MATH. SCAND. 56 (1985), 222-240

ALMOST COMMUTING HERMITIAN MATRICES
KENNETH R. DAVIDSON

The purpose of this paper is to shed some light on an old problem in
linear algebra and operator theory: If two norm one Hermitian matrices 4
and B have small commutator, are they close to a commuting pair of
Hermitian matrices? The answer to this question is still unknown, but all
the evidence points toward a negative solution. We give an equivalent
reformulation of this problem as a question about a single self-adjoint

. operator, which may be easier to deal with. On the other hand, there are

some positive results. Most notably, there is a quantitative absorption

i phenomenon which says roughly: If 4 and B have small commutator, there

is a commuting pair of Hermitian matrices C and D so that 4 @ C and

B® D are close to a commuting pair of Hermitian matrices. In the

addendum, this result is used to derive a quantitative version of the Brown—
Douglas—Fillmore Theorem for the unit disc.

The question above has a number of analogues. The other interesting
and important one replaces Hermitian matrices by arbitrary ones at every
opportunity. This problem is also unsolved. The analogue for unitaries was
shown to have a negative answer [10]. Voiculescu also showed that the
corresponding question for triples of Hermitian matrices also has a
negative solution [9]. We give an example which subsumes this last case,
and also answers negatively the question of one Hermitian and one
arbitrary matrix. More precisely, there is a sequence {4,, B,} of matrices
such that 4, is Hermitian, B, is normal and lim,_,  [[4,,B,]Il = 0, yet
there are no commuting pairs {A4,,B,} with 4, Hermitian such that

lirréllA,,—A;,ll +1B,— B, =0.

There is no restriction here on the characteristics of B,. If one considers the
triple {4,, Re B,, Im B, }, one obtains an example with small commutators
but for which there are no Hermitian triples {4, C,, D,} with [4,,C,] =0
= [A4,,D,] and

limllA4,— A, +IIReB,—C,I + |ImB, —D,ll = 0.

n—o

There are also infinite dimensional analogues of this problem, and they
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are known to have negative solutions for somewhat different reasons. M.
D. Choi, among others, observed that the weighted shifts S, defined on an
orthonormal basis {¢,, k = 1} by

S,,ek = min{k/n, 1}ek+ 1

have small self commutators, namely, lim[S,,S¥] =0, yet they are

uniformly bounded away from the set of normal operators. This is because
they are essentially unitary with non-zero Fredholm index. One can
easily reformulate this in terms of the Hermitian pairs 4, = Re S, and
B, =ImS,. Later, Berg and Olsen [ 3] showed that there were no operators
(not necessarily Hermitian) A4, and B, which commute and have

liml4,—A,ll + 1B, - B, = 0.

n—:oo
Their argument also relies on index, and so does not apply to the finite
dimensional case. Nonetheless, one might view our example as having a
quantitative, finite dimensional analogue of an index obstruction.

This problem has a bearing on the work of Brown, Douglas, and
Fillmore [5]. An important consequence of their work is that the set of
operators 4"+ A" on Hilbert space which are the sum of a normal operator
and a compact operator is norm closed. Operators of this form are both
quasi-diagonal and essentially normal. It follows from [ 5] that they are the
only quasidiagonal, essential normal operators and hence A"+ ¢ is the
intersection of two closed sets. No direct operator theoretic proof of this
exists. An approach one might take is the following: If T is quasidiagonal
and essentially normal, it has a compact perturbation T'= @Z3% T,
which is the direct sum of finite rank matrices T,. Furthermore,

lim I[T,, T¥]ll = 0.

So A, = Re T, and B, = Im T, are almost commuting Hermitian matrices.
If the first question has a positive answer, one could find normal matrices
T, = A, +iB, so that

lim | 7, — T, = 0.
This would give a normal, operator X;%;T, which is a compact
perturbation of T. In [6], Douglas gives a heuristic argument why one may
not be able to give a proof along these lines. An explanation of what is
“really going on” would be most desirable.
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Another consequence of [ 5] is the absorption phenomenon. Let 4 and B
be Hermitian: operators with compact commutator, one can find a
commuting pair of Hermitian operators C and Dsothat A@® Cand B® D
have Hermitian compact perturbations which exactly commute. Indeed,
one just takes any commuting self-adjoint operators C and D whose joint
spectrum equals the polynomially convex hull of the joint essential
spectrum of A and B. (That is, it fills in the holes of 6,(4 + iB).) There is
now no index obstruction to prevent (A @ C) + i(B® D) being perturbed
by a compact to a normal operator.

