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RADIAL LIMITS OF FUNCTIONS
OF SLOW GROWTH IN THE UNIT DISK

MARVIN ORTEL AND WALTER SCHNEIDER

Abstract.

There are unbounded analytic functions on the disk which exhibit
arbitrarily specified asymptotic behavior on almost every ray from the
origin and arbitrarily specified growth of the maximum modulus on
concentric circles.

0. Terminology, explanation of theorems, references.
Throughout this paper C denotes the set of complex numbers, R denotes
the set of real numbers, R = R U { — 00,00} is the extended real line,

D={zeC:|z| <1}
is the unit disk, and

T={weC:|w|=1}

is the unit circle. We shall refer to the usual (metric) topologies on these sets
and the corresponding o-fields of Borel subsets determined by those
topologies. For instance, the statement

»T-E>R is measurablé«

means the domain of Fis T and F~!(U)is a Borel subset of T whenever U is
a Borel subset of R. Arclength measure on the Borel subset of T is denoted by
m and, ifR is a relation on T, the statement

»R is true for almost all we T«

means that {we T:R(w)} is a Borel set and m{we T:R(w)} = 2n.
The purpose of this paper is to present

THEOREM 1. If , f1, *f1, 4 f2» *f> are measurable R-valued functions on T
such that

SIW) S *iw) and , f,(w) < *o(w), all we T,
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and if
[0,1)-%(0,00)

is strictlydncreasing and unbounded, then there is an analytic function D C
such that

1) |f(z)| < M(|z|), all ze D,
and

(2) lim Ref(rw) =, fi(w), EHII_Ref (rw) = *f1(w),

}_iTrlll__Im frw) = fo(w), lerrll Im f(rw) = *f,(w), almost all we T.

To facilitate the proofs and explanations we use the following
terminology. A function [0,1)-#-(0,) is called a growth rate if M is
strictly increasing and unbounded. When we say

»fis of growth M«

we mean D-L5 C, fis analytic, M is a growth rate, and | f (z)| < M(|z]), all
ze D. On occasion we employ the notation

M(r,|f]) = sup{|f(w)|:we T}, 0<r<1

with reference to a function D-L>C.

According to Theorem 1 there are unbounded analytic functions, of any
specified growth, which exhibit any consistently specified asymptotic
behavior on almost every ray. It is the possibility of specifying growth in
addition to asymptotic behavior which is the new aspect of Theorem 1.
Indeed, by the well known constructions of Bagemihl and Seidel [2],
asymptotic behavior (alone) can be specified on a far broader class of paths
to the boundary than that class comprised of rays from the origin.

The consequences of Theorem 1 should be compared to those of the
following result of Dahlberg [4], Corollary 1, p. 302].

THEOREM. Suppose D-L5C is analytic, T-L> C is measurable.
1) Ti%-rlflf(rw)l <o, all weT,
r

@) lim@- r)log M(r,|f|) = 0,

(3) liﬂ f(w) = f*(w), almost all weT,
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and
@ §r|f*w)dm(w) < co.
Then

,Sup_fzlf (rw)ldm(w) < eo;

that is, fe H!.

To draw the comparison consider a fixed measurable function T-L5C
for which {.|f*(w)|dm(w) < 0 but which does not coincide almost
everywhere with the radial limits of an analytic function of class H! (for
instance, stipulate that 0 <m{weT:f*(w)=0} <2rn). Then, by
Dahlberg, there is no analytic function possessing all three properties (1),
(2), (3) with reference to the present function f*. However, by Theorem 1,
there is an analytic function f meeting the two conditions (2), (3) of
Dahlberg (for, in Theorem 1, we may set , f; = *f; = Ref*, . f, =*f,
=Imf* and M(r) = (1—r)"!). Consequently, condition (1) of Dahlberg
must be violated by any such function f (that is, its restriction to at least one
ray must be unbounded).

Also, with the same function f* in mind, we may ask if there is an
analytic function meeting the two conditions (1), (3) of Dahlberg. We have
not answered this question; but Dahlberg has given a relevant example on
page 302 of [4].

Bagemihl and Seidel exhibited the utility of their construction through
two applications [2, Theorems 4 and 5]. We present similar applications
making use of the new features of the present construction.

The first corollary of Theorem 1 pertains to the various hypotheses
which imply existence and uniqueness of solutions of boundary value
problems (of the second and third kind) for Laplace’s equation.

