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DEFINABILITY AND FORCING IN E-RECURSION*)

E. R. GRIFFOR

Abstract.

Forcing methods in the setting of E-recursion are reviewed from the
point of view of computations. The effects of forcing on definability classes
associated with E-recursion at levels of the puretype structure are studied.
The “mildest” possible forcing extensions of these definability classes are
determined. Finally, it is shown that the RE-degree structure of E-closed
sets is unchanged on certain forcing extension via “‘effective” posets.

0. Introduction.

This paper will present an index-free version of forcing over E-closed
sets. The definition of the forcing relation follows the schematic definition
of computations in E-recursion (see Normann [1]). Within the context of
forcing in generalized recursion the fundamentally new tool, the
Moschkovakis Phenomenon (MP), was first isolated by Sacks [11] where
he showed that set-generic extensions via countably closed posets preserve
the E-closure of many E-closed sets.

The forcing definition and its properties appear in Sections 1-3. Section 4
discusses the role of selection and definability in Cohen extensions and in
Section 5 we show the independence of the well-foundedness of the E-
degrees of reals (here we use the absoluteness results of Lévy [ 8] for forcing
extensions via semi-homogeneous posets).

Sections 611 address the problem of extending k-sections of ** 2E non-
trivially. Finally, in Section 12, we use the implicit uniformity in the
inductive definition of the forcing relation to show that the structure of the
RE-degrees of the ground model is unaffected in certain set-forcing
extensions.

1. The forcing technology.

WesaythatasetD § Pisdensein Pif forall 7 e P there exists ad e D such
that r and d are compatible (i.e. have a common extension in P). A set
G S P is P-generic over A (P-generic/A) if
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(i) G is a directed set;

(ii)) geGand P <,g, then pe G; and

(iii) every dense D & P which is first order definable over (4,¢) with
i parameters from A satisfies G N D # &.

Let A[G] be the collection of sets E-recursive in G, ay, ..., a, (Where
ai€A,i=1, ..., n) computed via a computation of height less than the
isupremum of order-types in 4. If A[G] in E-closed; then it is the least E-
closed set x containing A4 as a subset and G as an element (set forcing).

The ramified language will be given with an eye to questions of
effectiveness: #* is defined effectively in A. The terms of #* are built using
parameters from A4 such that those involving only b € 4 are present in E(b).

SyMBoLSs. ¢, =; unranked variables x, y, ...; ranked variables x*,y*... for
A < x:logical connectives A ,7; and the quantifier 3.

Formulas are built up using these symbols and a class of terms C,
defined by induction, i.e. we will name all elements of A[G]in 4. For xe 4
we define C* by an induction of length * = OR N 4.

DEFINITION.
= {b|beTC(x) Vb = X} U {G};

C%, , satisfies: CX S CX,, andif (v, ..., v,)is in ¥* with free variables in
Vo, ..., U, and quantified variables of the form x#, B < a, then

xX*@(x*, cqy ..., )ECE, , if cy, ..., c,€ C*,;

c=Uc, if lim (£) and 2<%

o</

= U CXand C= U C* and each ceC is a symbol in Z*.
<% ) x€A
We say that a formula ¢ € £* is ranked, if all bound variables in ¢ are
ranked and assign an ordinal (rank (¢)) to each q)ez’* as follows (in
decreasing order of importance):

(i) the number of unranked quantifiers;
(i) ordials associated with ranked quantifiers and constant terms;
(ii1) logical complexity.

The forcing relation p ||-¢ is defined by induction on rank (¢): Apart from
the clauses given by the schemata of E-recursion, all clauses are standard.
The sylmbol x denotes a term. We consider the boundmg scheme and
composition.



DEFINABILITY AND FORCING IN E-RECURSION 7

First suppose

{e}¢(x,y) = U{{eo) @)}

ZEX

then
PP {e}¢(x,p)| = A iff

(@) pIFvzexdy<ifl{eo}®(zy) =7]; and
(b) plF¥o < i3zex[|{eo}°(z.y)| 2 a].
If we have

{e}o(x.3) = {eo}® ({er}° (x.p)x),
then

pl-{e}®(x.)| = 4 iff

@) plFVzex3Iy <A {eo}G(z,i)l =7]; and
(b) plFVo < A3zex[|{eo}®(z.y)| 2 o].
If we have

{e}(x.p) = {e}® (e} (xp)xy),
then

PH{e}xy)| =0

iff there exists ¢, 6, < o such that

p||—|{e1}G(x,y)| =o,{e;}°¢ J_CE z

and
pIH{eo}(z, x,})l = 0,, where ¢ = max (¢,,0,)+ 1.

Remark. We have not explicitly defined what it means to say p|
{e,}¢ (x, y) = z, however for such a computation which converges there is
an index which gives the characteristic function of the set which is its value.
Proceeding inductively this is the same as forcing that these functions
values are the same as those of the term z on all appropriate arguments (i.e.

terms of lower rank).

' Applications are often simplified by. considering the ‘weak’ forcing
relation || defined by

Pl o iff pl-Te.
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We shall assume the standard result that if G S P is P-generic/A, then
A[G]| = o iff 3peG[pIH ¢].

