = (Dyes-

By Theorem 3.3, we will be done upon showing that X ¢ Im (F). Assume
that there exists a subset , & 2 such that

() for all 1 + ge H?®, ge P for some unique Pe %,.
Then |%,| = (p*—1)/(p>—1) = p*+ 1. For any geG,
Y dim (Vip) =p*-1+1-0=0eZ/p ifgeH, alg)+ 0
Pe?, = (p*+1):0 =0e€Z/p otherwise.
On the other hand,

Z X =1€Z/p,
PeZ,

implying that X ¢ Im (F).

StEeP 3. It remains to construct Z, S £ satisfying (2). For convenience,
we write H2 additively here: H2® = (Z/p)*, where we identify a,
= (1,0,0,0), etc. Then

# = {P < H®: P subplane, a; Aa, + —az Aa, in Hy(H*®/P)}.
Fix a quadratic nonresidue N € Z/p. Define a subset T S GL (2,Z/p):

T= {(‘; Nb): (a,b) % (0,0), a> — Nb? + —1} n

a

n{(a _Nb>:a2—-Nb2=—1}.
b —a

For each e T, set
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P, = {(x,0(x))€ Z/p)*:xe Z/p)*}.

Then in H,(H*®/P,),a; Aa,=det(p)-as ANay + —as Aay; so P,€S.
Let ,
‘@0 = {Plp:(pET} U {Po,Pco} g P

where P, = {(x,0):x€(Z/p)*} and P,, = {(0,x):x€(Z/p)*}.

Fix 0 # (x,y)e H®®, where x,ye (Z/p)*. Then (x,y)e P, if and only if y
=0; (x,y)e P if and only if x = 0. It remains to check that for each
x # 0 % yin (Z/p)?, there exists a unique ¢ € T such that ¢(x) = y. This is

most easily seen by identifying (Z/p)? with F p[\/ﬁ J= Fp. Let x — X be
the galois automorphism, and set N(x) = xXx for xe F ». Then T consists of
all maps x — ax, for o€ (F,2)* and N(x) # —1; and x — ax for ae (F)*
and N(x) = —1, and the result follows.

This procedure fails for the analogous 2-groups: i.e., when H is one of
the corresponding central extensions of (C,)* by (C,)°. So to get an
example with 2-groups, we must work instead with a still larger group.

THEOREM 3.5. Define

H =<{ab,c,d:a* = [b,cd]?, b*=[a,d]?, c*=[bd]?, d*=[a,cd]?
[H,[H,H]] =1,

and set
G =(H,z:[z,H] =1, 22 = [a,b][c,d]).
Let G = G/z. Then the transfer map
p* = ¥ :K,(ZG) ~ K,(ZG)
for the extension 1 — {(z) - G-£->G — 1 is non-zero.

Proor. Since the proof is somewhat long and involved, we just sketch it
in places. Note first that

H® = {a,b,c,d) = (C,)*;[H,H] = {[a,b],[a,c],...> = (C,)°.
Following the notation of Theorem 3.3, write
g=exp(H)=8, w=z¢[H,H], 2"=8.
Set
S = {x:x irreducible character of G, x(1) = 4, x(z) = 4{3,}.

In other words, S is the set of all characters for 4-dimensional irreducible
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'representations upon which z acts via multiplication with {5,. Then, in the
notation of Theorem 3.3, n, = m, = k, = 2 for all y€S§,

F:2G6-T]@2/4), X = ()5 [1@2/4);
xeS xeS

and we must show that X ¢ Im (F). Let
x=2z* and Go= (H,x>< G;

and note that for y € S and ge G — G, all eigenvalues of g acting on ¥V, have
order at least 16. In other words, F(g) = 0 for g¢ G,. Thus, if X € Im (F),
then there exists & € ZG, such that F(¢) = X. Fix such a &.

Define projection maps

a:Go— Go/[H,H] = (C,)* XC,; d:Go — Go/Fr (H) = (C,)°

(recall that Fr (H) is the subgroup generated by commutators and squares
in H). The generators of GO/[H,H] and G,/Fr(H) will also be labelled
a,b,c,d,x. Set
#? ={PSQ H/Fr(H) = (C,)*:dim (P) = 2,
P intersects {a,b) or {c,d), not both}.
Fix some Pe 2, and choose u,ve H such that P = {dau,dv). Let
Ky =[H,0"'P]< [H,H].
Then K, = (C,4)*, and (by the intersection assumption on P):
(Kp,[a,b][c,d] = x*) = [H,H].

Fix i,je {0,1} such that ux’, vx’ have order 4 in Go/Kp.

Let{ = {g = ({32)*. There exist irreducible G-representations ¥ (u,v) and
V’(u,v), whose characters y(u,v) and y'(u,v) lie in S, and such that

(i) on both V and V', elements of K, act trivially, and x acts via
multiplication by (,

(ii) on V(u,v), ux’, and vx’ act via the identity,

(iii) in V' (u,v), ux’, and vx’ act vis multiplication by {2,

(iv) for any ge G, such that d(g) ¢ (P,x) = {du,dv,x), g has eigenvalues
(onVand V'): {1,034, —1,—-¢%} or {{,£3,05,07} ; g% has eigenvalues {1,1, — 1,
—-1} or {C2952’_C2,_C2}' :

By (iv), for any ge H,

Fyay(g +gx) = dim(V (u,0)?) + dim (V (u,v)**
(1) =1 if d(g)¢ P
= (0 (mod2) if d(g)eP.
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Also, if ge Fr (H) (that is, a(g) = 1), then
(2) FV(u,v)(g) = FV(u,u)(gx) = 0 (mOd 2)~
Furthermore, by (iv), we get, for any ge G,

Fyun@ —Fyung) =2if g= ux’ or vx’/ (mod Fr (H))
but gé Cu,0,[H,H],x
= 0 otherwise.
Hence, if t,,t,,t3,t, are coset representatives for PC H/Fr (H), then for
any geG,,

4
'21 [Fy@uen — Fyiusyl@) = 2 if g = ux’ or vx/ (mod Fr(H))
. = 0 (mod 4) otherwise.

Hence, if F(£) = X, the coefficients of ux’ and vx’ in
d(£)eZ[Go/Fr (H)]

are congruent modulo 2. The same argument holds for the pair {ux’,uvx'*/}
(note that (uvx'*/)*e Kp); so all three of {ux',vx/,uvx'*/} have the same
coefficient (mod 2) in a(¢).