CoRroLLARY 1. Specify a.€ (0, 1) and two measurable functions
T-NALR, )

Then there exists a function D-2> R such that
) H is harmonic in D,
2 sup{|H@2)-HQ)||z—{| *:zeD, z# {} <o,

or

almost all we T,

) . 0H
3) lrlﬂ ——(rw) = N(w) and lrl?’; =g W) = A(w)
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Proor. Construct DL C, as in Theorem 1, such that
@ |f@|=@a-|z|y, all zeD,

and
5) liﬂf(rw) = (N(w)Rew — A(w)Imw) —i(N(w)Imw + A(w) Re w),

almost all weT. In turn, construct H such that

o _on_,
0x _lay -

Then (1) is immediate and, by well known theorems of Hardy and
Littlewood [5, Theorems 40, 41], H has an extension to D which satisfies
(2). Moreover, by (5)

%Iri(rw) = %I;(TW) Rew + %—(rw) Imw— N(w)

and

%g—(rw) = ?—g(rw)( —Imrw)+ %%(rw)(Re rw) — A(w),

asr—1,almost all we T.

We are unable to extend Corollary 1 to the case in which N and A4 take
values in R.

In the terminology of the theory of trigonometric series, the second
corollary implies that any measurable function on [0,27), with values in the
number system R + iR, agrees almost everywhere with the Abel sum of
trigonometric series of positive type with unbounded coefficients of
specified growth.

COROLLARY 2. Specify four measurable functions , fi, *f, «f2, *f2 as in
Theorem 1 and specify a strictly increasing, unbounded sequence (C,)§ from
(0,00). Then there is an analytic function D-L>C with Taylor expansion
f@) =37 anz" such that

n=0
(1) |a =G, all ne{0,1,2,...},
~and

(2)  fhas property (2) in the conclusion of Theorem 1.
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Proor. Since the sequence (C,)§ is strictly increasing we may construct a
corresponding increasing sequence (r,) from (0, 1) such that

Co<Ciri<Cr3<Cyri<...
and
3C, < C,rp, all ne{0,1,2,...}.

Since (C,)s is unbounded and (r,)§ is increasing, there is a growth rate
[0,1)-4- (0, 00) such that

M(r,) = C,r, all ne{0,1,2,...}.

Construct f (z) = ) a,z"asin Theorem 1 with data M, , f;, *f;, . [, */.
n=0
‘Since

janfrs = !5} J S aw)@Ydm(w) | < M) = Cyr
T

forallne{0, 1, 2, ...} the proof is complete.

We do not know if it is possible to arbitrarily specify almost everywhere
the radial limits of a function with bounded Taylor coefficients. This is a
typical question in the theory of representation of functions through
generalized summation of trigonometric series. A number of similar open
questions appear in the survey [7].

We turn now to describe the proof of Theorem 1 and to establish a
lemma (Lemma 0) which is utilized at several points in the text of the proof.
For the sake of completeness we also reproduce the special theorems of
Carathéodory and Keldys which support Lemma 0. Besides Lemma 0, the
only reference cited in the proof of Theorem 1 is the theorem of Barth and
Schneider which is reproduced in the next paragraph.

The proof of Theorem 1 is set out as a sequence of lemmas (sections 1
through 8) in which functions exhibiting successively more general
asymptotic behavior on the disk are constructed. This process is initiated
by modifying the functions appearing in the following statement.

THEOREM. (Barth and Schneider, [3, page 4]). If M is a growth rate there
is an (analytic) function D4 C of growth M such that

lign Reg(rw) = + oo, almost all weT.
rtl1

Functions of more general asymptotic behavior are obtained by
modifying and combining functions previously constructed. To modify a
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function on the disk we compose it with auxiliary analytic functions
constructed with special purposes in mind. Three such auxiliary functions
appear in the following.

LeMMA 0. (1) There is an entire function G such that

lim ReG(z) = +o0 and lim ImG(z) =
Rezt oo

Rezt

(2) There is an entire function G such that

hm G(x+iy) =0, 11m ReG(x +iy) =

—% yS -3 %<y5%
and

lim ImG(x +iy) =
x 1o
$sy<i
(3) If m and m satisfy — o0 £ m £ m < oo there is an entire function with
the following property: If (0,1)-2> C is a continuous function such that

[Imy(t)| £1; all te (0,1), and li#n Rey(t) = + 0
et
then
lim Im G(y(t)) = m, lim Im G(y(t)) =

limRe G(y(t)) = 1, and 11m G(z) =
th ez ¥ —o0
Imz|<1

We cite the required theorems of Carathéodory and Keldys before the
proof of Lemma 0.

Our reference for the theorem of Carathéodory is section 4-6 of [1]. To
present this theorem let d denote the spherical metric on C U {0} = € and
let Q denote a connected and simply-connected open subset of C. A
continuous injection (0, 1)-->Qis called a crosscut of Qif d(o(t), C — Q)-0
as lt(t - 1)| ¥ 0. A sequence (w,)? is called a fundamental sequence in Q if
given any ¢ > 0 there is a crosscut o of Q such that the spherical diameter of

o*={o(t):0<t<1)

is at most ¢ and such that w, and w, lie in different connected components
of Q — o* for all n sufficiently large.

THEOREM. (Carathéodory). 'Let Q, and Q, be connected and simply
connected open subsets of C and let Q, -L>Q, be an analytic bijection. Then
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(W,)7 is a fundamental sequence in Q, if and only if (f (w,))T is a fundamental
sequence in ;.