We give a quantitative, norm version of this phenomenon valid in both
finite dimensional and infinite dimensional Hilbert space. A precise
formulation is:

THEOREM 0.1. 'Let A and B be Hermitian matrices. Then there are
conimuting pairs of Hermitian matrices {C,D} and {A{,B,} on Hilbert
spaces 'of the same (double) dimension, respectively, so that |Cll < 141,
Il < IBI, and

max{lA®C—-4,l,1B@D-B,ll} <251 AB—BAll'/2,

I would like to thank Chandler Davis for pointing out the relevance of
[4], which has made possible certain sharper estimates in this paper.

1. Preliminaries

In this paper, ) will denote a complex Hilbert space of finite or
countably infinite dimension. #(s#) will denote the algebra of all bounded
operators on 3, and when J# is infinite dimensional, )" = X () will
denote the ideal of compact operators on J. If 5 has finite dimension k,
we may use ., instead of #(s#°). Given two operators 4 and B, the
commutator is [4,B] = AB— BA. Projections are always self-adjoint
idempotents.

For A in # (), the spectrum of A4 is denoted by 6(A). When 5# is infinite
demensional, n will denote the quotient map of #(s#) onto the Calkin
algebra #(#)/A . The essential spectrum of A is ¢.(4) = o(nA). An
operator A is essentially normal (unitary) if nA4 is a normal (unitary)
element in the quotient. An operator A4 is quasi-diagonal if there is an
increasing sequence P, of finite rank projections with-supremum I such that
lim, ., I[4, P,]Il = 0. The set 29 of quasidiagonal operators is closed,
invariant under compact perturbations, and by the Weyl-von Neumann- .
Berg theorem [1], it contains all normal operators.

The question of concern in this paper is quantitatively described as:
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(Q) For each ¢>0, is there a 4 >0 so that if 4 and B are finite rank,
Hermitian matrices of norm one with [4,B]ll <48, there are
commuting Hermitian matrices A; and B, with |4 —A4,ll <¢ and
IB-B, Il <e?

2. An example

In this section, the example mentioned in the introduction will be
constructed. We need two easy lemmas. The first (called a folk theorem in
[10]) is the Corollary to Theorem 3.4 in [4]. For a self adjoint operator T,
let E;[C] denote the spectral projection for T corresponding to the set C.

LEMMA 2.1. Let ¢ and n be positive constants, and let C, and C 5 be closed
intervals with dist (C,C,) = n. For any pair of self-adjoint operators S and T
satisfying | S — T | < ne, one has | Eg(C,)E+(C,)Il < e.

LeEmMMA 2.2. Let e > 0 be given. If E, F', and G are projections withE £ G,
IEFt |l <&, and |F'G*|l <, then there is a projection F such that
E<SF<Gand|F —FI| < 5.

Proor. Clearly, we may suppose that ¢ < 1/5. Decompose the Hilbert
space & H# = EH® (G — E)# ® G+ . With respect to this decom-
position, F’ has a matrix (F;;)i,j = 1,2,3. We have F' = F'> = F'* and that

"(I—F115 _F125 _F13)” <ég and ”(F31,F32, F33)" <e.

In particular, F,, — F%, = F¥,F,, + F,3F%, is positive and less than 2¢?.
Since 0 £ F,, < I, we obtain that the spectrum of F,, is contained in
[0,4¢62] U [1—4¢€%,1], so there is a projection P on (G — E)# satisfying
I F,, — Pl < 4¢? < &. A simple estimate now gives | F' — (E + P)ll < 5¢. So
F = E + P will suffice.

THEOREM 2.3. There exist finite rank matrices A,, B,, n=1, of norm 1
such that A, is self-adjoint, B, is normal, and lim,_, | [4,,B,]ll = 0, yet
there are no commuting pairs A,, B, such that A, is self-adjoint and
lim,_ Il 4,—A,l + 1B, -B,ll =o0.