Direct computations now give the following list of such triples, one for

each subplane Pe 2:

a b ab c d cd
ax bex abe cx  adx acd
ax bd abdx c bd bed

a bcd abcd cx abd  abcdx
bx ac abcx d acx  acdx
b adx  abdx dx be bedx .
bx acdx abcd dx abc abcdx
ab ac bc cdx  acx ad

abx ad bdx cd  bex bdx
abx acd  bcdx cdx abcx  abd

By inspection, the equivalence relation on (Go/Fr (H) — {1,x}), generated
by lying in the same triple, is transitive.
Hence, for some r,s,teZ,

aé)=r+sx+t (g + gx) (mod 2).

g€ H;F:r(H )
g+1

So by (1) and (2) above, if V = V (u,v) for any u,v, then
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Fy(&)=t- ) Fy(g+gx)=0 (mod?2)
gegflr(n)

since (H/Fr(H)—P) has even order. But X, =1, contradicting the
assumption that F(¢) = X. It follows that X ¢ Im (F); and hence that the
transfer map B* is non-zero.

4,
We now study the Whitehead transfer homomorphism for an arbitrary
central extension of finite groups with cyclic kernel. The main results are
collected in Theorems 4.9, 4.10, and 4.11.
Throughout this section, p denotes a fixed prime. For any finite group G,
G, and G, will denote the sets of p-regular elements and p-elements of G,

G,={geG:pt|g|} and G,= {geG:|g| =P, some i}.

Then any ge G can be written uniquely as a product g = g,g,, such that
8.€G,, g,€G,, and g,8, = g,g,. Two elements g,g’e G will be called p'-
conjugate in G if for some g” conjugate to g’, g, = g, and <{g,> = {g/).

Let Z,(G,) denote the free Z ,-module with basis G,, and with the action of
G induced by conjugation. Define

©:Q,G- Q,G, ©:2,(G,) > 2,G,)
by setting ®(Y L,g;) = Y 4ig? (L€Q,, g:€ G). Set
H,(G;2,(G,)e= H1(G;2,(G,))/(1 - ®)
= H,(G;2,(G,))/<¢ ® (h—h"):heG,, gh = hg)
and
Ho(G;Z/p(G,))g = Ho(G;Z/p(G,))/(1—®@) = Ho(G;Z/p(G,))/<h — hP).
Homomorphisms
I'=T;:K,(2,G)— Ho(G;Q,G), and
@,9) = @6.06): Ho(G;2,G) — H1(G:2,(G,))e ® Ho(G;Z/p(G))g
can now be defined. As in the p-group case,
T(u) = log (u) — 1/p®(log (1)) (any ue K,(Z,G)).
For any /;€Z, and g;e G, with Z;€2/p the reduction of 4,, set
(a)’y)(zligi) = (Zgi ® A8 ZI;(gi)r)
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((g;), denotes the p-regular part of g;, as described above).

THEOREM 4.1. For any finite group G, I; is a well defined homomorphism,
and Im (Ig)S H O(G;Z‘,G). Furthermore,

@) If p is odd, then
Im (Tg) = Ker [(DG ‘Hy(G; ZpG) - HI(G;zp(Gr))(I)];
while if p =2
Im ([) = Ker [(@6.,05): Ho(G;2,G) = H(G;2,G,))y
X Ho(G;Z/2(G,))g]-
(@ii) For any central z e G of p-power order,
L1+ (1-2)2,G) = {(1—2)(g—g°):ge G
={(1—=z)(@a—1)h:aeG,, heG,, ah = ha) + {(1 —z)(h—h?): HeG,).
(i) If i, : K,(ZG) = Kl(sz) is induced by inclusion, then
T4 (K1(2G) S <g+g™ ' —g"—g™™:(m,]g]) =1)
+<g—g":(m,]g|)=1,gconjg ™).
Proor. That the logarithm (and hence I';) are well defined is shown in
[22, Theorem 1.1]. The image of I§; is described in [22, Corollary 1.8].
(i) Note first that for any i=1, 1+(1— z)"ZpG is generated by
14+ (1—z)*'Z,G together with elements 1+ (1—z)'g, for geG. Since
(1—z)—0 as i »oo in the p-adic topology (p|(1—z) if i=|z|), this
shows that the subgroup generated by all such 1+ (1— z)'g is dense in
1+(1— z)ZpG.
Foranyi>1,
1-z°Y=(1-[1-(1-2)) = (pQ-2)— (=11 —2))
= (p(l-2)+(1—-zP)=p(l—zf+ (1 -z)" (modp(l—z)y*?).
Hence, for any i 2 1 and any j = 0,
(1+pA—zygl/0+p(1-2")g?)
= 14+p* (1 - 2)g+pP(1 - 2)P'gP— P(1 - 2*)'g? (modp(1-z)'*?)
= 14 p* (1= 2)g— P (L - g+ (PP - p)(1L - 2"
=1+p"'(1-2)(g—p'"'g").
It follows that
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I(1+p/(1-2)g) =1/plog[(1 +p(1 —2)'g)’/(1 + p'(1 - z°)'g")]
=p(1-2)f(g—p'"'¢") (mod(1-2)*'Z,G)
for any i =1 and j = 0; and hence that
Te(1+(1-2)2,G)={(1-z)(g—g"):8eG)+<(1—z)'g:geG,i=2).
In particular, this shows that as subgroups of H, (G;Z,,G),
{(1-2)g—g"):geG) & Te(1+ (1-2)2,6)
) C{(1—-z)a—1)h:aeG,, heG,, ah = ha)y +
+{(1—=z)(h—h?):heG,).
For any commuting pair of elements ae G, and he G,, (ah)?"= h for some
n 2 1; so the subgroups in (1) are all equal, and this proves (ii).

(iii) Assume first G is cyclic, and consider the inclusion

G QG = []Q,
d|n

(where n =|G|). For any unit ue(Z{,)*, ii/u is a root of unity, and
N(u)eZ* = {+1}. Hence, for any ue K,(ZG),

cx@u and T 1,

are both torsion (c € Aut (G) denotes the map: c¢(g) = g~ !). Thus,
cxT6(iy@))) = Tg(i,)) and n;(l“c(i*(u))) =0,
neAut(G)
and hence
Toliy@)eg+g~ 1 —g"—g ™™ (m,[g]) = 1.

Now let G be arbitrary. By [14, Theorems 3.3.4 and 4.2.1], for any
ueK,(ZG),

ute Im [Y{K,(ZH): HS G cyclic} -4 K, (ZG)]
for some k = 1. Thus,
I'e (4 (K1 (ZG)))

C Ho(G:2,G)N<g+g ™ —g"—g"™:g€G, (m,|g]) =1pq,
=<{g+g ' —g"—g ™ (m,|g|) =1> +<g—g": (m,|g|) =1, gconjg ™).
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The next lemma is quite technical, but it is the key to getting a limit on the
size of the Im (87).