The Theorems A and B which appear below are weakened versions of
theorems of Keldy$ which appear in the article [6] of Mergelyan.

DEFINITION ([ 6, page 326, (B)]). Suppose E is a closed connected subset
of C and there is a continuous, strictly increasing, unbounded function
[0,00)-=>(0,00) such that to every zeC —E there corresponds a
continuous injection

[0,00)2>{{eC — E:|{| > r(|z])}
with y(0) = z and

lim = 00.
i 0] =co

Then write »E has property B«.

THEOREM A. (Keldys [6, page 337, Theorem 2.3]). If E = {zeC:Rez
2 0} and E-2> C is continuous on E and analytic on the interior of E, there is
an entire function G such that

|G(z) — ¢(2)| < exp(—|z|'/?), all z€E.

TueoreM B. (Keldys [6, page 338, Theorem 3.3]). If E = {ze C:|Imz]|
< 3}, if E has property B, and if E-2— C is continuous on E and analytic at
interior points of E, there is an entire function G such that

|G(2) — o(2)| < exp(——elil), all zeE.

Proor oF LEmMa 0. As the proofs of all three statements are similar it
will suffice to give the detailed proof of (3), which is the most complicated
statement, and only summarize the proofs of (1) and (2).

To prove statement (3) consider two continuous functions [0,1)-%£>R
with the following features:

(0) = B(0) = 0; a(u) < B(u), all ue(0,1);
(%) }‘Iﬂ Bu) — a(u)) =0, ma(u) =m, and %rxil_a(u) = .
Then, set
Q, = {zeC:|Imz| £ 3},
Q,={x+iyeC:0=x <1 and a(x) £y < B(x)},
Q, =intQ,, and Q, =intQ,
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(note thalt Q, is not the complete closure of Q, in C). A sequence (z,)F from
Q, is fundamental in Q, if and only if either

(@) (z,) converges to a point of Q; — Q,, or
(b) Rez,—» + 00, or
(c) Rez, — —o0.

A sequence (w,)y from Q, is fundamental in Q, if and only if either

(w,)¥ converges to a point of Q, — Q,, or
Rew, — 1 (refer to condition ( *)).

Let (a,)? and (b,)? be sequences from Q, such that a,— 0 and Reb,— 1 as
n* o0, and consider an arbitrary analytic bijection

Q,5Q,.
By the theorem of Carathéodory (Y~ (a,))? and (Y !(b,)? are
fundamental sequences in Q; and the sequence (¥~ '(a;), ¥~ 1(by),
¥~ Yay), ...), formed by alternating the terms of the previous sequences, is
not fundamental in Q, . Therefore ( ~!(a,))T satisfies one of the conditions
(a), (b), (c) and (Y ~1(b,)) satisfies a different one of these conditions.
Consequently there is an analytic bijection Q; 5Q, such that

Rezto l/l-l(a”)_) — 0 and Re’t° t//_l(bn)_’ + 0.

‘Setp =yor L

Let:(z,)? be a sequence in Q, such that Re z,— — oo. Then (z;, ¢ ~1(a,),
z,,...) is a fundamental sequence in Q. So (¢(z,), a;, ¢(z;),...) is a
fundamental sequence in Q, and we conclude ¢(z,) = 0 as n} co. This
proves

lim  ¢(z) =0.
Rez— —o0
zeQy

Let (t,)¥ be a sequence from (0, 1) such that t, — 1 as n 1 co. Then (refer to
hypothesis of statement (3)) (y(t,), ¢ ~1(by), y(¢t2), ...) is a fundamental
sequence in Q, . Thus (¢(y(t1)), by, @((t2)), ...) is a fundamental sequence
in Q,. This proves
S (% %) limRe ¢(y(t)) = 1.

tt1
Since ¢(y(t)) € Q,, all te (0,1), (*) and (* *) imply

lim|Im p(y(0)) — aRe(0)] = 0.
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Therefore

lim Im ¢(y(¢)) = m and ﬁlm P(y(t)) = m.

Finally,set E = {ze C:|Imz| < 1} (E has property B) and let G be an entire
function which approximates ¢ | in the sense of Keldys B. It is immediate
that G meets the requirements of statement (3). The proof of (3) is
complete.

For the proof of (1), set

Q, ={zeC:Rez> -1}
and
Q,={x+iyeC:0<x<oo and 0<y<e *}.

An application of the theorem of Carathéodory, similar to that in the proof
of (3). shows there is an analytic bijection Q;-2+Q, such that a
(fundamental) sequence in Q; which tends to oo corresponds, under ¢, to a
(fundamental) sequence in Q, which tends to co. Therefore, for such a
function ¢ we have

lim Reg(z)= +00 and lim Ime(z)=0.
Rez— + Rez— + o0
Set E = {ze C:Rez < 0} and approximate ¢ [g by an entire function G as in
Keldy3 A. Then G has the properties specified in (1).
To prove (2) set
Q,={x+iyeC:—2<x<o0 and —2<y<2}—[2,0)
Q,={x+iyeC: 0<x<oo and 0<y<xe *}.