2. Preserving E-closure: Closure conditions.

Now assume that A is E-closed and Pe A. To show that E-closure is
preserved by a generic extension of 4 (A[G] is E-closed), Sacks [11] shows
that for xe A, ye A" (for some ne€ w), the relation

PIF* {e}°(x.)) | is RE.
LemMa 2.0 (Sacks [11]). Suppose ye OR N A, then the relation p |F* ¢

restricted t3 ¢’s of ordinal rank <y and quantifiersrestricted to E(z) for ze A
is recursive in y, z, P.

Proor. Sack’s proof proceeds by induction on the definition of the
forcing relation. Consider only the cases ] and 3x?. Let ¢ = ¢ and
isuppose p |-, then by Definition (iii):

Vg <pp(g i o).

By induction hypothesis and the bounding principle we have the desired
conclusion.

Now let ¢ = 3xfy and suppose p|l-¢, then by definition p |-¢(c) for
some c € Cj, where x is the parameter from A4 in . By induction hypothesis
pI-¥(c) is recursive in y, z, P. Cj is recursive in x, f and by the bounding
principle applied to that procedure p|* ¢ is recursive in y,z,P. The
remaining cases are routine.

DerFINITION. Let {p,a) and {(q,b> € P X C andlet {p,a) >3{q,b)ifq <pp
and g |*'b is a subcomputation of a'.

LeEmMMA 2.1 (Sacks [11]). Suppose P € A and that < is well-founded below
{p,ay, then 3qe Py < %, q and y uniformly recursive in p, a, P such that

q||-*|{ao}6(a1)| =Yy, where a = {ao,a,).

RemARrk. The fundamentals required for the proof of Lemma 2.1 were
established for E(2°) by Sacks [11]. The lemma in its present form
appeared in Sacks—Slaman [12].

CoRrOLLARY 2.2. If Pe A and ¥p S PVae C [ <g is well-founded below

<p.ay<>plH*{ao}®(a) !l ],
then the relation p |** {e} (J_C,—Z’) }inREinP.
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The procedure defined in the lemma allows one to reduce the forcing of
an apparently X, (4) formula (i.e. there exists a well-founded computation
tree with values) effectively to a ranked formula. What has been shown
here is that }he <gheight of {(q,,a) is recursive in p, a and bounds the value
of |{e}%(x,y)|, where G is P-generic/A extending g,.

Countable closure of P is one way of insuring the closure of A[G]. The
virtue of countable closure is its ability to exploit the MP. Consider a
procedure applied to a pair {p,7), where pe P is a forcing condition and t is
a term in the associated forcing language:

(i) if Pl |, then we produce by induction a bound less than % on ||z||;
(ii) if p |t |, then we build a sequence {p,, T,Ynee Such that Vn[p,,, < p,)
and p, |-*‘z, is a subcomputation of 7, _;”’].

By countable closure we take p, such that Vn[p, <pp,], then
P oo IF{TuDnee 18 @ Moschkovakis witness (MW) for 7”.

LeEMMA 2.4. Suppose P is countably closedin A, A EMP and <y is not well-
founded below {p,a), then there exists a term t and a condition q such that
ql=*'tisa MW for a'.

Remark. This fundamentally new feature of forcing in the setting of
generalized recursion was first isolated by Sacks [11]in the setting of E(2¢).
Lemma 2.4 in its present form first appeared in Sacks—Slaman [12].

Sacks’ theorem on countable closure is now immediate.

THEOREM 2.5 (Sécks—Slaman). Suppose A is E-closed, A EMP, P € A such
that

A E‘P is countably closed’.
If G is P-generic/A, then A[G] is E-closed and satisfies MP.

The existence of P-generics over E-closed A is not probable in general for
uncountable 4. We say that G < P is P-bounded generic/A, if G is generic
with respect to all sentences of bounded rank in £* (that is G meets the
associated dense subsets of P). Sacks [11] first noticed that such a genericis
often sufficient for applications.

LemMa 2.6 (Sacks [11]). Suppose A and P satisfy the conditions of the
above theorem and that for some transitive set X

A = E(X) (the E-closure of X)
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and that X is well-orderable in A. If y(<% = OR N A) is the height of the
shortest such well-ordering of X in Aand A k*‘y isregular”, then a P-bounded
generic over A exists, where

P={fiy->{0.1)f <y}

Proor. (Sketch). Since A = E(X), every set ze A is recursive in some
1<y (modulo the parameter giving the well-ordering of X in type 7).

The sentences of bounded rank in #* can be recursively enumerated by
y such that the enumeration restricted to an initial segment of y is bounded
below %.

This can be seen, for example, by appeal to Griffor-Normann Selection
[3] which in this case gives that for r < g we have uniformly in 7,y
selection over RE subsets of 1.

The forcing relation for these sentences (essentially those giving
computation tuples) is RE in P. Using the well-ordering of P define by
transfinite recursion p:y—y by t <vy:

For t = a+1: p(z) is the least pe P such that p <, p(«) and p decides

JJ pift land p(7)is p(a) otherwise, where @1« i the ||z||* sentence of #*
bounded rank.

For limit (7):

px) = U p@).

y<t
CLAM. For all 6 < y, p”o is bounded below y.
Proor (Claim). Given ¢ < y we have that
G, = {t <ot codes a convergent computation}

is an element of A (we have identified X with y via the well-ordering). Using
G,, p”o is an element of 4 and by the assumption that y is regular in 4, p”o
is bounded below y.