Lemma 4.2. Let © be a p-group, fix elements ze Z(n) and gen, and set
o = {g). Write Op[n] = Op[n/z] X R, and define, for any unit u'e(zp[a])*,

E.(u) = (1L,{1 - zu})e K5(Q,[n/z]) xK5(R) = K5(Q,[x]).

(i) Assume that T,(u)=g+g '—g"—g™ for some pfm. Then
E.(u)=1.

(i) Assume that p = 2, and that there is an automorphism n of © such that
n(z) = z, and n(g) = z'g ! for some t. If

L) =Yg,
where Y A;= 0 and A; = 0 for even i, then
E,(weIm[K5(Z5m) > K5(Qam)] +{(1~ 1) (x): xeK5(Qam)}
Proor. By naturality, it suffices to prove this when = = {z> X {(g), and
|z| = |g| = p" for some n. For any k > 0, and any r,s€Z, let
Xi(r,s):Qn — QL
be the ring homomorphism defined by:

X(r,89(2) = Cp)5 2(r8)(8) = ()
Let
S={n1s):0<k<n0ss<sp-1}
Ulnr1):1=k<n0<r<p—1,p|r}.

Then the map
[Tr:Qr -1k (Qk) = Qm ()

XES

is an isomorphism.
We will have use for the following homomorphisms, defined for k < n
and r,seZ:

(*, )i: K5(Q,¢ %) > (¢ x> denotes the norm residue symbol
2(r,8)5 : K5 (Q,m) — ({ ) denotes the composite (-, ), x(r,s)
Yi(r): Quo — (> (0 = <g))is defined by Y(r)(g) = (pe)-

(i) Fix p /' m, and assume that I,(u) =g+g '—g"—g ™ Fix k <n,
and set { = (. Forany 0 <s < ",
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X(L,8)u (B () = (1 = {, () @))e = C&,
where by Proposition 2.9,
R = [s/p*]+ [ —s/p*] = [ms/p*] — [ —ms/p"].
Since p ¥ m, s/p*eZ if and only if ms/p*€Z, and hence R = 0. So
Xil1,8)5 (E-(w) = 1.

For any 0 < r < p* such that p|r,

21w (Ew) = (1= {9 (1) @)
Write r = r'p®, where p ¥ r'; then

W N

i=0

Each {”+7"™*is a primitive p°th root of unity (a < k), and so

pr=l /4 ipk—a
A= Y@= TT Q=7 0D @)=1

i=

by the same calculation as above. Finally, x,(0,1),(E,(u)) =1 by
definition, and thus E,(u) = 1 in K$(Q,n).

(i) Now p =2. For each i,j such that i=1, or 2|i and j=1, let
x;;€K5 (Q,m) be the element such that for all y,(r,s)€ S,

2r,8)y (i) = (e O S k< m,r=i,s=j (mod2*)
=1 otherwise.

Define a subgroup V C K5(Q,n) by setting

Vo= {X1j= X1,j+252X1j5 Xig — Xit2,15 2% JEZ,1€2Z).
Then

V = {xe K5(Q,m): conditions (a) and (b) below hold for x},
where
(a)forany 1 <k <n,anyseZ,andre2Z:

Xk— 1(1,3)* (x) = [Xk(las)* (X) ' Xk(lss + 2k 1)* (x)]2
Xk-l(ral)* (x) = [Xk(r51)* (x) : Xk(r + 2%~ 191)* (x)]2
(b) XI(r’s)*(x) = 1 fOl' all (r,s) = (190)9 (1’1)9 (Oal)

Now set
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W= {xeK‘z(Ozn):x*(x) =1 for xS such that y(z) + 1).

In other words, W is the image of K$(Q,[7/z]) under the canonical split-
ting map. Since neAut(n) is such that 5(z) = z and 5(g) = z'g~! for
some f, n acts on W by sending elements to their inverses. Thus,
W2C (,— 1KS(Q,m). Part (i) will follow upon showing that

(I V< Im[K4(Z,m)— K5(Q,n)], and

() E,(w)eV,Ww?).

Step L. Fix jeZ, and define v,,v, € (Z,7)* so that

@) L) =27g—27772g+ (2= 2%); T,(v,) = 27 g + g™ *

(see Theorem 2.7). Furthermore, upon multiplying by some element of
{—1,z,8), if necessary, we may assume that

A3) v;,v,€Ker[(Z,m)* - (Zz[n/(g2,22>])*].
Forany y = x(r,s)€S, x(z) = 1ifand only if y(z*) = 1, x(z /g) = 1if and
only if r = 1 and s = j (mod 2¥), and similarly for z77"2g and z/g~!. So
Proposition 2.9 (ii) applies to show that

X1j= Xq,j+2= {—z,v:} and 2xy5= {—2z,0},

and hence that both lie in Im[K$(Z,7) — K4(Q,7)]. Note that (3) insures
that y, (r,s), ({ —z,v,}) = 1 for all r,s. By symmetry, the same result holds
for the x;; — x;4,,, and 2x;, ; and this proves (I).

Step II. By hypothesis, I,(u) = 212;01 A8, where 4; = 0 for even i, and
Y A;=0.Foreach 1 < k < nand reZ, Theorem 2.7 (iii) shows (where we
set C = 4,2")’

-1
log(u)) = ¥ A[E—1)+HC ~1)+3C~1)+..],

=
24i
r-1
log (i(r + 257 1)) = 'Zo Al(=C =D +3(Pr =D+ -D+...],
24
and (recall again that ) A, = 0),
-1
log (xx-1(r)(w)) = 'Zo ALC -1 +3¢* -1 +...]

— log (1u(r)(®)) +log (ue(r + 2~ )(w)).
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It follows that

“4) Xie-1 (1)) = x(r) (@) - i + 257 1)(w) (mod (C e )).
Note also tha‘t'for any k and r,

) (1= (), =1

by (1) and the fact that (1 — {5, i) = 1.
Now, for any k < n and any r,s, we write

X = E,(u) and X,(r,s) = x(r,8)« (E. ()
for short. Then, for any 1 £ k < n and any s,

X 1(1,8) = (1 =%, - 1 (8)@))e— 4 (€ ={x
©) = (NA =0 xk-1()@)h-1 = [(1 = {,26-1(5)®))]*  (Thm.2.4)
= [ =)@ 1= uls + 257 H )] (by (4), (5))
= (Xi(1,8) X,(1,5 + 25" 1))2

Similarly, for any k and anyeven 2 < r <271 -2,
(M Xy 1(r1) = (Xi(r,1) - Xo(r +2571,1))%

In addition, the conditions on I}, (1) show that the image of u in Z,[0/g?]
has finite order; and hence (using (5) again) that

