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ON LIMIT SETS OF GEOMETRICALLY
FINITE KLEINIAN GROUPS

PEKKA TUKIA

A. Introduction.

Our main idea in this paper can be expressed by saying that if we look at
the limit set L(G) of a geometrically finite Kleinian group G of R"
= R"U {0} (cf. Section B), then the landscapes we see vary in a compact
set, regardless of where we are or what the scale is.

We now formulate this more precisely. Given such a group G, there is a
family # of subsets of R" which is compact in a natural topology (see (A1))
with the following property. Let xe€ L(G) N R" and let te (0,d(L(G))]
(t < o0). Let o be a similarity of R"*! preserving R” such that

a(x,t) =e,+1=1(0,...,0,1).

Then a(L(G)) € & (here we set a(o0) = 00). We give thisin Theorem C2in a
more general and precise form.

Furthermore, if the group G does not contain parabolic fixed points of
rank n (cf. Section B), then every F € & is nowhere dense in R". This means
that in this case.L(G) is somehow uniformly nowhere dense. As a
consequence (Lemma D) we can find an integer g such that if Q is an n-cube
of R" and if we divide Q into ¢" equal subcubes, then at least one of these
subcubes does not touch L(G).

It follows that the Hausdorff dimension of L(G) is less than n (Theorem
D). This latter result is, however, valid even if G has parabolic elements of
rank n, but then new methods are necessary, cf. [7].

We then apply these ideas to study the shape of components of
R™ \\ L(G). We show that under certain circumstances such a component
cannot be very thin in comparison with its diameter, however we transform
it with Mobius transformations (cf. Theorem E).

Finally, we remark that the situation is especially simple for such groups
which do not contain parabolic elements, the existence of such elements
causes essential complications. We have briefly outlined the situation in
this case in the Introduction of [7].
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DEFINITIONS AND NOTATIONS. The (n + 1)-dimensional hyperbolic space
is
H”+1 = {(xl, ceey x,,+1)€ R”+1 . S >0}

and
I_Tn+1 — Hn+1 Uﬁ".

The closed euclidean ball of R? with center x and radius r is B?(x,r); we set
BP(r) = B?(0,r) and BP = B?(1).

The standard basis of R"* ! is e;, ..., e, ;.

We use in this paper several different metrics. The hyperbolic metric of
H"*' is denoted by d and is defined by the element of length |dx|/x,+,
X = (Xy,...,X,+1). The euclidean distance of two points x,ye R"*! is
|x - yl. A third metric q is obtained by choosing a Mébius transformation h
mapping H"*! onto B"*! such that h(e,, ;) = 0 and setting

q(x,y) = |h(x) — h(y)|;

q is the spherical metric of H**!. It is independent of the choice of h and
obviously Mébius transformations of H**! which fix e, ; preserve q.

The diameter of a set and the distance of a point from a set in a given
metric d are denoted d(A4) and d(x,A), respectively. We use this notation
also for the euclidean metric. If confusion is possible, we say whether we
mean the hyperbolic or the euclidean metric. If A = R* and o€ 4, we
regard d(A) also defined and set d(4) = 0.

Now we give the fourth metric used in this paper. It is defined in the
family " of closed and non-empty subsets of R". If X,Y € ", we set

(A1) p(X,Y) = sup {q(x,Y), q(y,X) : xeX, yeY}.

This is the Hausdorff metric of ¢" and we topologize ¥" by means of it.

We extend here an affine homeomorphism o of R™ to R™ by a(0) = 0.
A similarity is a homeomorphism that multiplies euclidean distances by a
positive constant. Again, we can extend similarities to the point co by the
above rule and thus we can speak of a similarity of H"*1.

Closure and boundary are denoted by cl and 0, respectively, and are
taken in R"*1,

The orthogonal group of R? is denoted by O(p).

B. Mobius groups.

We denote the group of Mobius transformations of R" by Méb(n); it
contains also orientation reversing elements. Every g e Mob(n) can. be
extended to a unique Mobius transformation of H"*!; we do not
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distinguish between g and its extension to H"*1. Every ge M&b(n), g # id,
can be classified as either as elliptic, parabolic or loxodromic, cf. [1,2.2] or
[6,1C].