The first application of forcing in the setting of E—recursmn was due to
Sacks [11], where he made use of the above result concerning forcing with
countably closed posets. Sacks showed that if there exists a recursively
regular well-ordering of 2¢ recursive in 3E and a real, then the 2 — sc (3E) is
not RE in any real.

3. Antichain conditions and E-closure.

Antichain conditions on P are yet another way of preserving E-closure.
For the sake of completeness we mention the results of Sacks in this
direction.
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Dermntrion. Let A be E-closed and P e A be a poset, then

(i) x S P is an antichain if all elements of x are incompatible via <p;

(i) an antichain x is maximal if every element of P is compatible via <p
with some element of x;

(iii) P satisfies the o-chain condition (6 — cc) in A, if every P-antichain in A
has A-cardinality less than o.

For example, if P has the * —ccin 4, then every P-antichainin 4 has A-
cardinality less than or equal to f. As a consequence any effective
phenomenon in A[G] can be restricted to at most f many possibilities in A.

THEOREM 3.0 (Sacks [11]). Let A be E-closed, P€ A, y€ A such that

(i) Phasthey* —ccin A;
(i) thereis an ae A such that {a,x) selects fromy for all xe A;
(i) each x€ A is well-orderable in A.

Then if G is P-generic/A we have that A[ G] is E-closed.

Recall that if X is a set, then an ordinal « is X-reflecting if

(z = TC({x} UX)):L,[Z] = {e}(X)t implies that L.[Z] |- {e}(x) |,
where K§ is the supremum of all ordinals E-recursive in X. Then
K7 = supp {a|a is X-reflecting}.

In the theorem <a,x) selects from y if we can E-recursively compute an
element of any non-empty RE subset of y uniformly in {a,x> and an index
for the RE subset of y.

REeMARk. (a) Sacks’ argument proceeds by approximating computations
in A[G] by building antichains in A. The reader is directed to Slaman [13]
for the proof.

(b) Slaman notices that Sacks’ proof actually yields that for X & OR
such that

(i) gc(x) is the greatest cardinal in E(X);

(i) PeE(X) and has the y* —cc in E(X) and y < gc(x) (P€eOR and
P =< ge(x)and P <, P, X, ge(X));

(i) Jae E(X) ye E(X),{a,y) selects on y (fix this a), then if G is P-generic
over E(X)and b & ge(X) with be E(X):

K f»bs<a,l’,}'»x,gC(X)> =K lh<u~l";ux,gc{.\‘)>.
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COROLLARY 3.1 (Sacks): C.c.c. (%;—cc) set forcing (with (iii) of the
theorem) preserves E-closure.

Proor. Use Gandy Selection.

4. Cohen reals.

In this section we consider the result of adding Cohen reals to E(X). First
we address the question posed in the previous section concerning the
preservation of E-closure.

Let X e V be infinite and transitive and consider E(X). Let the poset

P ={f:w—- {0,1}|f is a partial function and dom (f) is finite}

and for p,qeP, let p <pq iff p extends g set-theoretically. P is just the
Cohen poset for adding a new real.

LemMma 4 (Sacks). With P as above let G & P be P-generic/E(-) then

(i) UG=fw-{0,1};
(i) E(X)[f] is E-closed; and
(i) K&/ = K¥.

(ii) follows immediately from (iii), while (i) is a standard density
argument. Using the fact that the forcing relation is RE: assume {e}(f) |in
E(X)[ f], then letting G be the term for fin £* we have that there exists a
pe G such that p |-{e}(G) |.

The set of integers (under some standard coding of P as integers):
{peP|pI-{e}(G) |} is RE and, by Gandy Selection, we can effectively
select such a p. (The reader should verify that this set of conditions is RE —
see Sacks [11].

Now consider the case of Kleene recursion in 2E. Harrington [4] showed
that

EQ2°) = L,, +(£(2°).
Let the 1-section of 3E be defined by:
1-5cCE) = {a S w|a <:52°}.
If every real is constructable, then
L, *EQ®) =L, s

and a natural question is whether a real b Cohen-generic/L,, sj satisfies:
bel—sc(*E)in L, sg[b].
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Sacks showed that such a real computes no more ordinals than & in the
ground model. A result of Lévy [8] will allow us to answer this question
negatively in a strong sense.

DeFINITION. If P is a poset we say that P is semi-homogeneous iff Vp, p'e P
there exists an automorphism of P n:P— P such that n(p) and p’ are
compatible (i.e. Eqe P such that q < n(p) and q < p').

Using this condition on P, Lévy shows the following remarkable result
about generic extensions via P.

THEOREM 4.2 (Lévy [8]). Assume P is semi-homogeneous and let M be
a countable model of ZF with Pe M. Let G & P be P-generic/M and
N = M[G]. Then we have that for every xe N and ye M :

xe[HOD(y)]¥N - xe M.

Remark. HOD (y) are those sets hereditarily ordinal definable from y. A
closer look at Lévy’s proof reveals that the same ordinal parameters suffice
to define x in M as did in N. The proofs of Lévy’s result is a transfinite
induction on rank (see Lévy [8]).

LemMA 4.3. Let P be the Cohen poset for adding a real, then P is semi-
homogeneous.