(8) Xl (r,S) = 1 fOI' (r,S) = (190)’ (171)’ (Oal)‘
Now let Ye K5(Q,n) be the element defined by setting

w00, M= [ X@ L2 allosk<n

I=k+1

Xe(r,8), (1) = 1 if x,(r,s)€ S and (r,s) # (0,1).
Recall that x,(0,1), (X) = 1 by definition. So for 1 £ k < n,
2-1(0,1), (X Y) = [x(0,1), XN]*- [1a2* 1, D) (X D]

and this together with (6) and (7) shows that condition (a) holds for X'Y.
Furthermore, for any k,

(X2 L1 = {2t @] = 2N g, o) @)y
2*-1
©) = @ [1 %O = Q2:0)@): (by 4)and (5)

24i
=@2,+1),=1.
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In particular, this shows that x;(0,1),(Y) =1, and so (using also (8)),
condition (b) also holds for XY. Thus, X Ye V. Finally, Ye W2 by (9) (and
the definition of Y); and so

X = E,(wev,w?).
Now fix a central extension
1-06-GL>G-1

of finite groups, such that ¢ & Z(G) has p-power order. It will be seen later
how the study of the transfer in general is reduced to this case. The
following diagram, defined for any generator z of ¢ = Ker(8), will be
referred to frequently in the next several lemmas and propositions (note
that Im (87 ) is a p-group, by Proposition 1.4):

K,@2,G)—*—K,(ZG)
.. [
4.3) K,@,6)—%—C,(06)—2-C1,(ZG),,
r=ré
HO(‘G;_Z,,G) 2X2X2VX, (g€ b).

These homomorphisms and subgroups are defined as follows:

(i) 0 is the boundary map in the localization exact sequence of Theorem
2.1,and i, and B, are induced by the obvious ring homomorphisms. Note
that g, is induced by a surjection of semilocal rings, and is hence onto [8,
Corollary III. 2.9].

(ii) Write QG = QG X R; then

E,(u) = (1,{1 - z,u})€ C,(QG) X C,(R) = C,(QG)
forany ue K 1(ZI,G) and any z generating Ker (f).
(iii)
Y= { i Ai(g; — g}): €2, 8;p'-conjugate to g;, all i}
i=1
= ¢a(h—h"):aeG,,he G, ah = ha,(m,|h|) =1) C Hy(G;2,0).
(iv) For any ge G
X,=<g+g ' —g"—g ":(m]g)=1)
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if p is odd, or if B(g) is not p’-conjugate to f(g~') in G; and
k
X, =< Y Ag:A4=0if (,|g]) +1,Y4;=0,)id; = 0 (mod |g]|))
i=0
if p = 2 and B(g) is p’-conjugate to f(g~ ') in G.
W)
X=01-22,G+Y+ Z‘an, and
ge

X =(1-2)(g—g):geG>+ Y+ Zan.
ge

Note that these are independent of the choice of generator z e Ker (8).

The idea now is to show that B¥ factors through X/X’ (or, more
precisely, X NIm(I")/X’ N Im(I')); and then to analyze this group more

closely.

ProposiTiON 4.4. For any ue K, (ZG) and any i€ B, * (i, (u)):
(i) T@eX,

(i) T@)eX’ if B,(@) =i ) =0, and

(iii) BZ (u) = 0 o E, (@) for any z generating Ker (B).

Proor. By Theorem 4.1 (iii),

TG, (u)edg+g ' —gm"—g ™:(m,g]) =1)
+<{g—g":(m,]g|) =1, geonjg™*>.

If g is conjugate to g~ ! in G, and (m,|g|) = 1, then in Hy(G;Z,G),

g—g"=%@g+g t—g"—g™ if p is odd
g—g"ep(y) ifp=2andgegG,

-1 _ .
g—g" =g-.g"'+(mT)(g—g ep(X,) ifp=2andg¢gG,.
Thus, referring to the above definitions,
Teli, () e p(Y) + Zgﬂ(Xg)-
ge
So for any de B, ! (i, (u)),

To@)eKer[Ho(G32,0) £+ Ho(G:2,6)] + Y+ 3 X, = X.
ge
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This proves (i). Point (ii) follows from Theorem 4.1 (ii)—
I'(Ker(B,)=T(1+(1-22,6)S((1-2)g—g)+Y< X
if z generates Ker () — and (iii) follows from Proposition 2.6.
It remains to understand the relationship between @ o E, (&) and I'(i7), for
ieK, (Z,,G). The first step is to show,
PrOPOSITION 4.5. For any z generating Ker (f), and any ie K 1(2,,(7) such
that T (W) e Y, E,() = 0.

Proor. Step 1. Note first that (1 —1/p®) is an automorphism of
H,(G;Q,G): this can be checked directly by computing the determinant, or
follows since I" = (1 — 1/p®) - log has finite cokernel. Since ®(Y)< Y by
definition, it follows that

log(@) = (1 —1/p®)~ ' (C@)e(1 - 1/p®)~ (V< Q," Y.

So we can write
k
1) log(@) = Y A(gi—g)eHo(G;Q,6),
i=1

where for all i, A;€ O,, and g;,g; are p'-conjugate.

STEP 2. We must show that prg«(E, (7)) = 1 for any simple summand B
of QG; where prz: QG — B is the projection. This holds by definition if
prg(z) = 1. So it remains to show, when prg(z) = { =+ 1, that

) pra+(E; (@) = {1—{,pra(@} =1 in C,(B).

Set K = Z(B),let F S K be the subfield generated by (ux)p (tl}e group of p-
power roots of unity), and note that e (ug), = (ur),. Set K, = Op ®qK
and F,= Q, ®F. The triangle

' (Fp)* X (Kp)* (5 )k

l Idx N,‘,»(ﬂx)p

commutes by Theorem 2.4. So using Theorem 2.2, (2) holds if and only if
®) a-¢, Nx/Fm'Byx(PrB(ﬁ))F =1,

where N and nrp are the ordinary and reduced norm maps.
By Proposition 2.8, and (1), if r = [B: K]*/?, then
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k
4) log (N g/pnrgx (prp(i))) = 1/r 'Z1 Ai(xs(g:) — xs(gi)) e Fp,

where yp denotes the character of B regarded as an F[G]-module. In
particular, ygis constant on F-conjugacy classes in G [10, Corollary 21.3],
where g,g' € G are called F-conjugate if, upon setting n = |g|, g’ is conjugate
to g™ for some me Gal(F{,/F) (S (Z/n)*). In particular, p’-conjugate
elements are F-conjugate (F =~ Q{,m for some m), and so by (4)

log (N g/pnrpk (prp(it))) = 0.
Equation (3), and hence (2), now follow using Theorem 2.3 (iii).