PRrOOF. Define A4, and B, in .#,. .., as follows. Let e;, 0 < k < n® be an
orthonormal basis and let

k+lek+1 0<k<n
A= l;ek’ B.ex=< leg, nsksn?—n
" n?—k

es1 N:—n<kgnl

n
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Now A, = A%, B, is a weighted shift and [4,, B,]Il = n~2 tends to zero.
Also, since lim,, , [ [B,, B¥]ll = 0, there are normal matrices B, such that
lim,., | B,— B, = 0 [2]. So it suffices to use B, in lieu of B,. In order to
obtain a contradiction, we assume the existence of commuting pairs A/, B,
with A, self adjoint and

liml4,—A4,l +1B,-B,l =0.

Let F;, be the spectral projection of A, for the interval [0,4];let E, and G,
be the spectral projections for 4, corresponding to the intervals [0,3] and
[0,%], respectively. By Lemma 2.1, we see that

lim |E,F:t |l =0 = lim | F,G/ Il

n— o n— o

Thus by Lemma 2.2, there are projections F, with E, < F, < G, and

lim | F,— F,l = 0.
Since [F,, B,] = 0, it follows that lim,,_, ., I [F,, B,]] = 0.

Let S, be the shift in .# . ; on the basis {e;,0 < k < n?}. Note that for
n24,S,G,—E,) = B,(G,— E,) and (G, — E,)S, = (G, — E,)B,. It follows
that lim,, , I [F,,S,] I = 0. However, for any projection P with [ker S¥]
< P < [kerS,]*, one has I[P, S,]Il = 1 which is a contradiction.

REMARKS. This example puts the result of [ 7] into perspective. They give
a 6 depending on ¢ and n so that if 4 = A* and B are n Xn matrices, and
I[A4,B]ll < &, then there is a commuting pair 4; = A* and B, such that
l4— A, <eand | B— B, |l <. Their é function goes to zero like n~* for
fixed e. See also [8].

This example cannot be used to answer the question about self adjoint
pairs. More precisely, the results of section 5 show that the pairs (4,, Re B,)
and (4,, Im B,) are both asymptotically close to commuting pairs of self
adjoint matrices.

3. A reformulation

We start with a general procedure for attempting to perturb almost
commuting pairs to commuting pairs. Let ¢ > 0 be given. Suppose we have
chosen a small positive number é and an integer s. Let 4 and B be
- Hermitian operators (or matrices) such that [I[4,B]ll <. Look for
commuting self-adjoint matrices 4, and B, so that |4 — 4, <& and
|B-B,ll <e.
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Choose an integer m > 2¢~ 'l 4ll, and let J ; be the disjoint intervals
[— lAll + G —1)e, | All +je) for 1 < j < m. Divide each J; into s disjoint
intervals I; of length ¢/s, (j—1)s+1=<i=<js. Let = E,l),
i =1,...,n = sm, be the spectral subspaces for 4. On # = @) ;_, H#;, A has
the diagonal form 4 = @) ;_, A;. Each 4, is self-adjoint with spectrum
contained in I;. With respect to this decomposition, B has a matrix (B;;).
One can impose conditions on &, s and ¢ to ensure that the B;; terms for
|i —j| = 2 are small. To this end, we need the following lemma.

LemMa 3.1. Let A and B be self-adjoint operators. Let
ao < —lAl <a, <...<a, <14l

partition the spectrum of A into intervals I;=[a;, a;,,), and write
A =@®);_, A; sch that 6(A;) is contained in I;. Suppose that a;, —a; Z €
for i=1,..,n, I[4,B]l <6 and E, (I)BE,(I;)=0 for |i—j|<1.
Then dist (B,{A}') < 20/e.

Proor. The proof is an easy adaption of the proof of Theorem 4.1 in [4].
We sketch the ideas briefly here.

There is a function f in L!(R), continuous except at 0, such that
f(x)=%x"1 for |x| = ¢ and lIfll; <2¢~'. (Here f denotes the Fourier
transform.) Define

Q= jw e”s4[ 4,B]e™Af (s)ds.

It is immediate that

lol <[4, B]IIfI, < 28e2.

So it suffices to prove that [4,Q] = [4, B].
Proceed as in [4] by taking eigenvectors u and v for 4, with Au = au and
Av = Bv. Then, as computed there,

u*(AQ — QAW = u*[A, B]v (« — B)f (@ — B).

If |« — B| < ¢, the hypothesis on B guarantees that u*[4,B]v = 0. When
lo—~B| Z &, f(a—PB) = (x—B)~" so we obtain
u*[4,Q]v = u*[A4,B]v

for all eigenvectors u and v of A. Linearity then shows that [4,B— Q] =0
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in the finite dimensional case. In general, a straightforward approximation
argument completes the proof.