Subgroups of Mob(n) are called Mdbius groups and such a group G is
Kleinian if it acts discontinuously somewhere in R" and the group is
geometrically finite if the action of G in H"*1! has a finite-sided hyperbolic
fundamental polyhedron D such that D Ng(D) # & for only finitely many
g€ G; such a polyhedron D is said to be a fundamental polyhedron of finite
type for G. For a more precise definition see [6,1B].

The limit set of a Mdbius group G is denoted by L(G) and it can be
defined by

L(G) = R"Ncl Gz,

where ze H"* ! is an arbitrarily chosen point. The group G is elementary if
L(G) contains at most two points.

The hyperbolic convex hull Hg of L(G) is defined to be the smallest closed
and convex (with respect to the hyperbolic geometry) subset of H*** such
that

cl Hg > L(G),

which is well-defined unless L(G) = {a point} in which case weset Hg = &.
We define for m =0,

%= {zeH"": d(z,Hg) S m};

here d(z,Hg)= w0 if Hg= &.

A point ve R" is a parabolic fixpoint of G if there is parabolic g€ G such
that g(v) = v. The set of such points is denoted by P(G). Then P(G) < L(G).
The stabilizer

G,={geG: glv) =10}

of v e P(G) contains an abelian subgroup H of finite index. Then the rank
ke [1,n] of H depends only on G, and v and is called the rank of v (cf.
[6,2B]).

A cusp neighbourhood in H"*' of a point ve P(G) of rank k is a
G,-invariant set U =« H"*! \ L(G) which is of the form

U= h((Hn+1 UR")\Rk xBn+1~k)

for some he Mob(n) and such that g(U)NU = & foige G\ G,. Acusp
neighbourhood of v in R" is a set of the form V= U NR", when U is a cusp
neighbourhood of v in H"**. Thus the definition depends also on G but we
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call them simply “‘cusp neighbourhoods”, the group meant being clear
from the context.

It is not true always that every ve P(G) has cusp neighbourhoods.
However, if G is geometrically finite, this is so. We summarize what we need
to know of cusp neighbourhoods in the following

THeOREM B. Let G be a geometrically finite group of R" and let D be
a fundamental polyhedron of finite type for G. Then for any m =0,
V=cl (DNHE) N R" is a finite set of parabolic fixpoints of G and
GV = P(G) unless L(G) = a point.

Furthermore, if U, is a cusp neighbourhood in H"*! for ve V, then
(D NHE)\ (U ey Uy) is compact and every compact subset of D N Hg is
contained in a set of this form.

ProoF. Otherwise this follows from [6, Theorem 2.4] but to show that
GV > P(G) if L(G) # a point, we need an additional argument. We can
assume that L(G) contains at least two points. Pick ve P(G); we must show
that ve GV. We use [6, Theorem 2.4]. This theorem implies that we can
assume that ve Ly = ¢1 D N L(G) which is a finite subset of P(G) and that
each ue L has a cusp neighbourhood U, such that if xe U, N D, then the
hyperbolic ray R(x,u) joining x and u is in D. Furthermore, by making U,
small enough, we can assume that g(U,)ND # & for ge G if and only if
g(v)e Lp and that then g(U,) < U,,. Pick now xedU,NHg; since L(G)
contains at least two points there is such x. Pick ge G such that g(x)e D;
then g(v) e Lp and hence R(g(x),g(v)) = D and consequently

glw)ecl(DNHg)NR"c V.
We have shown that ve GV.

Note that in particular it follows that the set P(G)/G is finite for all
geometrically finite G.

C. The limit set.
In this section G denotes a fixed non-elementary Kleinian group.
If xe H**! and X < H"*!, we set

(CO) M, = {he Mob(n): h(x) = e,,;} and My= UM,.

xeX
Thus M, ., is a subgroup of Mob(n). It is isomorphic as a topological
group to the orthogonal group of R**! and hence it is compact. It follows
now easily that M, and M are compact whenever xe H"*'and X < H"*!
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is compact. We record the following obvious relation for later reference. If
he Mob(n), then
(Cl) Mh(x)=Mx°h_1.