We now want to show that 0E,(u) = 0 if I'(u)e X', and that JE_(u) is
independent of z if I'(#) e X. One lemma is still needed.

LemMa 4.6. For any generator z of Ker (B), any ge G, and any xeX,,
there exists ue K 1(ZL,G) such that I'(u)e x + Yand 0E,(u) = 0

Proor. Fix geG, and set H ={z,g). Set a =g, and h = g,; that is
g =ah=ha,aeG,,and heG,.Setn = |h|,C,= (hy,and n = (z,a). Then
H = C, Xn, where p ¥ n and = is an abelian p-group of rank <2.
Consider the following commutative diagram:

K, (2 H) L1, gITKI(Z,,c.,[n]) L=lld, ;’llKl(z,,n)
1) oyEH [T0-Ez
ClzH) —g— [lon@lx) —— ——[Ich@n).

Here, dyE and 0,E" are deﬁned analogously to 0E, in dlagram (4.3). The f;
are induced by some isomorphism Q[C,] = H dln Q{, (recall that we define
ZPC,, Z ® Z¢£,); f> is an isomorphism since it is mduced by an inclusion of
orders of index prime to p (see [20, Proposition 1.2]). The t; are both the
products of the transfer homomorphisms, and 12 is an isomorphism by
Proposition 2.11.

The proof now splits into two separate cases.

Case 1. If p > 2, or if B(g) is not p-conjugate to B(g~!) in G, then it
suffices to prove (i), when x = g + g~ ! — g™ — g™ for any (m,|g|) = 1. Fix
such an m, and set

xX=(@+a '—a"—a™hex+Y@=g,h=g,).
By Theorem 4.1 there exists ue (Z,H )* such that I';(«) = x’. For any d|n,
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L fiw) =Aa+a ' —a"—a™™)

for some AeZ,. Hence, 0, EZt} f4 (u) = 0 by Lemma 4.2; and so 0y EH (u)
=0 in diagram (1). By naturality, JE([u]) = 0 and I'([u]) = x’, where
[u]e K, (Z,G) denotes the class of u.

Caske 2. Assume now that p = 2, and that (g) is p’-conjugate to f(g~ ')
in G. Fix ne N(H) such that nan™!' = z'a™! (a = g,), and let ne Aut(H)
denote the automorphism conjugation by n.

Fixanyx = Y+, Lg'eX,:thatis, ;= 0if (i,|g|) +1, Y 4 = 0,and Y i,
=0 (mod |g]). Set

k
x = Z Adhex+Y (a=g, h=g,).
Then x’eIm(Ty) by Theorem 4.1; fix ue (ZI,H)* such that I'y(u) = x'. By
Lemma 4.2 (ii), for any d|n,
0.ETtd f4(w)e (1 -1n,)Cl,(Zn)

in the notation of (1) above. It follows that 04 E (u)e (1 — 4, )Cl,(ZH). But
n extends to an inner automorphism of G, and hence JE,([u]) = 0 in

C1,@Z0).

We are now ready to prove:

Prorosition 4.7. For any ueKl(ZpG) and any z,z’ generating
o = Ker(p):

(i) OE,(u) =0 if T(u)e X', and
(ii) OF, (u) = 0E (u) if T(u)e X.

Proor. (i) Assume I'(u)e X'. Since (1 —z)(g —g,)>S T'A+ (1 — z)ZpG)
(Theorem 4.1 (ii); we can write

Fuy=T1+@1-2)%)+ Zaxa (mod Y),

where x e X, for all g (and £€2,G). By Lemma 4 6, there are elements
u,e K é G) such that I'(u,)e x, + Yand 0E,(u,) =

Ifwenowset
-1
"=y u L+ (@1 =-2)¢)71,
veu(Im) e

then I'(') € Y. By Proposition 4.5, 0E,(u’) = 0, and so
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OE,(u) = 0E,(1+ (1 —2)¢) + %8E,(ug) =0E,(1+ (1—2z)¢).
ge

So by Proposition 4.4 (iii) (applied with u = 1),
OE,(u) = 0E,(1+(1-2){) =B (1) =0.

(ii) Now assume that I"(u) € X, and that z,z’ generate Ker (8). Fix m such
that (m,|G|) =1 and z' = z™. Define

®,,: Ho(6;2,G) - Ho(G;2,G), n,,€ Gal (Q({,)/Q)
by setting
d)m(zligi) = Z’lig?la and n,({)={"if { = CIGI'

From Theorem 4.1 (i), we see that Im (') = Ker (@,0) is stable under @,,,.
In particular, we can choose ve K 1(Z,,G) such that I'(v) = ®,,(I"(4)). Also,
®,, commutes with (1 — 1/p®), and so log(v) = ®,,(log(u)) in HO(G;OPG).
Fix ;€ Op,g,-e G such that

k k
log(u) = 3, 4igi» log(®) = 3, g

Let B be any simple summand of QG such that pry(z) + 1, and set
K = Z(B). By Proposition 2.8,

k
log (nrgx(prp(v))) =[B: K]~ /- ';1 Aixs(gT)

k
=[B:K]7 Y- '=Z1 Ai* m(XB(8:))
= m(l0g (nrxprp(u)))e K.
Symbols with 1— prg(z) depend only on the logarithm (Theorem 2.3), and
so (by naturality of symbols in K):
(1—prg(z™), nryxprg(v))x = (1— prp(z),nrg xpra(u))x.
By Theorem 2.2, it follows that E_(v) = m* E,(u) (z'= z"), and so
2) OE ,(u) — OE,(u) = 1/mOE ,(u™v™").
By construction,
Fu™v™ 1) = mI'(u) — @, (u))e(m—a,)(X).

Furthermore, (im — ®,,)- (1 — z)Z,,G is generated by elements
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ml—z)g—(1-z"g"=01-z)m—(1+z+...+2z""1))g
+(1-2")(g—g"
C-2)g—g)+YS X
for ge G. Also, @,(Y+ Y X,) = Y+ Y X,, and so
T~ e m—0,)X) S Y+ Y X, +(m-®,)(1-2)2,G < X".
Hence 0E (u™v~') = 0 by part (i), and so JE ,(u) = JE,(u) by (2).

Propositions 4.4 and 4.7 show that B7 is independent of z, and factors
through X NIm(I")/X’ NIm(I"). But before stating this explicitly, a better
description of this obstruction group will be useful.

Let G* denote the set of Q-conjugacy classes of p-regular elements he G,
(h,h are Q-conjugate if (h) and (k") are conjugate). The Q-conjugacy class
of any he G, will be denoted (h)e G*. As usual, N(h) = N g(h) and C(h)
= Cg(h) denote the normalizer and centralizer of <h).