Let B’ be the operator with matrix entries Bj; = B;; if |i—j| < 1, and
B;; = 0 otherwise. We immediately obtain that

I[4,B ]l < 3[4, B]ll < 36.

Hence ||[4, B — B']ll < 45. By applying Lemma 3.1 to B — B’, we obtain
an operator Cin {4}’ such that | B— (B'+ C)ll < 83s¢™!. Let B=B'+C,
and note that like B’, this is also tridiagonal with respect to the spectral
decomposition of 4. So

I[4,B]ll < 36 and B — Bl < 85se™!.
Let R; be the projection onto E ,(J;). Look for projections L; with

YRESL YR

i<t j<i

and I [B,L;]]l < ¢/5. If this can be accomplished, let
Ay = lelj(Lj—1 - Lj)
=
where y; is the left endpoint of the interval J;. And let

B, = j=i1 (Lj—l - Lj)E(Lj—l - lj)

It is clear that A; and B; commute. Also, since {L;} commutes with {R;}, it
is straight forward spectral estimate to obtain

la—4,ll <e.
Now,
B,-B= .22 (Lj—y —L)BL} _y + L} B(L;-; — L)).
j=
However, since B is tridiagonal,
(Lj-1— LJ)EL}L—l = (Rj-1 + Ry)(Lj-1 — L)BL}j {(Rj—5 +R;_y).

These operators have norm at most |[B,L;_,]ll > &/5. The set of even
terms (respectively, odd terms) have pairwise orthogonal domains and
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ranges. So adding up the pieces and dealing with the second term by
symmetry, we obtain | B, — Bl < 4¢/5. Thus

IB—B, Il <4¢g/5+ 8¢ 1.

Consequently, the choice § < ¢2/40s will suffice.

To further facilitate our search for the projections L;, we make a further
restriction. Note that % ;# consists of s blocks #;, sj —s < i < sj. Since B
is block tridiagonal, the compression B ; to &, is also block tridiagonal.
Furthermore,

Rj+1BRj= st+l§PSj= Bsw“‘

So, write L; = Y R, +L~.j, where Ej is :a projection acting in ;. We
i<i
stipulate that P,;_ ., < L,, L;1 P,;, and I[B;, L;]Il < ¢/5. This require-
ment ensures that we need not worry about B'sj,sﬁ , or ﬁsj_s,sj_ﬁ , in the
commutator [B,L;]. What remains is to find such projections L;. We
attempt to do this by making s very large.
Our requirements are formulated in the following question:

(Q’) For each & > 0, is there a positive integer s = s(¢) so that if B is a finite
rank Hermitian, norm one, block tridiagonal matrix acting on
H = @) ., there is a projection L with #, in the range of L and
H#, in the kernel of L such that [I[B,L]ll < &?

The significance of (Q’) lies in the fact that, though it appears to be a
much simpler question than (Q), it is in fact equivalent.

THEOREM 3.2. Questions (Q) and (Q’) are equivalent.

PROOF, The construction above shows that a positive answer to (Q’) also
settles (Q) affirmative and ¢ > 0. Let é be supplied by (Q) for &' = ¢/21.
Lets = 2[6~'] + 2. Given an appropriate Hermitian matrix B acting on

H = @Y #,, let A be the block diagonal matrix ) %P,-, where P, is the
i=0 i=0
projection onto ;. Then lI[4,B]ll < 257! < 4. So there are commuting
Hermitian matrices A, and B, with
l4—4, <e21 and IB—B, I <¢/21.

Let E = E4 [0,1/2] be the spectral projection for 4,. Since P, = E A1},
Lemma 2.1 implies that | P E* || and || P,E| are both less than 2¢/21. By
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Lemma 2.2, there is a projection L such that P, < L and P,L = 0 so that
IL - Ell <10e/21. Thus

IB,L]l <I[B—B,,L]I +I[B,,E]l + I[B,L — E]I
<lIB-B,Il+0+2lL-Ell <e.

In subsequent sections, some partial answers to (Q’) will be obtained.
First, there are a few more pertinent remarks. Suppose B is tridiagonal on

H = @) #;and #, is k-dimensional. Let .# ; be the span of B'3#, for 0
i=0
<i<j,and #;=.M; ©OM;_,. Then B is tridiagonal with respect to the
decomposition .# = @) #;. The space ./ is reducing for B, and clearly
i=0

s—1
#,is orthogonal to @) ;. So for the purpose of answering (Q’), one may
i=0

as well suppose that each ##; has dimension dim #; < dim .