We now come to the central idea of this paper. Define
L(X) = {h(L(G)):he My}.

This represents the different possible views that we can get when we look at
L(G) from a point xe€ X. We need to define £ (x) also if x is a parabolic
fixpoint of G; then each element of #(x)is a limit in ¥”, when we approach
x from H"* 1. Here we must take account of the fact that we can approach x
obliquely. Therefore we set if m = 0 and x € P(G) has rank k,

Z™(x) = {h(R*):he M&b (n) and d(e, 4, hle,+1)) < m}.

Ifnow X c H"*' UP(G) and m = 0, we set
Cgm = 2X)uU{g"(x): xeXNP(G)).

We may denote also £"(X,G), £ (X,G), etc. if the group used in the
definition of these sets is not clear.
In view of (C1), the following little lemma is obvious.

Lemma Cl. Let X < H"*' U P(G) and let m = 0. Then
(a) P"(GX)=L"(X) and
(b) P"(X,G) = L™(h(X), hGh~1) for he Mdb (n).

It is also obvious that
LEMMA C2. Let X < H"*! be compact. Then
Z(GX)=2(X)

is compact. More precisely, My is a compact set of Mdbius transformations
such that if he Mgy, then there are ge G and h' € Gy such that h = h'g and
hence

(€2) h(L(G)) = K (L(G)).

The next lemma is more difficult. In it we approach a parabolic fixpoint
in H® and show that in the limit L(G) looks like a k-sphere.

LEMMA C3. Let v be a parabolic fixpoint of rank k of a non-elementary
Kleinian group G such that v has cusp neighbourhoods in H***. Let m 2 0.
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Then, given ¢ > 0, there are cusp neighbourhoods V and W of vin H*** such
that if ze HE NV and ge Mob (n) satisfies g(z) = e, 1, then

(C3) p(E(L(G)),h(R¥) < ¢

for some he M6b (n) such that d(e, + 1, h(e,+ 1)) < m. Furthermore, using the
spherical metric q, we have if ze W

(C4) g(V)> {xeH"*': q(x,h(R¥) = ¢}.

Proor. By auxiliary Mobius transformations we can transform the
situation in such a way that v = co and that R* is G -invariant and that
R*/G, is compact when

G,={geG:gv) = v},
cf. [6, Theorem 2.1]. Thus by [6, (2.1)], every go€ G, is of the form

(CS) gO(xayat) = (a(x)' ﬁ(y)’t)
if (x,y)e R*xR" ¥ and t = 0, and where o€ Mdb (k) is parabolic and
BeO(n—k).

A cusp neighbourhood of vin H"* ! contains cusp neighbourhoods of the

form
V, = (H"*' UR")\, R* X.B”.H—k(s),

s> 0, as follows from the fact that cusp neighbourhoods of v are
G,-invariant and from [6, Theorem 2.1(a)]. Hence it suffices to show that if
ze HE NV, then (C3) and (C4) are true for some &=¢,> 0 such that
g— 0 ass— oo0.

We first show this in case m = 0. Now, some V, is a cusp neighbourhood
of vin H**!. Then :

A = R*xB"¥r) > L(G) N R",
and thus Hg = R¥ x B"¥(r) x (0,00).

Since R*/G is compact ([6, Theorem 2.1]), we can choose here r so big that
(cf. (C5))

G,(B*(r) X B"™¥(r)) = A.

We fix now such an r and consider s = r so that V, = V,.
We can replace z and g by h(z) and gh ™!, respectively, where he G,,. Thus
we can assume that z is of the form

z = (u,w,t),
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where (u,w)e BX(r)x B" *(r), t =0, and t >0 as s—o0. Let v be a
similarity of H"** such that v(z) = e, , ;. Then g = Bv for some f e M&b (n)
fixing e, +; and we can assume that § = id since such elements preserve p
and g. We can choose v to be of the form

(C6) vix)=e, 1+ (x—2z)t=x/t+a

where ae R" and |a| — 0 as ¢ — co.
Now if s = 5, 5o fixed,

v(V,) > {xe H"*!: x # o0 and d(x,R*) = s/t + a}.