By the theorem of Carathéodory there is an analytic bijection Q;-4>Q,
such that a fundamental sequence in Q, tending to ~o through values in the
upper (lower) half plane corresponds, under ¢, to a fundamental sequence
in Q, tending to o0 (0), That is, the mapping ¢ satisfies

lim  ¢(x+iy) =0, lim  Re@(x+iy)= 400
y< 0’,6; +°?yeﬂ, y> 0),‘; +di)ye(21

and

lim Ime(x+iy)=0.
y>0f;+°?yeQ,

Now set
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E={x+iyeC:0<x<o0 and $sy<3}
U{x+iyeC:0<x=<1and —3<y=<3}

< -1}

y
Then E has property Band E = Q, . Approximate ¢ |5 by an entire function
G as in Theorem B of Keldys.

U{x+iyeC:0<x <o and —3 <

1. Radial limits co + i-0 almost everywhere.
LemMma 1. If M is a growth rate there exists a function f, of growth M, such
that

(1.1)

liTni Ref(rw) = + and liﬂ Imf(rw) = 0 for almost all we T.
r r

Proor. Let G denote an entire function with the properties specified in
(1) of Lemma 0 and choose k > 0 so that |G(0)| < kM (0), Then, for each
re[0,1) there is a unique positive real number M, (r) such that

max |G(z)| = kM(r).
2| = My(r)
The elementary properties of entire functions imply that the function

[0, 1)-#+ (0, 00)

is a growth rate.
By the theorem of Barth and Schneider there is a function g of growth

M, such that

liﬂRe g(rw) = co, almost all we T.
r

Set f(z) = k~'G(g(z)), ze D. Then

<k <k = M(2)),
VOIS Tt | COI T i) 1601 = Mz

all ze D. So fis of growth M. Moreover, if we T and
limReg(rw) = + o0
rt1
we have
limR = lim ReG(¢) =
rt1 e/ rw) Re¢ 1 oo eGl) =+

and
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1 = l. = 0.
mlm frw) Reéngwlm G()

2. Infinite and bounded values on disjoint closed arcs.
A closed arcis a set of the form {¢":a < t < b} wherein0 < b—a < 2n (a
proper subset of T').

LemMA 2. If I and B are disjoint closed arcs and M is a growth rate there is a
Sunction f, of growth M, satisfying

2.1) lign Re f(rw) = + o0, almost all we l
rtl

and

(2.2) sup{|f(rw)|:0 <r <1 and weB} < oo,

Proor. It is permissible to enlarge B and rotate the resulting
configuration. Thus we may assume

I ={é":|t] < A)}, B ={e":|t —n| < A(B)}

with A(I) > 0, A(B) > 0 and A(I) + A(B) < m.

Choose u such that 0 < u < n and e*e T — (B UI) and let 7 € R satisfy
cos u = 1(sin u)? — 4. By the well known theorem of Carathéodory on the
mapping of Jordan regions (or by the theorem of his cited in section 0) there
is a bijection

D% {x+iyeC:x*+y* <1 and x 2 1y* -4}

such that y(e™*) = e, Y(e~™*) = e~ ™, Y(~1) = — 4, ¥ is continuous, Y~
is continuous, and both  and ¥ ~! are analytic at interior points of their
domains. The image of ¥ appears in Figure 1.

Figure 1.

20
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Since ¢ and e~ * do not lie on B U I the reflection principle for analytic
arcs implies that  may be extended analytically to a neighborhood of
B U I. The complete conclusion is as follows: There is an open set Q and an
analytic injection Q-2 C such that DU B U I < Q and ¢(z) = y(z) for all
zeDUBUIL.

Now we define a function [0,1)-"> (0, 0):

n(r) = (1—r) ' max |p(rw)—oW)|e@w)||, 0<r<1.
wel
Our immediate task is to prove
2.3) limn(r) = 0.
rt1

The proof requires Taylor’s theorem. Since ¢ is analytic in a neighborhood
of I and of unit modulus on I there is an open set N and two uniformly
bounded functions

N xN-£uE2,C

such that ] « N = Q, and
@(2) = ©(20) + @' (20)(z — 20) + E; (2,20)|z — 2o
and

0 0
I(P(z)l = |(P(Zo)| + _‘l;:;l (z0)(z —z0) + —L%l (20)(z —2z0)
+ E;(z,20)|z — zo|* whenever (z,20)e N xN.
By computing the derivatives of |@|* = ¢ ¢ we conclude
0 T
%ol o) = o) i@
and ‘

ﬂa%’l (@) = 3o@)| ') 9(),

all ze N. Therefore, if w and we™ (h real) are points on I, Taylor’s expansion
of || implies
wo' (w)pw) (€* — 1) + wo' (W) p(w)(e~*— 1) = — E(we'™,w)|1 — e™*|?