ProvrositioN 4.8. Define

Wy =TT (er(§) N [NG).CD- (), and
(heGy

Wj = ((Ker () N[N(H),H]) (g,):8€G, H = (Ker(B).gd> < Wj.
Then

(i) for any he@G,,

Ker () N[N(h),C(h)] = {weKer(f): (1 —w)heIm() + X"'}.
(i1) The function
oy 520
defined by setting
Tiw-(h) = (1—=wh+x'

for any heG,, weKer(B) N[N(h),C(h)], and x'€ X' such that (1—w)h
+ x'eIm(I), is an isomorphism.
(iii)
W52 {[ng]" (h):neN(h), ge C(h), [n.g]eKer(8)),
with equality if p is odd.
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Proor. For each (h)e G¥, define
k
Uy= {ZI Aigi: i€ 2p’gie G, ((g:),) = (r)all i} < HO(G;ZpG)9

and set
Xh= X n Uh’ ‘X;l = X’ n Uh’ Im(r)h= Im(r) n Uh, etC.

Then from the definitions (or from the description of Im(I') in Theorem
4.1) we get

H,(G;2,6)= @ U, x=DXx,, x=DPx,, y=Dy,
1) (h)eG? ) (h) (hy
D )= D 1m(n), Wy = [Ty (0, Wy = [ Wp- )

Throughout the proof, z € Ker (8) denotes a fixed generator.
Step 1. Recall the description of Im(I') in Theorem 4.1:

Im(I') = Ker[(@,0): Ho(G;2,G) > H,(G;2,(G,) e ® Ho(G; R(G,))gl,
where R = Z/2 (p = 2) or R = 0 (p > 2). In particular, for any heG,,
) {WeKer(f):(1-w)heIm(T)+ X'}

= [{weKer(B): (@,0)((1 —w)h) = (W™ @ h,0)e (@,0)(X")}.

Furthermore, (co,g)(X,) C (@,0)(Y)forany g(X, < Y+ Im(I") by Lemma
4.6), and (@,0)((1 — z)(g —g,)) = 0 for any g € G. Hence

@,0)(X') = (@,8)(Y)
= <(a ® (h—H'),0), 0,h —H'):
<hy =< S G,,ae G, N C(h)),
and so

[H,(G;2,(G,))e® Ho(G; R(G,)) )/ @,0)(X')
~ H, <G; @ (C(h))ab@zp) ® H, <G; @ R)
<hy <hy

~ (% (C(h)/[N(h),C‘(h)])'®2p)) ® (% R)‘

Together with (1) and (2), this proves thaf for any (h)e G*,
3) {weK@r(ﬁ): (1 = wiheIlm(T"), + X} = Ker (B) N [N(h),C(h)] = W,
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Step 2. By (3), there is a function

X NIm(T)
X UIm(T)

defined by setting, for any he G, and any we Wsns
Tiw-(h) = (L—wh+x (xeX}, (1 —wh+x eIm(),).

72:%=§§m,,,-(h)q

Then 7}, is a homomorphism, since
1=v)h+A-wh—-Q1—-vwh =(1-0v)1—-whel{l-2)(g—g)>
C X' NIm (),
for any v,we W, ,,. Furthermore, for any he G,,
X, NIm(T), = [ X+ {1 —w)h:weKer(8)}] N Im([),
= [X+ {1 —wh:weW;,}]nIm(),
by (3), and this proves that 7} is surjective.

Step 3. FixweKer(B)and he G, such thatw - (h)e W . Then there exists
g€ G such that g, = h, and such that we [N(H),H], when H = {z,g)>. We
must show that (1 —w)he X'

Seta = g,. For any n;,n,e N(H) and any g'z'e H,

[nl agizj] = [nl 5a]i; [nl.nZ,giZj] = [nl )n2ain2—1][n2’ai]e<[nlaa]7[n2,a]>
(H is abelian). So if we set
No = {neN(H):[n,a]e<z>} = Ker[N(H)- 2 Aut(H,/z)],
and if N(H) = {(ny,n,,N,), then
Ker(B) N[N(H),H] = {[n,a']:neNy,ieZ}
N (Ker (B) N {[ny,a],[n,,a])).

If N(H)/N, is cyclic, then by (4), w = [n,a'] for some ne N(H) and some
ieZ. Since {n"'hn)y = {(h) (H, = <{h)), it follows that

(1=w)h = (1 —-w)1 —a)h+ (@h—wa'h)
=(1-w)(Ql—=d)r+dh—-n"'hn)eX"

(4)

(5)

If N(H)/N, (S Aut(H ,/z))is not cyclic, then p = 2, and a = g, is conjugate
in N(H) to a~ 'z for some i. So in this case,

X, = { i Agi A= 0if (|g|,i) * 1,Zii= O,Zii,-E 0 (modlgpl)}.
i=1
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By (4), either w = [n,a'] for some n,i (and (1—w)heX’ as in (5)); or
w = [ny,a'][n,,a’] for some ny,n,e N(H). In the latter case, if we set
b, = [n,,d'] and b, = [n,,a’] (by,b,€ H,), then

A—wh=(1—b)h+(1—by)h—(1—b,)(1—b,)h
= (1=by)(1 — @)+ (1 —by)(1 — @)+ d'(h — ni 'hn,)
+ al(h—nyhny) — (1— by )(1 = by)h
€ Y+{(1—b)(1—b)h:b,b'eH,)
C Y+ X,+<{(1-2)@z—1)h)< X".

Thus, in both cases, (1—w)heX’, and so T; factors through an
epimorphism Ty defined on W,/Wj. '

Step 4. Nowset # = {HS G:H = (z,g), some ge G}, and note that all
elements of ¥ are abelian. Define

=( I1 Hp)/<(z,H)-— (zH'):HH e H,= H,).
Hex¥

Then G acts on R via g(h,H) = (ghg~!,gHg™!), and we set R = H,(G; R).
In particular, if H,,..., H, are conjugacy class representatives for s then

(6) R- = (I:[] (H,/[N(H,),H,])> /<(ZaHi) - (Z9Hj) : Hir COI’lj er>'
Define f: Hy(G;2,G) — R by setting f(g) = (g,,<z,g))e R for ge G. From
the definition, f(X’) = 0: note, for example, that

f((l - Z)(g _gr)) = (gp’H) - (ng’H) + (Z,Ho) = - (ZaH) + (Z9H0) =0

if geG, H = (g,z>, and H, = {g,,z>. So if weKer(B) and he G, are such
that (1 — w)he X', then w,{(z,h>) = —f((1 —w)h) = 0, and by (6)

welKer(B)N[N(H),H]:He # H, = (hy)y = Wy,
By (1), Ker (Tj) is generated by such w - (h), and so Tj is injective.
Step 5. It remains to prove point (iii). That
©) W;2 ([ng]" (h):neN(h),ge C(h), [n,g]eKer (B))

is clear from the definition. If p is odd, then for any H = {z,g), N(H)/N, is
cyclic (in the notation of Step 3), and so (7) is an equality by (4).