This implies (C4) for h = id if s is big enough. Furthermore, since G is non-
elementary, L(G) # {co} and hence there is ¢ = 0 such that d(u,L(G)) < ¢
and d(w,R*) < ¢ for ee R* and we L(G). Since g(x,y) < ¢o|x — y| for some
constant ¢, if x,y < R", (C6) now implies that

p(v(L(G)),R¥) £ p(v(L(G)), v(R¥)) + p(v(R¥), R¥)
< coc/t + cola| = 0 as t - o0.

This implies the lemma if m =0. Let then m >0 and suppose
that ze HEUV,. Let z’e H; be a point such that d(z,z') = d(z,Hg).
Then g =hg' for some Hh,g'e Mob(n) such that g'(z’)=e,., and
de,+1, W(e,+1)) < m. It is easy to see that z’e Hg U V, where s'— oo as
s — o0. Since in addition

(he Méb (n):d(eps 1,h(ens 1) S m}

is compact, we can infer that the lemma is true also for m > 0.

We now combine these lemmas and consider compact sets
X <cHZUPG),m=0.
LeMMA C4. Letm = O and let X = HE U P(G) be a compact set such that if

ve P(G) N X and if V is a cusp neighbourhood of v in H**', then v has an
(ordinary) neighbourhood U in H**' such that

(C7) XnUcXnV.

Then ¥™(X) is compact.

In particular, if D is a fundamental polyhedron of finite type for G and if
X < c1(D U H?) is compact, then X < HE U P(G), and satisfies (C7) and
hence #™(X) is compact.

Proor. Let F; € #™(X). We must show that thereis F € " (X) such that
by passing to a subsequence we obtain that
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in the Hausdorff metric. Now F; € £™(x;) for some x; € X. If all but a finite
number of x;’s are in P(G), then (C8) is clear. Hence we can assume that
x;€ H"*1, Then we obtain by passing to a subsequence that x;— xe X. If
now x € H"*!, then it is again clear by the definition of #(x;) and #(x) that
we obtain (C8). If x € P(G), then (C7) and Lemma C3 imply (C8).

This proves the first paragraph. The second follows then from Theorem
B.

In particular, it follows that if D is a fundamental polyhedron of finite
type for G, then £™(c1(D N HE)) is compact. Since

L"(cl(D NHE)) = L™HE U P(G))
by Lemma C1 and Theorem B, we have

Tueorem C1. Let G be a geometrically finite, non-elementary Kleinian
group of R™. Then
| #m(Hg U P(G))
is compact for every m = 0.

This' theorem has a couple of corollaries of which the first gives a
uniformity property for the limit set of G.

CoRroOLLARY C1. Let G be as in Theorem C1. Then there is ¢ > 0 such that
for any he Mo6b(n) and x,y € h(L(G)) N R", there is z e h(L(G)) N R" such
that

(C9) ‘ cly—x| = |z—x| < |y—x|/2.

PRrOOF. We can assume that x # y. Then w = ((x + y)/2, |x — y|/2) is on
the hyperbolic line joining x and y and hence weh(Hg). Let o be a
similarity of H"** such that a(w) = e, ;, a(x) = e,, and that a(y) = —e,.
Then .

ah(L(G))e L°(HzUP(G)) =% (Hg) UZ°(P(G))

which is a compact subset of €" by Theorem C1. Since G is non-elementary,
there is for every F € #(Hg) such that e;, —e, € F a point zp € F with
1> |zp—ey] > 0;if

e;,—e, e Fe £°(P(G)),

then this is also true since F is now connected. By compactness of
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{Fe¥s: e ,—e eF},

we can now find a number ce (0, §) such that these points can be always
chosen in such a way that |z —e,|€[2c, 1]. Setting F = ah(L(G)) and z
= o~ (zp), we get that (C9) is true for this c and this z.