(since Iqo(u)l = 1 for all uel). If we divide both sides of this equation by h
“and allow h to pass to zero we see

Imwep'(W)p(w)=0, all wel.
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Consequently, the Taylor expansions of ¢ and |¢| lead to the statement
that (add and subtract @(w))

@(rw) — o(W)|@(rw)| = E; (rw), w)(1 —r)* — E; (rw, w)(1 — r)2p(w)

whenever we Il and rwe N. Since E, and E, are bounded in N X N we have
established (2.3).

If n(s) = 0 for some s€(0,1), then e — |@(sw)| would be analytic in a
neighborhood of I and hence constant in Q. Therefore, by (2.3) the function

r— min n(s)"'%, 0<r<1
rsssil

is strictly positive, non-decreasing and unbounded. Thus, it dominates a
growth rate M, which therefore satisfies

limM,(r)n(r) = 0.
rt1
Now set
ar) = ma;(|<p(rw)|, 0sr=1.
we

The functions r — a(r) and r — («(r) + 1)/2 are strictly increasing on [0,1]
and a(1) = 1. Hence, there are growth rates M,, M satisfying
M, (a(r)) = M(r) and M;3((x(r) +1)/2) = My(r), 0 =r<l1.
Set
M (s) = min[M,(s), M3(s)] 0 < s <1.

Then M, is a growth rate which satisfies
24) 112 M, ((x(r) +1)/2)n(r) = 0, and

(2.5) M, (x(r)) £ M(r), allre[0,1).
We may now define f. Let g be of growth M, and satisfy

limReg(rw) = + oo,
rt1

almost all we T (Lemma 1). Set f = g° ¢.

By (2.5),] f (z)] < M («(|z])) whenever z€ D. So fis of growth M. Since ¢
isanalytic in a neighborhood of B, ¢(B)is a compact subset of D. Therefore
statement (2.2) is also valid.
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To verify (2.1) we first prove statement (2.6) (below). Fix we 1. Then
(@)
|g(@rw)) —g(lo(rw)|@(w))| < max " lg'(2) |> “lo(rw) —|o(rw)| p(w)|

|z| s|etrw

<a —r)n(r)(lrlna:(c lg'(z)l), 0<r<l.
z|Sa(r)

We estimate |g'(z)| by use of the Cauchy integral formula on the circle
|€] = (|z| +1)/2 and the estimate |g(¢)| < M,(|¢|). The result may be
expressed as

®)  max g <M, (““2“)(1 _2“(')) ,0<r<l,

Finally, let D-*- D be an analytic bijection satisfying ¢(s(0)) = 0 (note 0 lies
in the range of ¢). Then |¢(s(z))| < |z|, (by Schwarz’s lemma) and

sup 1-r — sup 1-|z = sup 1—1s(2) <su 1—|s(2)
osr<il—a(r) ~ zb1—[@@)]  zb1-[o(s()] = b 1—|z

We conclude

c sup ——— <
© o;lzll—a(r)

0.

Combining (a), (b), (c), (2.4), and recalling that f (rw) = g(e(rw)), gives
(2.6) lrl?} |f w) — g(|@(rw)|@(w))| =0, all wel.

Next, we must verify statement (2.7) (below). Set

L= {weI:_l_;rn_ll_Reg(rcp(w)) < +o0}.

Since ¢ 1! is analytic in a neighborhood of ¢(L), we have
m(L) = m[¢~*(¢(L))] < (constant)m[¢(L)].
But
mlo(L)] S m{ueT: %thlg_Reg(ru) < +00}=0.

So
Q%Reg(r(p(w)) = 400, almostall wel.
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Since
lri{r;|¢(rw)| =1, all wel,
we conclude
2.7 liﬂReg(|<p(rw)|(p(w)) = + 00, almost all wel.
Statements (2.6) and (2.7) together imply (2.1).

3. Approximation of indicator functions in measure.

LEMMA 3. Let I be a closed arc on T, let M be a growth rate, and let
¢€(0,1). Define TR by s(w) =1, all wel, and s(w) =0, all weT—1.
Then there éxists a set T and a function f meeting these conditions:

(3.1) T < T, Tis a Borel set, m(T —T)<e, and fis
analytic in a neighborhood of D;

(3.2) |f@)|'= M(z|), all zeD;

(3.3) |fw)—sw)| <, allweT;

(3.4) |f(rw)| < 2|s(w)| +¢, all we T, allre[0,1].

Proor. First, define a function [0,1)-%4 R as follows:
M, (r) = log(M(r) — 1), all r for which M(r) > e? +1;
M,(r) = min[e~ ! M(r),2], all r for which M(r) < e? + 1.
Then M, is a growth rate satisfying

3.5) M,(r) £ e M(r), all r for which M,(r) < 2,
) 1+expM,(r) = M(r), all r for which M,(r) > 2.