Proor. P = { f:w — {0,1}| f partial with finite domain} so given p,p’€ P:
if p and p’ are compatible, the identity automorphism will suffice.
Otherwise let

B = {new|nedom (p) N dom (p') and p(n) # p'(n)}

and consider the case where B = {n,} (the general case is similar). Let
m = max (dom (p), dom (p’)) and define a permutation p:w<>w by zew

m+1, ifz=n,
p(z)={n0, fz=m+1
z, otherwise.
Then p induces an automorphism n: P — P given by: ge P
dom (n(g)) = {p(n)|nedom ()}

and for zedom (n(q)) we let n(q)(z) = q(p~*(z)). Then, if we consider n,
above, we have
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no ¢ dom (n(p))
and
1(p)(p(no)) = p(p™ *(p(no))) = p(no)

and so 7(p) and p’ are compatible with extension g = w(p) U p'.
Thus if we force with this P over L, the following fact shows that there is
no hope of extending 1 —sc (3E).

FacT 4.4. Let M be a transitive model of ZF and let X € (k — sc (**1E)),
then X e HODM. To see this notice that for any n,type (n)is definable in M.

Combining these results we can now show

THEOREM 4.5. Let P be the Cohen poset for adding arealto Landleta < w
be P-generic/L, then

(1—sc CE) = (1-sc(CE))~.

Proor. Assume that b e (2°)“ and suppose that b <3£2°in L[a], then
be OD™ and since b & w, we have that be HOD™“, By Theorem 4.2,
be L, contradicting the choice of b. If be L such that

be (1 —sc(3E))H,

then by Lemma 4.0, b <52, for some y < (x3")* and by the remark
following Theorem 4.2, we have b <s52%,y in L, as desired.

5. 3E-degrees of reals.

We will use Lévy’s result to show that the well-foundednegs of the set of
degrees of reals modulo 3E under the induced ordering is independent of
ZF. This answers a question of Normann and also one of Sacks concerning
the relative computability of mutually Cohen generic reals.

DerintTioN. If a & w, then the degree of a mod 3E is

[a]sg= {b S w|a Ssgb, b <sga)
and 9(°E) = {[a]sg|a S w}. Therefore [a]sz[b]:z€ DCE):
[a]sg < [b]sg iff Jage [a)sgIboe[b]sg
SUCh that ao é:E bo .
ProPosITION 5.0. (V = L){2(3E), £) is well-founded.

Proor. Let <; denote the well-ordering of L, then <; | (29) is
recursive in *E, (2°)L. Given a e (2°)* we can effectively compute |a| <, the
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height of a in the well-ordering, and a counting of |4 <, Thus for every
be (2®)E withb <, a, bisrecursivein 3E, (2°)* and some 1nteger (b’s placein
the counting of || <,)- This shows that in L, the degree ordering follows <,
and is therefore well-founded.

CoroLLARY 5.1. Con (ZF) - Con (ZF) + {2(E), £ is well-founded).

We will now show that the mildest possible extension of L adding reals,
namely adding a single Cohen real, yields an infinite descending path
through this ordering.

THEOREM 5.2. Let M be a countable, transitive model of ZF + V = L and
let a C w be Cohen-generic/M, then

M[a] E“A2(E), £ is not well-founded”.

Proor. M fulfils the condition of Lévy’s theorem and the Cohen poset
for adding a real is semi-homogeneous as we have shown. Define the
following splitting of the Cohen real a:

ay,0 = even part of a
ao,; = odd part of a
and in general at stage n:
d,+1,0 = even part of g, o
a,+1, = odd part of a, .

A standard argurﬁent shows that Vn[a,, and g, , are mutually Cohen
generic]. By Lévy’s result we have in L[a]:Vnew

Apo £35an,
and
ay,y §350n,0-

As a result View[ag;+1 $3gd0,;] and ago £sga. The sequence
{ao,]iew]€ N and hence

N = “¢9(E), £) is not well-founded”.

6. Extending the 1 —sc(CE).

Recall that the extension via a Cohen real a in the previous section
satisfies (%;E)" = (x;E)“, If we are willing to give up this constraint we can
extend the 1 — sc(3E) by forcing over a well-known partially ordered set.
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THEOREM 6.0. Let M be a countable, transitive model of ZF +V = L and
let a & w be Col (w,N,) is the Lévy poset for collapsing R, to w.) Then

(1 —sc(CE)MLdl,
Proor. Define the complete set of integers relative to *E by
C = {<e;m)|{e} CEm) |},

then Ce L, sgbut C¢1—sc(*E)in L.In M[a], g} is recursive in *E,2° and
therefore (%, 3E)* <:z2° in M[a]. Thus, if we denote by CM the
interpretation of C in M, then using (%, 3E)*, CM is recursive in 3E,2° in
M[a],i.e.

CMe (1 —sc(CE))Mla],

as desired.
A reasonable question is whether we can extend the 1 — sc(*E) as above
without violating %, 3E of the ground model. In the next section we
- provide such an example.

7. Jensen-Johnsbriten reals and 1 — sc(E).

Here we consider a forcing extension preserving %, >E; but extending the
1—sc(E).

The relevant theorem is an improvement of Solovay’s result [ 14] (that it
is consistent with ZF to assume that there is non-constructable A} subset of
o by Jensen-Johnsbraten [7].