Tueorem 4.9. Let f: G—» G be any surjection of finite groups such that
Ker(8)S Z(G), and is cyclic of p-power order. Let B} :K(ZG) - C1,(ZG)
_(any z generating Ker (B)) denote the induced transfer homomorphism, and let
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Wy = @ Ker (§) N [N().CHY)- ()
Wp = (Ker(B) N [N(H),H]- (g,):8€G.H = <z,g)>< W
be the groups defined in Proposition 4.8. Then
(i) there are well defined homomorphisms
K,(@ZG) -2 Wy w2, ClL, (2G)
defined by the relations (in the notation of (4.3)):

(a) Q(u) = :.‘= Wi (b)) for any ue K,(ZG), any iie By (i, (), and any
w;eKer (B), h;e G, such that

M=

@)=

i

(1—w)h; (modX"),

1

(b)©p(w - (h)) = E, (@) for any he G,,anyweKer(B) N [N(h),C(h)],any z
generating Ker(8), and any iie K 1(2,,(7) such that

I'w)= (1—w)h (mod X').
(ii) B =©;° Q4, and is independent of z,
(iii)
Q4(SK,(2G)) = %‘? (Ker(8) N [C(h),C(h)]) - (h)
(iv) 2Im (©;) S Q4(SK,(ZG)).
Proor. (i) For any z, define homomorphisms

X NIm(T)
X NIm()

by setting: Q(u) = I'(#) for any ue K,(ZG) and de B, *(i,(4)); and O(x)
= E,(u) for any xe X NIm(') and de " ~(x). Then Q is well defined by
Proposition 4.4 (i. ii), and ® is well defined and independent of z by
Proposition 4.7. Now Q; and ©; are defined by composing with the
isomorphism of Proposition 4.8.

K,(ZG)-& 96,1,ZG6)

(ii) By Proposition 4.4 (iii), B =© o Q) = @, ° Qg forany z. Since®; and
Q, do not depend on z, neither does 7.

(iii) By [19, Theorem 3], SK,(ZG),,, is generated by induction from
p-elementary subgroups of G. It follows that

Q,(SK,(ZG))< % (Ker (8) N [C(h),C(W)])- ():
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this is the subgroup of W, generated by induction from p-elementary
subgroups of G and G.
To prove the opposite inclusion, we use the exact sequence

0- SK,(2,6) - K,2,6)-E220), H,(G:2,6) ® H,(G32,(G,)
v -1 0
® Ho(G:R(G,) 820 020, 1, (3:2,(6,)) @ Ho(G:R(E,) > 0
of [22, Theorem 1.7]. Here, R=2Z/2 (p =2)or R=0 (p > 2), and

(V,O)(Zligi) = (Zgl ® li(gi)nzxi(gi)r) (liezp’gie G;Zie R)

In particular, for any he G, and any weKer(8) N [C(h), C(h)], we can
choose #ie K, (2,G) such that

(T,,®0) (i) = ((1 — w)h,0,0).

Then B,()e SK l(ZI,G). By Theorem 2.1, there exists u € SK {(ZG) such that
i (u) = B, (@), and Q4(u) = w- (h) by definition.

(iv) That exp[Im (Q4)/Q4(SK;ZG))] < 2 follows by symmetry: Wh'(G)
= Wh(G)/SK,(ZG) is fixed under the evolution g—g~! (see [30,
Proposition 10.1]); while by construction, Qz(i1) = Q(u)~* forue K, (ZG).

Note that Wj/W is defined purely combinatorially, without reference to
K-theory. The point of Theorem 4.9 is that it breaks up the problem of
describing Im(8*) into two independent problems: those of describing
Im (Q;) and Ker @)

The main question in studying Im (Q;) is whether it ever can be strictly
larger than Q4(SK(ZG)) when p = 2. Examples of this surely exist but
constructing one seems quite hard. Note that by Theorem 4.9, Im (€;)
= Qp(SK(ZG)) if p is odd or if G is 2-elementary.

As for Ker(@y), we will show in a later paper that given any family of
central extensions

154z -G, -G -1,

where G, = (2,,G,_1:2,-1 = 2°, [2,,G,-1] = 1); then in the p-group case
at least, @, _is injective for n large enough. Note that in this situation, Wy
and Wj are independent of n.

Before listing consequences of Theorem 4.9, the case where Ker (8) is not
a p-group must be handled. In fact, this can always be directly reduced to
the case we have been studying.

THEOREM 4.10. Let 1 — (z) — G-£>G — 1 be a central extension of finite
groups. Write |z| = p'm, where p } m, and let C,,S (z)> = Ker () be the
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subgroup of order m. Let £,,€ ZG be the sum of the elements of C,,. Then the
following triangle commutes,

K, @26)—t—c1,20),,
(B/CaE.) = | fu=atow) (B/Cm: G/C— G)
u
CLZ[G/Crl)p) ® CL(ZG/Zy) .
Here, f, is induced by the projections and is an isomorphism.

Proor. Consider the following commutative triangle

WCII @[6/Culin ® CL1 (ZG/Zn)y
ClL (ZG)y, . j

[Txa

R

R

*

5[ Cl, (24 ®z¢,Z6)y

where each y d, is induced by some character y;: C,,—»<{{;>. In particular,

fie = Xix: All'of these maps are induced by inclusions of orders in QG of
index prime to p (ZC,, has index prime to p in its maximal order, by [24,

Theorem 41.1]), and are therefore all isomorphisms by [20, Proposition
1.2].

By naturality, f;° B(p) (B/C)F. To see that fo,0Bk =1,
we must show that y d, o Bk, = 1foralll % d|m. It suffices to do this when d
= m (otherwise, G can be replaced by the appropriate quotient). We may
also assume that G is p-hyperelementary — since K(ZG),,) is generated by
p-hyperelementary induction otherwise.

Step 1. Write B* = B, for short. Note first that
(ZCm ®zcmZG)/(1 — xm(2)) = 200/(1 = C) B, 2G
~0 if m is not a prime power
~2Z/q[G] if m = q',q some prime,

(see [31, Propositions 7-6-2 and 7—4-1]). In particular, by Theorem 1.1
(iii), xme © B¥ =1if mis not a prime power.