Secondly, let B be a closed arc on T such that
(3.6) INB=¢ and m[T—(IUB)] < ¢/4
(closed arcs are proper subsets of T). Now apply Lemma 2. There is a

function g with these properties:

is of growth M, ;lim Reg(rw) = — o0, almost all we I,
(3.7) g g 15 1im glrw)
sup{|g(rw)|:we B, re[0,1)} < co.
We now construct T by reference to Egoroff ’s theorem. There is a set T
with these properties:
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(3.8) T <1UB; Tis a Borel set; m[(I UB) — T] < ¢/4;
| Reg(rw) = — oo uniformly on I N T'as r 11.
We now construct f. First, set

K(I) = sup{Reg(rw):weInT, re[0,1)}
K(B) = sup{|g(rw)|:we BN T, re[0,1)}.

From (3.7) and (3.8) it follows that

3.9) —o0 < K(I)< o0 and 0 < K(B) < o0.

Second, choose p so that

(3.10) pe(0,%), 1+exp(pK()) <2+¢, and (¢*+1)pK(B) <e.
This is possible by (3.9). Third, choose é with these properties:

(3.11) 5€(0,1); exp[pRe(g(ow))] <e, allweInT.
This is possible by (3.8). Now, set
(3.12) f(z) =1—-exp[pg(dz)], zeD.

We proceed to verify statements (3.1) through (3.4). In the course of
verification we shall occasionally make use of the fact that

(3.13) |1 —e*| < e|x], if x| < 1.

Statement (3.1) follows from (3.6), (3.7), (3.8), and (3.12).
We verify (3.2). Let ze D with M, (|z|) < 2. By (3.7), (3.11), (3.10)

plgdz)| < pM,(0|z]) < pM,(|2]) = 2p < 1.
So, by (3.12), (3.13), (3.10), and (3.5)
|f )| < ep|g(0z)| < eM(|2]) < M(|z)).
Now suppose ze D and M,(|z|) > 2. Then, by (3.12) and (3.5),
|f(2)] = 1+exp(pM,(|z])) <1 +expM,(|z]) = M(|z]).

This establishes (3.2).
We verify (3.3). If we BN T, then

plgdw)| < pK(B) S e(e? +1)7'1 <1
by (3.10) (recall ¢ € (0,1)). So, by (3.12). (3.13), and (3.10)
|f (W) —s(w)| = | f (W)| < ep|g(6w)| < epK(B) < ¢, all we BN T.
If welNn T, then '
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|f (W) —s(w)| = | f(w) — 1| = exp Re(pg(dw)) < &

by (3.11). Since T'< I UB, we have established (3.3).
We verify (3.4). If we BN T and re[0,1] we have p|g(row)| < pK(B)
< 1 by (3.10). Hence, by (3.12), (3.13), and (3.10)

|f(rw)| < epK(B) < & = 2|s(w)| +¢, all we BN T, all re [0, 1].
If welInTand re[0,1], then
|f(w)| £ 1+ expRe(pg(réw)) < 1+ exp pK(I) < 2 +¢ = 2|s(w)| +¢,
by (3.12) and (3.10). This establishes (3.4).

4. Approximation in measure of real functions on T.
Lemma 4. Let T R be measurable, let ¢ < 0, and let M be a growth rate.
Thien there exists a set T and a function f with these properties:

4.1) T < T,T is a Borel set, m(T — T) < ¢,
f is analytic in a neighborhood of D
4.2) |/ ()| £ M(|z|), ze D;
4.3) |f(w)—sw)| <&, weT;
4.4) |frw)| < 2|s(w)| +¢, allwe T, alire[0,1].

Proor. By reference to general results on real functions, we may select
mutually disjoint closed arcs I(1), I(2), ..., I(N) and corresponding real
numbers c,, c,, ..., ¢,, and we may form a function T-¢>R with the

following properties:

N
ew) =Y c,0,(w), all weT;
n=1

(4.5) ~ @,w) =1, all wel(n), and @,(w) = 0, all we T—I(n),
allne{l1,2,...,N};

m{we T:|p(w) — s(w)| > &/4} < ¢/2; ilc,l #0.