Now, let M be any fixed self-adjoint operator with spectrum (M)
= [0,1]. (One might take M to be multiplication by x on I?(0,1).) It
follows from the Weyl-von Neumann theorem that given any positive
matrix B of norm one and an ¢ =0, there is a subspace .# so that
I[Py M]Il <& and IB—M|,Il <e. Consequently, by the previous
remarks, one readily sees that (Q’) is equivalent to (Q”).

(Q”)For every ¢ > 0, is there a positive integer s so that if & is any finite
dimensional subspace of I?(0,1), there is a projection P with
A C range (P) C span {M'#,0 < i < s}
such that I[[M,P]ll <e.
This might be thought of as asking if self-adjoint operators are uniformly

quasidiagonal.

4. The absorption theorem.
The purpose of this section is to prove the theorem stated in the
introduction. First, some lemmas:

A_ 0
(% )

- be self-adjoint with A_ <0 and 0 < A, < I. Suppose that | [B,A]l <e.

Then 0 0
C=[o Ag]

LemMma 4.1. Let
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satisfies || [B,C] Il < 6e.
Proor. Write B = (B,;),i.j = 1.2. Then

By, A_] B,Ag—A_B
e= | B,A I = [11, 12410 12
LB.4] ‘[BnA_—Aan [Bas. Aq]
and,
0 B,,A}

B,C] = 1270 |

[B.C] [—AéBn [Bu,Aéﬂ
Now,

1[Bya, 4211 < 211 4o I 1 [By,,40] 1 < 26.

Let P, = E,(27%"1, 27¥] be the spectral projection of A4 for the interval
(271, 27%] for k = 0. Then

I (B12Py) (AoPy) — A—(By,P)ll <&,
and since (4| Py #) is atleast 27*~ ! from o(4 - ), we obtain from [4] that
I By P, |l < 2¥*1¢. Hence

| By,P A3l < 2K+ 1272k = 2g/2%,
It is immediate that I|B,,42 ] < 4. Similarly, | A2B,, |l < 4¢, and thus
ITB,C]Il < 4¢ + 2¢ = 6e.

REMARK. It is not just to fit the proof that A3 is used. The choice of

, (0 0
C‘(o AO)

would not work. To see this, consider the map from [A4,B] to [C’,B] for B
of the form 1-(?) g . This then amounts to the map from B, 4, — A _B, to
1
B, A,. If we take 4, to be diagonal with weights p",n > 0and A_ = — A4,,
then this map becomes the Schur product of B;A, — A_B; by the matrix
Z, = (z;;) where
p’ 1

zij=pz+p1 "’pl-—1+1’

For p very small, Z, is very close to the matrix T = (t;;) where t;; = 1/2,
t;; = 1ifi < j,and t;; = 0if i > j. Schur multiplication by T is unbounded
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since triangular truncation is unbounded. Thus, there is no constant
K < o0 so that

Ifc,B]l < KI[4,B]l  for all B.
It is apparently the fact that

(x) = 0 x=£0
8 =152 x=0

is differentiable at 0 that makes this work. Indeed, if f is a function such
that

fx)=f"(0)x —f(0) = O(x' )
for some ¢ > 0, then there is a constant K so that
lf(4_)B— Bf (4,)ll < KIlA_B— BA, |

for all B. The proof'is a simple modification of the special case in the lemma.

A_ 0 0
A = 0 Ao 0
0 0 4,

is self-adjoint, A_ <L, L<Ay<L+¢, and A, <L+¢. Suppose

I[B,A]ll £ 6. Let
0 0 0
0 0 I

Do = Sin2 (%ns_ 1(A0 - L)).
Then |[B,D]ll < 149/.

LEMMA 4.2, Suppose

where

ProoF. We will scale 4 so that L = 0 and ¢ = 1 (so  nowi represents 6/¢).
By [4], I By3ll < 6 and || By, Il < 6. And

I[B,,, Do]ll < 21I[B,,, sin(nd,)]ll

L I4mA, 12
< 2k;0(2k +1) T27<T°1‘)7 I[B,2, 4]



ALMOST COMMUTING HERMITIAN MATRICES 233
Gm)*
<2 Z 0T ~=-—§ = 2cosh (§)6.