This corollary in turn has the following consequence. Suppse that
x,y€h(L(G)) N R" and x # y. Then we can find a sequence of points y,
= y,¥1,Y2, --. € B(L(G)) N R" such that

|yi=x|/|pi41— x| € [c,3].
Thus if t€ (0, |x — y|] there is y; such that t/|y;— x| €[c,1]. Let L; be the
hyperbolic line joining x and y;. Then L;e h(H ) and hence
d((x,t)a h(HG)) é d((x’t), Ll) _S_ m

for some m = 0 depending only on G and we have

CoRrOLLARY C2. Let G and h be as above. Then there is m = 0, depending
only on G, with the property that if te(0,00), t £ d(h(L(G)) N R"), and
x € h(L(G)) N R", then (x,t) e h(HE).

Now we finally obtain the theorem to which we have been aiming at.

THEOREM C2. Let G be a geometrically finite, non-elementary Kleinian
group of R™ Let m=0 be as in Corollary C2. Let heMéb(n),
xeh(L(G)NR"and t £ (0,00), t £ d(h(L(G)), and let g € MO6b (n) be such
that g(x,t) = e, . Then

(C10) gh(L(G))e ¢ = ¥L™(Hg U P(G))

which is a compact family of closed subsets of R".

More precisely, the following is true. Let v, ...,v,€ P(G) be parabolic
fixpoints of G such that every ve P(G) is conjugate to exactly one v;. Then,
given ¢ > 0, there are a compact subset M, of Mob(n) and cusp
neighbourhoods V; of v; in H*** such that either

(C11) gh(L(G)) = g'(L(G))

Jor some g' € M,, or there are g, € G and i £ p such that (x,t) € hgo(V;) and
then

(C12) p(gh(L(G)), BR¥) = &

Jor some B e Méb (n) such that d(e, + 1,B(en+1)) < m, where k is the rank of v;,
and now in addition
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(C13) ghgo(V)) = {xe H"*1 : q(x, B(R¥)) = ¢}.

REMARK. In particular, if G does not contain parabolic elements, then
there is a compact set M = Mo6b(n) such that (C11) is always true for some
geM. N

Proor. Note that by Corollary C2, (x,t)e h(HZ). Hence gh(L(G))e %
which is compact by Theorem C1. This implies the first paragraph.

To get the second, pick for every v; cusp neighbourhoods ¥; and W, in
H™*! such that Lemma C3 is true for v = v;, W = W, and V = V.. Let

H=HE\ (GW, U...UGW,).

Then H/G is compact (Theorem B) and hence there is compact X < H"*!
such that GX o H. Now Lemma C3 and (C2) imply that the second
paragraph is true with M, = My, My as in (C0).

D. The cube lemma and the Hausdorff dimension.

We will now apply the results of the preceding section and show that if
the geometrically finite Kleinian group G does not have parabolic elements
of rank n, then the limit set, which in any case is nowhere dense in R”, is
somehow uniformly nowhere dense. We formulate this as a lemma on
subdivision of cubes. As a corollary we have then that the Hausdorff
dimension of the limit set is less than » in this case.

We introduce the following notation for n-cubes Q of R". Welet s, be the
sidelength of Q, z, its center and we denote Z, = (zg,5¢)€ H"**. A horoball
BatveR"is an open (n+ 1)-ball B = H"*! such that 0B is tangent to R" at
v.If vis a parabolic fixpoint of rank n of a geometrically finite group G, then
cusp neighbourhoods of v are horoballs at v (and horoballs at v contain
cusp neighbourhoods). Hence we can in the following lemma use horoballs
instead of cusp neighbourhoods.

LemMa D. Let G be a geometrically finite Kleinian group of R". Let v, ..., v,
be parabolic fixpoints of G of rank n such that every ve P(G) of rank n is
conjugate under G to some v;. Let B; be a horoball at v; fori < p. Then there is
an integer q > 1 with the following property.

Let he M6b (n) and let Q be an n-cube of R" such that Zg € hg(B;) for no
g8€G and i < p. Then, if we divide Q into q" equal subcubes, Q' N h(L(G))
= & for at least one subcube Q'.