THeOREM 7.0 (Jensen-Johnsbréten [7]). There exists a n} formula ¢ such
that the following are provable in ZF :

@) p(x) > x S o;

(b) V =L - 3xp(x)

©) of =w;» @2 )xF(x)

(d) Con(ZF) — Con(ZF + GCH + 0} = w, + Ja(p(a)V = L[a]));

(€) If M EZFC + w% = w, + ¢(a) and N is a cardinal preserving extension
of M, then N Eo(a).

If {a}en} (i.e. a is implicitly n}-definable), then aecA}. It is this
definability (a € A} clearly implies that a <s; &) and the chain condition on
the necessary iterated forcing that gives the desired result. For the proof of
Theorem 7.0, consult Jensen-Johnsbréten [7] or Devlin-Johnsbraten [1].

THEOREM 7.1. There is a countable chain condition (c.c.c) iterated forcing
(set forcing) P,, such that if G is P -generic/L, sg, then
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(i) 1—sc"(CE)$ 1—sc"9(E); and
(ii) Ly, sg[G] is E-closed.

Proor. Jensen-Johnsbraten show that the necessary trees are X, (L, L)
and are hence recursive in 3E in L. The real coding {b, |n €w) the sequence
of branches through these w-many trees is A} and also recursive in 3E,
which gives (i).

(i1) follows from Theorem 3.0 and each stage in the iteration is c.c.c.. The
iteration is given by

P, = T, (under the reverse ordering)
P, =Ty, over M, = L[<bo, ..., bu11)],
then
P,= ll_tp(P,,|new>.

Each P,isc.c.c. and hence the direct limit is also c.c.c.. The desired model is
the result of forcing with the direct limit iterated forcing.

8. Almost disjoint codes and 1 — se(** 2E).

We consider here the effect of adding reals which are almost disjoint
codes for subsets of Xy upon the 1 — sc (*E) as a characteristic case. First we
give a brief outline of this notion of forcing.

Let A = {A,|a < w,} be a family of almost disjoint subsets of w and let
X S w,. Define Py x as follows:

A condition is a function from a subset of w into {0,1} such that

(i) dom(p) N A4, is finite for every ae X;
(ii) {np(n) =1} is finite.

The set P, yis partially ordered by inverse inclusion: P < qiff p extends g.
If p and q are incompatible, then

{n|p(n) =1} # {n|q(n) =1}

and so Py y satisfies the c.c.c. Thus if Py ye L, *E and f: o — {0,1} is
Py x genenc/L then L,, 3‘E fis E-closed by Sacks (see Slaman [13]).
This example of a generlc cannot extend 1 —sc(**?E), k = 1.

THEOREM 8.0. Suppose Py yeL,**?E and f is Py y-generic/L,***E,
then

f# (1= s+ 2E)HAN,
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Proor. We consider the case k =1 and X < N for simplicity. As before
we use the result of Lévy and Fact 4.4.

Suppose that f < &, then fe ODY. Since fC w, f is an element of
HODY. All that remains is to show that Py y satisfies the hypothesis of
Lévy’s theorem.

LemMA 8.1. The poset Py yx for almost disjoint coding is semi-
homogeneous.

Proor. We can view two conditions as
p = <k,(/41,...,14")>, pl== <h9(l;1a---513m)>’

where k and h are finite subsets of w and the 4; and B; (i < n, j < m) are
finite subsets of {4,|xe X}.
We find a permutation p: N — N as follows: let

A=U4, and B= UB,
isn jsm

then

xek — p(x)eh V p(x)¢B

xeH - p~l(x)ek V p~l(x)¢A.
Let s < s; < 5, be integers such that
(i) xekUh= x<sp;
(i) [os)\Bzk
(iii) [s1,52) \ A2 h.

Define as follows: x = s,, let p(x) = x thus p will be a permutation on
[()aSZ):

xekN h, let p(x) =x
xek \ h, let p(x)e[so,51) \ B pH.
xeh\ k, letp~'(x)e[sy,s,) \ 4

By taking = in (ii) and (iii) above p gives a permutation.

To define the automorphism n: P — P take n(p) for p = <k,A) to be
<p(k), p(A)) where p(k) = {p(n)|nek} and p(4) = {{p(n)|neb}|be 4}.
Thus by Lemma 2, feM which is absurd, since fwas taken Py y-
generic/M.
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CoroLLAry 8.2. If we take Py y to be the generalization of almost disjoint
codes to regular « over L by taking the appropriate family ) where % = N,,
Inew where X G type (n) and G is Py y-generic;L with Py ye L, "*’E
then

G¢ (n—sc("*2E))Mel,

Proor. Using the fact that L is the ground model and every element of L
is HOD! 5o if Ge ODY) then Ge HODM¢!,

The argument that this Py y satisfies semi-homogeneity is suitably
altered to handle the limit ordinals involved. The argument that G preserves
E-closure uses Theorem 3.0 and selection over itype (n — 1).

Until now we have been primarily concerned with 1-sections. In the next
section we study n-sections for n > 1 for the Kleene functionals **2E for k
> 2. The 2 — sc(®E) is determined completely by the reals and thus cannot
be extended without adding new reals.

9. Extending the 2 — sc(*E).
We shall argue here that we can by forcing add an element of the

2 —sc(*E) = {X C 2°|X is recursive in *E}

over L without violating %; “E. The techniques involved had to confront
the obstacle posed by Lévy’s result concerning posets satisfying semi-
homogeneity which states that forcing with such a poset cannot add new
elements of HOD(x) for any ground model set x.