Let f (x) = (4nx) ! sin§nx, which is analytic and entire, and Il f|R |l , =
By the previous lemma,

| B,,Doll < 1By, AN 1l £(Ag) 112 < 46.

Similarly,

" B32(I —'Do) " = " B32COSZ(%1IA0)"
= | B3,(I — Ao N Il f (I — Ap) 112 < 46.

Now,
0 B12D, Bys
[B,D] =| —DoBy, [Bzz,Do] — (I —Dy)B;;
=By, Byl -Dy) 0
So II[B,D]ll < 46 + 2cosh(3m)d + 46 < 144.
COROLLARY 4.3, Let A,B, and D be as above. Define

c, 0 0
C = 0 B22‘ O .
0 0 C,

060 0600 06DO
000 0600 IDI

"Let

where

_ sin?(3nD,) sin(3nDy)cos(3nDy)
™ | sin@nDy)cos(nDy) cos?(3nD,)

Then P is an orthogonal projection such that | [B® C,P]ll < 615/e.

PROOF. A direct computation and the previous proof shows that the (1,2)
(and similarly the (2,1)) entry of [B@® C,P] have norm dominated by

| By,@nDo)f G Do)l < 27c.
And the (3,2) (and similarly the (2,3)) term are likewise bounded, as
I Bs24m(1 - Do)f (1 — Do)l < 2n/e.
Again, || B,, |l < 6/¢ and || By, | < é/e. Finally, as above,

Math. Scand. 56 - 16
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I[B2, @ By, Polll < I [B,,sin(31Do)] I + I [B,,sin(3nDo)cosGnDo)] |
< (2coshin)?d/e + (2coshim)(2sinhin)d /e
Thus
I[B@® C,P]ll < 4(cosh?in + coshimsinhin +7)d/c < 616/e.

We are now ready to prove the theorem mentioned in the introduction.

THEOREM 4.4. For every pair A,B of self-adjoint operators on A , there are
commuting pairs C,D and A,,B, of self-adjoint operators on ¥ and # @ H#,
respectively, such that |Cll < 1 All, IDIl < | BIl, and

max(l4®@C—-A4,l, IB&@D-B,l)} <251 4B—BAl'2

Proor. Let |AB—BAll =6 =(25)"%¢%. Taking s =1, perform the
reduction of section 3. That is, write 4 = G—)Z;;l A; as a block diagonal
matrix with o(4;) contained in disjoint intervals I; of length ¢. Obtain the
tridiagonal matrix B with [|B— Bl < 85¢~! and II[4,B]l < 35. Define
D=@);., B, to be block diagonal with the same diagonal entries as B,
and C=@);_, 4R; where R;= E,(I;) and 4; is the midpoint of I,.
Clearly, | ¢S I 41 and DIl < 1B

Then C and D commute, and A @ C and B@ D satisfy |[A® C, B@ D]
<36, |IB@D - B@DI < 8¢ 1, and the matrix decomposition conform
to section 3. So it suffices to define the projections L; as required there. That
is, I[B@D,L;]ll <¢/5 and

LRORSLs Y ROR,.
>j 2j
Now, Corollary 4.3 provides such a projection

L_]: P.l@Z RIG')Rh
I1>j

where
Dj = Sinz(%ﬂg(AJ - CJ')),
¢; = A;—¢&/2 is the left end point of I;, and

B ‘ sin?(3nD;) sin(3nD;)cos (3nD;)
i sin(dnD;)cos(4nD;) ~ cos’(3nD;) ]
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which acts on R;5# @ R;s#. This projection satisfies
I[B® D,L;]ll < 61(36)/e = $33¢ < ¢/5.

Hence, by section 3, there are commuting self-adjoint operators 4, and
B, such that

max{lA® C—A4,l,|IB®D—B,l} <e=2502
=251AB—BAl'Y2,

This yields an immediate corollary. Let 4" denote the set of normal
operators.

COROLLARY 4.5. If T is an operator on 5, then there is a normal operator
Non #'sothat IN| < T and

dist(T @ N,#") < 50./2II[T, T*] 1112,

Proor. Since both functions are homogeneous, we may suppose that
[Tl =1. Write T = 4 + iB, where A and B are self-adjoint. Note that
I[T,T*]Il = 21[4,B]ll. By Theorem 4.4, we obtain commuting pairs
(C,D} and {4,,B,} so that

max{lA® C—A,I,IB& D —-B,ll} <e=25l[4,B]ll"2.