By reference to Lemma 3, there is a sequence of sets (T)N_, and a sequence
of functions (f,)Y-, such thatif ne {1, 2, ..., N} the following statements
are valid:

(4.6) T,< T, T, is a Borel set, m(T — T,) < e2N)~?,
and f, is analytic in a neighborhood of D;

@7 1£@)| = (i |c,‘|)-1M(|z|), all ze D;

k=1
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mz>'nmo—%wwg(zi|qoqaauwem
k=1
N

(4.9) |fulrw)| £ 2|0, (W)| + (2 Y ]c,‘|>—ls, allweT,, all re[0,1].
k=1

Set
4.10) f= IZv:l cofpand T = ( f_v]l T,,) —{weT:|pw) —s(w)| > ¢/4}

By (4.10), (4.5), (4.6)
mT-1)s 3 mT-1< Y mT-T)+s2<e.
n=1 n=1

This verifies (4.1).
Statement (4.2) follows from (4.10) and (4.7).
Let we T. Then, by (4.10) and (4.8)

00 =50 S 3, 1s0) — 0] + [008) = sO0)] S 2+ 212

This verifies (4.3).
N
Finally, if r € [0,1] and we T, we have we [) T, and

n=1

N N N -1
sewls 3 lnowliel < 5, elool+ (2 la) el

N
=2 ) [expaw)] +6/2 = 2|ow)| +2/2

because of (4.10) and (4.9) and because the arcs I,, n=1,2,...N, are
disjoint. If we T, then we T,, for all me {1,2,...,N} and |p(w) — s(w)|
< ¢/4. Hence, if r€ [0,1] and we T, we have
|f@w)| < 2|oW)| +¢/2 < 2(|p(w) — s(w)| + |s(w)]) + &/2
< 2fs(w)| + 2(e/4) + ¢/2.

This verifies (4.4).

5. Real measurable radial limits.
LEMMA 5. Let T-*»R be measurable and let M be a growth rate. Then
there exists a function f, of growth M, sich that
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(5.1) liﬂf(rw) = s(w), almost all we T.
r

Proor. By Lemma 4 we may define inductively a sequence of functions
(fu)n=o and a sequence of sets (T,);% o With these properties:

(5.2) fo=0, T, = &;

5.3) T, < T,T,is a Borel set, m(T— T,) £ 27", and f,
is analyticon D, alln > 1;

(5.4) |£(2)| £27""'M(|z|), all ze D, alln 2 0;

(5.5) | faW) = (s(W) — foW) — ... = fam 1 (W))| £ 27", allwe T,
alln=>1;

(5.6) | fulrw)| < 2|s(W) — foW) — ... = fu "' (W)| +277,

allre[0,1], all weT,, alln > 1.

By (5.4), ). converges uniformly on compact subsets of D. Set
n=0

@

f= iof,.,E= N [kD (T—n)] and T=T-E.

By (5.4), |f(z)| < M(|z|), all ze D. Also, by (5.3)

mE)S Y m(T-T)<27 " alln2 1.

k=n

So m(E) = 0 and m(T) = 2n.
We shall prove that

liﬁf(rw) = s(w), allweT.

Fix we T and fix ¢ > 0. Then we T, if n is sufficiently large. Hence, we may
choose N(w) so that we T,,, all n = N(w), and so that

3 27" L g/16.
n=1‘§‘:v)+1 - /
Each f, is analytic on D: so we may choose r(g, w)€ (0,1) so that
N(w) Nw)
iofn("w) - g,oﬁ.(w)

Now suppose n < N(w)+1 and 0 < r < 1. Then we T, and reference to
(5.6), and then (5.5), shows

(5.7 <e¢/4, ifrew)Sr<l.
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| W) < 2|sW) = foW) — — fuo W) +27" S 2:27"" D 427" = 5. 277
and
i |[farW)| =5 fj 27" < 5¢/16.
n=N(w)+1 n=N(w)+1

Hence

(5.8) < 5¢/16, all re[0,1).

N(w)
7o) =3

Finally, by (5.5) we have (since we Ty and Y  27"<e¢/16
n2Nw)+1

(5.9 [s(w) — Nz(i:)f"(w)l <2-NW < ¢/8.

Combining (5.7), (5.8), and (5.9) gives
|[faw)—sw)| e, ifrew) < r < 1.

This establishes (5.1).

6. Extended real values on measurable sets.
LeMMA 6. Let A = T be a Borel set and let M be a growth rate. Then there
exists a function f, of growth M, with these properties:

(6.1) liﬂRe f(rw) = + 00, almost all we A;
r

(6.2) liﬂ Ref(rw) =0, almost all we T— A4;
r

(6.3) liﬂlm f(w)=0, almost all we T.

Proor. Let G denote an entire function with the properties specified in
(2) of Lemma 0 and fix K> 0 so that |G(0)| < KM(0). Then for each
re[0,1) there is a unique positive real number M, (r) such that

(6.4) max |G(z)| = KM(r)
|2l = M, (r)
(since G is non-constant and entire). The elementary properties of entire
functions imply that the function [0,1)-%% (0,00) is a growth rate.
By Lemma 1 and Lemma 5, there is a function g, of growth M,,
satisfying these properties:
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liﬂRe g(rw) = + o0, almost all we T,
r

(6.5) liﬂlm grw) =1, almost all we 4,

liﬂlm g(rw) = —1, almost all we T— A4.
Set f =K 'Geog. Then

-1 -1 —
F@I< K™ sup 1G] S K™ sup | 16@)] = M(z)), all zeD
(by (6.5)).