The natural solution here is to resort to a poset P which has the identity
asits only automorphism. We force over the rigid Souslin tree constructed
by Jensen [5] in L and using his methods for showing that the resulting w,-
tree is Souslin we show that the only w,-path in the extension is the generic
path. This yields the definability required for arguing that this path (viewed
as a subset of (2°)L via <,) is recursive in “E.

If we work over L, then if we force with a semi-homogeneous poset P,
Lévy’s result and the lemma show that there is no hope of extending the
2 — sc(*E) without adding new reals (and hence having done so trivially).
To see this suppose N is such a generic extension of L and

Xe(@2—-sc(*E)N.

Then X € ODY and if no new reals were added in forcing over L, we would
have that X e HODY. By Lévy and semi-homogeneity X € L. and definable
in the same ordinal parameters, hence
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Xe(—sc(*E))*.

Facr. If P is a notion of forcing such that the only automorphism is the
identity, then P does not satisfy semi-homogeneity (just take p and g in P
incompatible).

The following theorem of Jensen (see Devlin-Johnsbréten [1] gives us
the required notion of forcing for extending the 2 — sc(*E).

DEerFINITION. /A partially ordered set X = (X, <) isrigid, ifid | X is the
only automorphism on X.

THEOREM 9.0 (Jensen [6]). Assume >. Then there exists a rigid Souslin
tree.

For our purposes work in L, then {>holds and there exists a rigid Souslin
tree T, which is in fact X, (L,,) and hence recursive in “E,22 in L. Viewing
T as its coding

Te(2—sc*E))-,

so let us consider the result of forcing with the poset corresponding to T
over L (we also use T to refer to the Souslin algebra derived from T). T
satisfies the c.c.c. so if G is T-generic/L, then L[G] is a cardinal and
cofinality preserving extension of L. By the following lemma we have a bit
more.

LemMMA 9.1. If G is T-generic/L, then
(2w)L[G] — (2w)L.
ProoFr. Suppose not and let f:w — w be a term for a real fe (22)49!
\ (2°)~. In L[ G] consider the following map defined by induction on w: n

— p, given by p, = least pe G such that Ime w with p ||-f (0) = m; given
Pos--+» Py let p,+ = least ye G such that g < p, and 3m q|-f(n+1) = m.

CrLamM. F: @ — w, defined by F(n) = U dom (p) is unbounded in w,.

Proor. Otherwise 36 < w, such that Unew F(n) £6.Butthen f:w - w
is definable from G | § + 1€ L contradicting the choice of f.

Clean F up by taking F': w — w, and let F'(n) = a,. Each a,, is countable
via some a, € WO and letting a code the family {a,} .., in a standard way we
get in L[G] g:w <> w, contradicting the fact that L[G] was a cardinal
preserving extension of L.

ReMARrk. Thus no new reals are added and if we can show that UG is
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definable from T in L[G], then the following theorem, giving the
uniqueness of UG as a path, will yield the desired non-trivial extension of
2 —sc(*E)in L[G].

THEOREM 9.2. Let G be T-generic/L,then UG is the only branch through T
in L[G].

Proor. Suppose not and let be L[G] be a branch through T such
that b # UG. Then there exists an a < w, such that b(x) # UG(a), take
the least such o,. Let 7 be a term in LST such that for « a finite vector of
ordinals: 7% (a,G) = b (take the least such in the sense of <;). By
the same argument showing that no new reals are added we have
that (Vo < w,)(b 'xeL)and 3 < w, such thatb | ag+IeL,.

The term te L,,,, so proceed now as in the proof of rigidity including t
and ao+1 in the chain of elementary substructures used in Devlin-
Johnsbréten [7].

COROLLARY 9.3. If we denote by {a,|y < w,} the well-ordering of (2°)* and
G* = {a,|ye G} and G is T-generic/L, then

G*e2 —sc(“E).
Proor. The predicate
¢(T,x) = x isa path through T
is recursive in *E (using w; <. &) and hence, so is the set
{x|(T,x)} = {G}

by the above theorem. Again using the well-ordering of (2°)F recursive in
“E we compute G* from G.

10. Extending the k — sc(**2E).

In this section we generalize the methods used to extend the 2 — sc(*E) to
all finite/types. We modify the proof of Jensen [6] that there exists a rigid
Souslin tree in L to prove the existence of a rigid %-tree which is x-Souslin in
L. We then force over that tree preserving %, **2E for the appropriate k.
Using the definability of the resulting ®-branch (actually its uniqueness in
the extension) we conclude that it is recursive in **2E, & and hence clearly
extends the k —sc(**2E). Throughout we consider the case of the
3 —sc(°E). The generalization to all finite types is straightforward. We
show that the extension of the section is non-trivial by showing that we add
no new sets of lower:type.



22 E. R. GRIFFOR

w,-trees which are w,-Souslin. In Jensen [6] one constructs w,-trees
which are w,-Souslin, but the resulting tree is not obviously rigid. We
modify that construction here using the main idea of the proof as presented
in Devlin-Johnsbraten [ 1] to produce an w,-Souslin tree which is rigid and
later use the strategy for showing that the tree is rigid to argue that forcing
over that tree yields a model in which there is only one branch. Weinclude a
proof for those uninterested in Souslin trees, but curious about the coding.

THEOREM 10.0 (V = L). There exists an w,-tree which is w,-Souslin and
rigid.