Proor. Obviously we can assume that G is non-elementary. We can also
assume that ‘

d(h(L(G)) N Q) 2 s¢/2,
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otherwise the lemma is true with g = .
Pick then xeh(L(G))NQ and let t=sp/2 <d(h(L(G))). Thus
(x,t)e h(Hg), m as in Corollary C2. Now the hyperbolic distance

d((x,t), Zp) < /n+log2

and hence z, € h(Hg'), where m' = m + \/_ n+log?2.

Let Q, be a standard cube such that z Zg,= €n+1. Let a be a similarity of
H"*1 guch that a(Q) = Q. Let then D be a fundamental polyhedron of
finite type for G and set

D' =c1((D N HY) \(GB, U...UGB,)).

Then Theorem B implies that D’ is a compact set such that D’ N R" is a finite
set consisting of parabolic fixed points whose rank is less than n. Thus
Zoeh(GD') and hence

ah(L(G))e L = £™ (D)

which is compact by Lemma C4.

Since D’ does not contain parabolic fixpoints of rank n, every Fe.Z is
nowhere dense in R". In view of this the compactness of . implies that
thereis g such thatif F € &, and if we divide Q, into ¢" equal subcubes, then
for at least one subcube Q’, Q' N F = &. The lemma follows.

In particular, if & does not have parabolic fixed points of rank n, then
there is g such that if we divide any n-cube into g" equal subcubes, then at
least one of these does not touch L(G). This implies

THEOREM D. Let G be a geometrically finite Kleinian group of R" not
having parabolic fixed points of rank n. Then the Hausdorff dimension of the
limit set is less than n.

REMARKS. Actually, Theorem D is valid for all geometrically finite
Kleinian groups [ 7], but this is as far as we can go by this method since, if
there are parabolic fixed points of rank n,

R"e #™(H% U P(G))

and R" is not nowhere dense in R™. So new methods are needed to get the
complete theorem.

Lemma D is the generalization of Lemma C of [7] of which we already
mentioned in [7], but we consider here only the situation in R". Actually,
this then implies as in the proof of Theorem C of [7] that if C = H"*' is
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compact and if B,,..., B, are as above, then there is g such that if Q is an
n-cube of R" such that

Z,¢ GB, U... UGB,,

then, on the subdivision of Q into ¢" equal subcubes, we can find at least one
subcube Q' such that

Q' x[0,50,] N (L(G) UGC) = &.

This result would be the exact generalization of Lemma C of [7] and it
would imply asin [7, Section E] that the Poincaré series of G converges for
some exponent s < n, provided that G does not have parabolic fixed points
of rank n.

E. The shape of components of Kleinian groups.

A component of a Kleinian group G is a component of R" \\ L(G). We
now apply our method to study the shape of components of Kleinian
groups. We can express our result by saying that, under certain
circumstances, a component U of a Kleinian group cannot become
arbitrarily thin however we transform it by a Mobius transformation h. We
show that if B is a ball with center x € c1 h(U) N R" and with diameter less
than d(h(U)), then A(U) N B contains a smaller ball B’ such that

(E1) d(B")/d(B) 2 ¢

for some ¢ > 0 not depending on & nor on x. The idea is the same as before.
We show that g(cl U) varies in a compact subset of ¢" as g varies in a (non-
compact) family of Mobius transformations.

THeoreM E. Let G be a geometrically finite Kleinian group of R™ with an
invariant component U (that is g(U) = U for g€ G). If G does not contain
parabolic elements, there is ¢ > 0 such that whenever he Mo6b(n) and
B = B"(x,t) is an n-ball with c e c1 h(U) N R"and 2t < d(h(U)), then there is
another ball B' = B N h(U) such that (E1) is true.

T his remains true also if G contains parabolic elements, provided that every
parabolic fixpoint v of G is of rank k < n and has a cusp neighbourhood V in
R" suich that a component of V is contained in U.

Proor. We can assume that G is non-elementary. Obviously, we can also
assume that
xedoh(U)NR" = h(L(G))NR".