Assume now that m = ¢' for some prime q. Then, by Theorem 1.1 again,
the following square commutes,

KI(ZG) —EZ‘:—) Cll(ZG)(p)
(1) Ams

K1Z/q[G]) " Ky (Zlm ®2¢,2C)
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where n = 1— x,,(z). Let Go & G be a subgroup of g power index and of
order prime to q (G is p-hyperelementary and q # p). Then the inclusion is
split by some a: G—» Gy, and

@)
K,(ZG) = Im[K,(ZGo) - K(ZG)] ® Ker[x,:K,(ZG) - K,(ZG,)].

Since Ker (a) is a g-group,
Ker[K,(Z/q[G])— K1(Z/q[Go])]
is a g-group (Ker[Z/q[G] — Z/q[Go]] is nilpotent by [10, Proposition
5.26]). So by (1) above,
Xms © B | Ker () = 1.

Thus, by (2), we are reduced to considering the case where G, = G, i.e.,
where ¢ t|G| (and m = ¢'). Then we can write G = C,, XG', and B|G' is
onto with p-group kernel. In particular,

2L, ®7¢. 26 = ZL,[G].

Step 2. Write y,(z) = {x, where x generates Ker(8|G’) and ( is a
primitive mth root of unity. Fix M € GL,(ZG), let A,Be M,(ZG’) be liftings
of M and M™!, respectively, and choose X € M,(Z{,[G']) such that
AB — (1 —{x)X = I. Then, by definition,

e B0 <[ 2§ |ecn@en.

Since Ker (|G') is a p-group, Ker[2,[G'] - 2,[G]] is nilpotent mod p [ 10,
Proposition 5.26]. It follows that A is invertible in M,(2,[G"]). Write
Z[1/p)lalG] = Z[1/p]¢a[G] * U;QL,[G] = QL,[G] x R.

Then Ae GL,(Z[1/p](.[G]) and 1 —{xe A* (for each simple component
of R, {x goes to a primitive mp’ th root of 1 with i = 1). By Lemma 2.5 (and
Theorem 2.1 (iii)),

Otueepr O =], %, 5 ]=00.0- 0L @L0D,

where 9: C,(Q¢,,[G']) - Cl, (Z{,[G'])is the boundary map of Theorem 2.1,
[4]eK,(Z,[G]), and

(L,{1-{x,[4]) € C, (ZL.[G]) X C,(R) = C,ZLL[G']).
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Step 3. Fix an element ae C,, of order q (m = ¢'). Using Theorem 4.1,
choose some

@ 8eKi2,0) = K@ [Cu xG: Td) = ralo((4)

Write Gal = Gal (Q¢,,/Q), and regard it as a group of automorphisms of
Z,[C,, xG'], as well as 2,{,,[G']. Then

FG( Y n*(ﬁ)> =—(@a+a*+...+a@ (4]
necal =T ([A]) - A+ a+... +a~ TL([AD.
Notethat ®(1+a+...+a?* )= (1+a+...a" 1) (®(a’) = a*'); so that

log< ]—G[ l11*(u)> =log([4]) (mod (1 +a... +a*"1Q,6).
neGal
It follows that

108( [1 ﬂ(xm*(ﬁ))) = log([4])e Ho(G;Q,L[G']).

neGal
So by Theorem 2.3 and (3),

Toos © B* ([M]) = 8(1,{1 - ¢x,[41) = [] 00,1~ Conlm @)))

neGa

Since C,(Q¢,,[G]) depends only on p-power roots of unity, any # € Gal
acts trivially on it. Hence,

Xm* ° ﬂ#([M]) = l_[ la(ls{l - ﬂ(C)x9 Xm*(a)})

neGa

= 6<1,{q]_[1(1 — Cix),x,,,*(u")}> (m=4q=|{])
lj’i

5) = AL (A= )1 = X, L @)
= Ymse ° O(L,{(1 — x)/(1 — x"),d}) € CL, (Z(,u[G']),
where x' = x? and x” = x¢ ' both generate Ker (8|G").

Step 4. We now apply the notation of (4.3), as well as Propositions 4.4
and 4.7, to the surjection

f:G=C,xG -C,XG.

We have Ker (f) = Ker (8|G’) is a p-group, and x, x', x” are all generators.
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Note that B,([4])=i,([M]) in the notation of (4.3), where
[M]eK,(ZG) S K,(Z[C,, x G]). Hence, by Proposition 4.4,

I'[A]DeX NHy(G;2,G).
From the definition of X, it follows that

Ie(@) = aT—_%arG,([A])ex,

and by Proposition 4.7 (ii):
01,{1—x,a}) = o(1,{1 — x",i})e C1,(ZG).
Together with (5), this implies that y,,, ° f*([M]) = 1, and we are done.

Note that for any surjection f:G—»G of finite groups with Ker ()
central and cyclic, Theorem 4.10 can be used to construct groups Wy 2 W
such that B* factors as a composite

B* :K,(ZG) - Wy/W}— Cl,ZC)

with properties analogous to those in Theorem 4.9. In practice, however, it
seems simplest just to use Theorems 4.9 and 4.10 directly.
We end by listing some consequences of Theorems 4.9 and 4.10.

THEOREM 4.11. Let B:G — G be any surjection of finite groups such that
Ker (B) is cyclic and central in G. Then

(i) B* = B? : K,(ZG) - K,(ZG) is independent. of the choice of generator
zeKer(B).

(i) exp(Im (8*))| [Ker(8) N [G,C]].

(iii) Im (B*) can have p-torsion only for primes p where G, is non-abelian.

(iv) B* (Wh(G)) = B*(SK,(ZG)) if G, 1 G.

(v) Fix p||Ker(B)|, let K< Ker (B) be the subgroup of torsion prime to p,
and let B/K:G/K — G be the reduction of B. Then

Im (%), = Im((B/K)*).

Proor. Point (v) is immediate from Theorem 4.10. Also by Theorem
4.10, it suffices to prove (i) to (iv), when Ker(f) is a p-group (and Im (87 ) is
p-power torsion). Then B7 is independent of z by Theorem 4.9 (ii); and by
Theorem 4.9 (i):

exp (Im (8%))| exp (Wj)| | Ker (8) N [G,G]|.
To prove (iii) and (iv), it also suffices to consider the case where G (and
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hence G) are p-hyperelementary. Write G = C,>1f, G =C,>mn, where
p ¥ mand 7, are p-groups (so G, = C,,). If # is abelian, then

Wy = Ker(8) N [#,C(h) N 7]
= {[n.g]eKer(B):ne,he C(h) N> C W

for any he C,,; thus Wy = Wp, and f* = 1.

If p is odd, then (iv) follows from Proposition 1.3. If p = 2 and G,qG,
then G is p-elementary, C(h) = G for any he G, = C,,; and so QﬂlSKl(ZG)
is onto by Theorem 4.9 (iii). It follows that

B* (SK,(ZG)) = O, Qu(SK,(ZG)) = Im @) = Im(8*).
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