ProoF. Let S,|a < w,) be the sequence given by {>in L. We wish to
construct a Souslin tree 7. The points of T will be ordinals less than w,. We
shall construct T in stages T, (¢ < & < w,), where T, is to be the restriction
of T'to points of rank < x. Hence T, will be a normal tree of length o« and T;
will be an end extension of T, for > a. We define T by induction on « as
follows.

Casel.a=1, T, ={0].
Case 2. T,,, is defined. Define T,,. by appointing to immediate
successors for each maximal point of 7, ,.

Cask 3. lim () and T, is defined for v < . Set T, = J T,.

v>a

CasE 4. lim (x) and T, is defined. We must define T, ;.

If cf(x) = «» then detine 7,,; by appointing a successor for each
maximal point of T,. Our work is to be done at « such that cf () = w, . By
induction on a < ), let d(a) be the least ordinal 6 > « such that

() L<L,, and
(ii) <6(v)|v < adeL;, and

set M, = L,(a). Then M, has size <N, for a < w,. If « < w, and lim («)
and cf (x) = w,, assume that T,e M,,.
To define T, ; we force over M, with P = (P < p> e M, given by

P={p|3a<w; Ap:a—T)}
with p Spg+>dom (p) 2 dom(g) A Yaedom (g).

Notice that M, , H\:/I = N, and also M, E‘P is countably closed’. Let
G S P be the <;-least P-generic/M, set. Since

1‘441-\“1'{lmz and MaEMa+11
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and3feM,,, f:w,; M, and since P is countably closed generics exist in
L,, and by elementarity also in M, . Hence Tye M, for lim (8) will be
trivial.

Fory < w,, let

b,={p,|peG}.

Cram. (i) Each b, is an a-branch of T,;
(i1) each b, is T,-generic/M,;
(iii) b, # b, for y # 0 less than w; ;
(iv) if ay,..., o, are distinct, then b, X... Xb, is (T,)"-generic/M,;
v L= Ubs,.

a<w;

Proor. (i), (ii), and (iii) follow easily from (iv): Let «;, ..., a, be distinct
ordinals less than w,, and let D S (T,)" be dense and closed under
extensions. Let

D* = {peP|{p,,,...,p, €D},
then D* is dense in P so let pe G N D*. By the choice of p
{Pyys-++sPy) Eby, X... Xb, ND
as desired. To see (v). let 0 € T, and define
D'= {peP|3yedom (p)(p, 2 o)},
then D" is dense in Pso let pe GND'.

Then 3y e dom (p) such that ¢ < p,eb, and so geb,.
Now set T, | = {Ub,|a < w,}, then by (v), T|(x + 1) is still normal and

so T = U, <,, T, is a normal tree of length w,.

Cramm. T is w,-Souslin.

Proor. It suffices to show that T has no w,-antichainssolet X & Tbea
maximal antichain. We show X < N,. Let A be the set of limit & < w, such
that X N« is a maximal antichain in T,. A4 is club in w,.

Now let x, = OR N M,, for y < w,. E = {&,|y < w,} is also club in w,,
hence there exists ae A N E such that S, = X Na. By the construction of
T, ., then we have:

Every X of level a lies above an element of X Na. Hence X Na is a
maximal antichain in T and X = X N« has cardiality <¥,.

The proof that T is rigid proceeds as in Jensen’s proof for the rigid w,-
Souslin tree.
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REMARK. (i) Obvious modifications show that with >, we construct a
rigid N,-Souslin tree. '

(ii) T hasthe¥,-c.c. by the above. By the construction at cf (&) = w stages
and the fact that P at cf (x) = w, stages was countably closed, T itself
is countably closed. For % asin (i) equal to X, for n = 2 T will have the
%-c.c. and be N, _ ,-closed. This fact will prove indispensable.

(iii) It is an interesting question whether > is enough to produce a %-
Souslin tree for all ®x not Mahlo. Jensen does so using [].

11. Forcing with rigid w,-Souslin trees.

We will work over L, °E and force with the w,-Souslin tree constructed
in the previous section to extend non-trivially the 3 — sc(°E). The tree T is
recursive in °E, & since Te X, (L,,)- Let G be T-generic, then the theorem
guarantees that UG preserves the E-closure of L, °E and more.

We shall argue that G < °E & on L, °E[G] by showing that G is the
only path through T in L, E[G].

THEOREM 11.0. If G is T-generic/L, then U G is the only branch through T
in L[G].

Proor. Suppose not and let be [T] in L[ G] such that n # U G. Then as
before there exists a term 7 € L,, such that 7L06] = p, where 7 depends on G
and finitely many ordinal parameters. There also exists a pe G such that

p It is a branch through T different from G’.

Now argue as in Jensen’s proof of rigidity that, at some stage a« < w, in the
construction, t gives a branch through T, different from G |, and that
1€ M,[G I,] but as branches we extended through the *th staget XG I, is
(T,)*-generic/M, and hence by the product lemma t¢M,[G I,], a
contradiction.

CoroLLARY 11.1. UG s @ in L, *E[G].

Proor. U G is the unique branch through T, T <sg & and we test all
such candidates.

CoOROLLARY 11.2.
(B —scCE)ECIE L, s
and hence the extension of 3 — sc(°E) is achieved.