Let o be a similarity of H"* ! such that d(x,t) = e, , . If G does not contain
parabolic elements, then by Theorem C2,
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(E2) ah(U) = g'(U)

where g'e M and M is a compact set of M6bius transformations depending
only on G. The validity of Theorem E in this case follows now by
compactness of M.

If G contains parabolic elements, then the idea is basically as above but
we must now in addition consider the situation near parabolic fixpoints.
Let v;,...,v, the parabolic fixpoints of G such that every veP(G) is
conjugatein G to precisely one v;. Fix then small ¢ > 0; we will soon see how
small ¢ must be. Let then m = 0, the compact set M, = Méb(n) and the
cusp neighbourhoods V; of v; be as in Theorem C2. Thus either (E2)is true
for some g’'e M, and in this case there clearly is some ¢ = ¢(G,¢) such that
(E1) is now true with this c. If this is not the case, then there are i < p,
go < G and Be Mo6b(n) with d(e, . ¢, B(e,+1)) < m such that

(E3) ahgo(V;NR") > {yeR": q(y,B(R")) = &}.
Since the set

{BeMob(n) : dley+1,Blen+1)) < m}

is compact and since at least one component of ¥; N R"is contained in U, we
see that if we have chosen small enough ¢, then (E1) is true for some
¢c=c¢(G)>0.

Theorem E implfes the corresponding result for the spherical metric q.
Thus thereis ¢, > 0, depending only on G, such that h(U) contains a ball B’
for which ’

(E4) q(B")/q(h(U)) 2 ¢o.
It follows that if V, is the spherical n-volume, then
(E5) /ey < Vo(h(U))/qh(U))" < ¢,

for some ¢; = 1 depending only on G. This has the
CoroLLARY E. Let H be a Kleinian group of R" and let U be a component of
H such that U and
G ={geH:g(U)=U}

s_atisfy the conditions of Theorem E. Let Uy, U,,... be the components of
R" \\ L(H) conjugate in H to U. Then

(E6) Z,q(Uy) < co.
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REMARKS. E1. Actually, in the following form Theorem E is valid for all
geometrically finite G. Choose parabolic fixpoints w, , ..., w, of G such that
no cusp neighbourhood of w; meets U and such that every ve P(G) with this
property is conjugate to precisely one w;. Fix ¢ > 0. Then there are cusp
neighbourhoods W, of w; in H**! and ¢ > 0 such that Theorem E is valid
with the additional condition that (x,t)¢ h(GW,) for i < s. If (x,t) e h(GW,)
for some i, then

(E7) R™ \ ah(U) = ahgo(W) = {xeR" : q(x,f(R")) = ¢}

where a, f and g, are as in (E3) and k is the rank of W,. The validity of (E7)
follows from (E3) which is now true for ¥, = W,.

Thus Theorem E is valid for all geometrically finite G not containing
parabolic fixpoints of rank n if we replace U by

Uu U{g(W,-) NR": geG,i<s).

This strengthening of Theorem E would have naturally as a consequence
a corresponding strengthening of the Corollary which we omit, however.

E2.Ifin Theorem E, n = 2and ve cl h(U)is a fixpoint of some accidental
parabolic element of G [3, 5.5], then there is a Mobius transformation h
such that h(v) = oo and

h(U) = {(x,y)eR?: |y| <1}.

Thus the condition on parabolic elements is essential in Theorem E.

E3. If n = 2, component subgroups of geometrically finite groups are
again geometrically finite (Marden [3, Corollary 6.5]). It follows that
Theorem E is valid, for instance, for all geometrically finite Kleinian
groups of R? not containing parabolic elements.

E4. If n = 2, then the series (E6) converges if the exponent 2 is replaced
by 4 whenever U/G is a Riemann surface of finite type, see Maskit [4,
Theorem 6] who attributes the result to Koebe. Kuroda, Mori and
Takahashi [2, p. 375] have proved (E6) for a class of Kleinian groups of R2.
Sasaki [5] proved the convergence of (E6) for all exponents « > 2 whenever
H is a finitely generated Kleinian group of R?;it converges for a = 2if H is
geometrically finite.
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