Statements (6.1), (6.2), and (6.3) follow immediately from (2) of Lemma 0
and (6.5).

7. Specified oscillation.

LeEMMA 7. Let m and i be elements of R for which m < m. Let A denote a
Borel subset of T and let M be a growthrate. T hen there exists a function f, of
growth M, with these properties:

(7.1) %i%_Ref(rw) =m, lrl?} Re f(rw) = m, and
liﬂ Imf(rw) =0, almost all we A;

(7.2) liﬂ f(rw) =0, almost all we T — A.

ProoF. Let G denote an entire function with the properties specified in
(3) of Lemma 0 and choose K >0 so that |G(0)| < KM(0)"/?. For each
re[0,1), there is a unique real number M, (r) such that

(7.4) max |G(z)| = KM(r)'2.
2| = M, (r)

The function [0,1)-¥4(0,00) is a growth rate, and Lemma 6 implies the
existence of a function g, of growth M, , with these properties:

li%l} Reg(rw) = + o0, almost all we 4;

(7.5) liﬂ Reg(rw) = — o0, almost all we T— 4;
r

liﬂ Img(rw) =0, almostallweT
r
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For almost all we A there is a corresponding number s€ [0, 1) such that the
corresponding curve p(t) = g(w(l — t)s + wit), te (0, 1) satisfies

|Imy(t)| <1 allte(0,1) and ltl?ll Rey(t) = + oo.

Thus, if we set F = — ik~ 1G ° g and refer to part 3 of Lemma 0, (7.4), and
(7.5), we see that F has these properties:

F is of growth M/?; lim Re F(rw) = K~ 'm, almost all we 4
rT1
li%rll Re F(rw) = K~ ', almost all we 4;
.
(7.6) liﬁ ImF(rw) = — K1, almost all we 4;
r

liﬂ F(rw) =0, almost allwe T — A.

It remains only to modify F. We first multiply F by a function of growth
$M*'/? with radial limits K almost everywhere on T (Lemma 5). We then
add a function of growth 4M with radial limits i almost everywhere on 4
and radial limits 0 almost everywhere on T — A4 (again apply Lemma 5). By
(7.6), the resulting function satisfies (7.1) and (7.2).

8. Proof of Theorem 1.

We shall prove Theorem 1 under the additional assumption that
«J2(W) = *f,(w) = 0, all w e T. The general case then follows immediately.
For ease of notation set g, =, f; and g, =*f.

Consider the following six sets:

A ={weT:g(w)=+0c and g,(w)=+o},
A, ={weT:g(w)eR and g,(w) = +o},
A;={weT:g;(w)=—- and g,(w)= +o0},
Ay ={weT:g,(w)eR and g,(w)eR},
As={weT:g(w)=—-o0 and g,(w)eR},
Ag={weT:g(w)=—00 and g,(w)=—o0}.

We shall construct functions f;,j =1,2,..., 6, each of growth M, with the
following properties:

Ll%nT_Re firw) = g4(w) and FTn?Re firw) = g,(w), almost all we A;

li;n Re fj(rw) = 0, almost all we T — A4;;
rtl
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liﬂ Imf;(rw) =0, almost all we T.
r
Once this is done, f = Y 5., f; has the required properties.
Forj =1, 3, 6, the existence of f; follows from Lemma 7.
Consider the case j = 2. By Lemma 7 there is a function h,, of growth
(12)7'M, with these properties:
LiFLll_Rehl(rw) =0, ﬁ;n}—Rehl(rw) =400,
r r
liﬂ Imh, (rw) = 0, almost all we 4,;
,

]iﬂ hy(rw) = 0, almost all we T— 4,.
.

By Lemma 5 there is a function h,, of growth (12)"!M, with these
properties:

liﬂ hy(rw) = g,(w), almost all we 4,;

liﬂ hy(rw) = 0, almost all we T— A4,.
r

Clearly f, = h, + h, has the required properties.

Existence in case j = 5 follows from that in case 2 (multiply all functions
by (-1)).

Consider the case j = 4. By Lemmas 5 and 7 there exist functions h; and
h, of growth (12~ 'M)!/2 with these properties:

: _ 8w —g W . =—
Pﬂhl (rw)——-—-z———-—, yH_Rehz(rw)— 1,

EanRe hy(rw) =1, and lign Imh,(rw) = 0, almost all we A,;
rf1

lim h, (rw) = lim h,(rw) = 0, almost all we T— A,4.
rt1 rt1

By Lemma 5 there is a function h;, of growth 127'M, with these
properties:

g_l_(w)_-;-g_zﬂv)’ almost all we A,;

lri{r; hy(rw) =
liﬂ hy(rw) = 0, almost all we T— A,.

Clearly f, = hy + h, - h, has the required properties.
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