Proor. Interpret U G as a subset of (22°)~.
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In order to argue that the extension of 3 —sc(°E) in non-trivial, the
following lemma suffices.

Lemma 11.3. In L, °E[G]

(i) N%is preserved.
(if) N5 is preserved.

Proor. (i) follows from the construction of T at lim («) with cf (¢) = @
where we extended all branches and the fact that P at lim (x) with cf ()

= w, was countably closed. Hence X} is preserved.
(i1) follows from ¥, — c.c. which T satisfies.

Countable closure of T insures that, in addition, no new reals are added.
Thus a new subset of the reals would be a new subset of X%, The following
argument shows that no new subsets of the reals are added and hence that
we have extended 3 — sc(°E) non-trivially.

LeEMMA 11.4. 28k = (28n)H6],

Proor. Suppose not and let X C N, satisfy X e (2%)H6I \ (2%:)E. We
will show that X% is collapsed in L[ G], giving a contradiction. By recursion
on N, define f:N;—>N, from G in L[G]:f(y) = upoeG such that
PolFX S N, and py|0e X

f(‘C+1) = UDr+1 épr
such that
PesilFt+1eX or
Pl +1¢X.

If 7 is limit ordered and f (y) has been defined Vy < 7 let

pt+IEG{

f@=up.< Up.
y<t
(Since 7 is countable and T is countable closed LJy<r p,€T) such that
P.eG and p,|te X. Now define F:X; —N; by taking

F(y) = Udom (py)

pF11 < 1 < N,, then X e L were done. Otherwise define F':N; - N, by
recursion from F. Placing together the collapses of ordinals less than ¥, to
X, in the range of F’ yields a collapse of X% in L[G]. a contradiction.

As remarked above a straightforward generalization gives a way of non-
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trivially extending the k —sc(**2E) and as a result the n —sc(**2E), for
1 < n £ k. This is best possible since the k + 1 — sc(** 2E) cannot be altered
without changing the set of objects of type (k).

12. Forcing and reduction procedures.

The evolution of the fundamental questions associated with developing
“degree theory” and the priority method, in analogy with the classical
development for recursion theory on the integers, is rich and we make no
effort here to summarize it. The interested reader is directed to Sacks [11]
for a thorough foundational discussion of, for example, reduction
procedure and “parity’’ between parameter, argument and the associated
computation all with respect to a fixed universe for computation. Even
formulating A <;B (A is E-recursive in B) for A and B subsets of a
computational universe M (which is itself closed under computation) is not
without its problems under demands of parity, if M is not closed under
computation relative to B.

The question we address here is the effect upon degree structure of
bounded generic extension via a poset # = (P,<) satisfying an
effectiveness condition typically used to prove that the extension preserves
closure under computation in ** 2E. tp(k). We shall work in the setting of
recursion in *E, but the argument is quite general and the perceptive reader
is invited to provide the “most general™ result.

DEeFINITION. Let # = (P, <) be a forcing poset with Z€ L, 3E, then 2
is effective if
{Kp.et) [pIH {e} (t,°E) |}
isREon L, °E.
We prove then

THEOREM 12.0. Let # ={p,<)€L, 3E be effective and suppose that
A,B S L, °E besuchthat B is regular and h yperregular. If there exist pe P,
e€ N and g a closed term such that for all G P-generic/L,, 3E with respect to
ranked formula such that pe G

A<sgBon L, 3E[G] via (@) *E[G),
then
A =B on L, °E viae,a,?,p.

Proor. We prove the result for B = @ (the general result is obtained by
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relativizing the argument to B using the assumption that B is regular and
hyperregular).
Thus p [F*Vx{e} (a,x) |, that is for all closed terms_i

pIF {e}(a.i) |

ReMARK. Note that {e}(a,x) | is an abbreviation for:

AT [T is a computation tree with values for the computation tuple
{e,a,iy and T is well-founded].

Also {e}(a, ") is taken to be {0,1}-valued giving yz on L, *E[G] for any
G P-generic/L,, 3E with respect to ranked formulae such ‘that regG.

By the reasoning in Sacks [11]if y < %, 3E, then
{<p,¢>| ¢ ranked and p |* ¢ and rank (¢) < 7}
is *E precursive in 2, y. To compute B(z) for ze L, *E:

1) For each g < p we have

qlH {e}(a,2) |

(z the canonical term for z) and by Sacks [11] there existg" < g and ye OR
uniformly 3E-recursive in ¢,#,a such that

q | {e}@z) <.
Hence let ¢(q,a) = ¢’ and h(q,a) = y and compute first t = sup,<,h(g,a);

2) By the above remark concerning the abbreviation {e}(a,z) | and 1)
there exists a term b e C$%# such that for ¢ < p:

g “b is well-founded computation tree with values for {e,a,z)>”.

Thus {e}(a,z) = 0 and {e}(a,z) = 1 are ranked formulae of rank < .
Now {{p,¢>|p | ¢ and rank (¢) < t} is *E-recursive in 2,7 and there
exists g < p such that

qIH* {e}(@,z) =0 or g {e}(a,z) =1

({e}(a,z) =.i is an abbreviation for a statement about a term of rank <t
giving the corresponding computation tree with values). By our
assumption on generics G extending p, all such g give the same value. If that
valueisi (€ {0,1}), then set B(z) = i. This algorithm clearly computes B *E-
recursively on L, °E.
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