Let N=C+iD and M = A, +iB,. If IN'll > 1, replace it by N =
N'/IIN'll. From the proof of Theorem 4.4, one has

IN"— Y R,TR;Il < 2e,
i=1

whence IN'— NI <INl =1 < 2. So
dist(TON,N)SITON-MISIN=-NI+ITON -M]
< 26+ 2¢ = 1001 [4,B]1*2 = 50,/2 I [T, T*]lI'12,
REMARK. This estimate is good because it is homogeneous (of order 1),
and as such, it is the best distance estimate possible up to a constant that

can be determined from [[T* T]ll alone. However, the following
examples show that this is not equivalent to the distance itself.

Let S be the unilateral shift. Then [[S,5*]ll = 1 and dist(S® N, 4)
>./5-2>1/5.S0
dist((I +eS)®N, &) = ¢/5 = 311 [I +&S,1 +eS*] 11172,
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However, if T, = ReS +ieIm S, it is clear that
dist(T,, /) S e = I[T,, T*¥] = eV2lI[ T, T*]IIV2,

These two examples show that some information other than [T, T*] 1 is
needed. Modifications of these examples work in finite dimensions as well.

It is also of interest to obtain an anelogue og Theorem 4.1 for compact
perturbations. The techniques here do apply, but we have not obtained a
completely satiafying result. Independent of [5], we can obtain the
following. Let C and D be commuting, self-adjoint operators with joint
spectrum equal to [ —-1,1] x[-1,1].

THEOREM 4.6. If A and B are norm one, self-adjoint operators with compact
commutator, then (A@® C)+i(B@® D) is 'in the norm closure of N/ + X
(normals plus compacts).

REMARK. What is unsatisfying about this result is that it is not
quantitative. There is no control on the norm of the compact perturbation
required. This deficiency is independent of the fact that [5] is required to
show that A"+ ¢ is closed. Compare with section 6.

Proor. For each ¢ > 0, proceed as in section 3, but ignore the role of ¢
(and use s = 1). We obtain a diagonal form 4 = @) ;_, 4, for 4, and a
matrix B = (B;;) for B. The compactness of [4,B] implies that B;; is
compact for |i —j| 2 2. So the matrix B’ with entries Bj; = B;;if |i—j| <1
and Bj; = 0 for |i —j| 2 2 is a compact perturbation of B. (Here the norm
just got out of hand.) Let

A' = Z 2'iRl"
i=1

where 4, is the midpoint of I,. Then |4 — A’'ll < ¢/2 and II[4",B]ll < 2e.
By Theorem 4.4, there are commuting pairs of norm one self-adjoint
operators {C’,D’} and {4,,B,} such that

max{l4'@®C - 4,l,|B@®D - B,|l <2502¢)">.

Furthermore, the Weyl-von Neumann-Berg Theorem [1] shows that
(C'® C)+i(D’ @ D) is unitarily equivalent to a normal operator N with
IN — (C +iD)|l < ¢. Thus, there are commuting self-adjoints 4, and B,
(unitarily equivalent to A, @ C and B, @ D) such that

max{lA®C -4, l, |B@®D - B, I} < 2¢ +25(2¢)"/>.
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Hence (A® C) + i(B® D) is a compact perturbation of something close to
normal, and thus belongs to the closure of A"+ .

5. Partial results

In this section we obtain a partial answer to question (Q’) which serves to
eliminate from consideration many ‘“‘natural” candidates for a counterex-
ample. In particular, it will follow that the pairs (4,, ReB,) and (4,,ImB,)
from section 2 are asymptotically close to commuting pairs of Hermitian
matrices. '

Say that a matrix T has a band width at most k with respect to an
orthonormal basis e, , e, ... if (Te;, e;) = 0 for |i — j| > k.

LEMMA 5.1. Given ¢ > 0 and a positive integer 'k, there éxists an integer
N = N(g,k) so that for every norm one, Hermitian matrix (or operator) T of
band width k, there is a projection P such that P contains ey, ..., ey, is
contained in span{e, ..., ey}, and |[T,P]ll <e.

Proor. Suppose, to the contrary, that there is a sequence T,, of (n,, Xn,,)
matrices and integers N,, tending to infinity so that for any projection P
with the required range, one has || [ T;,,P]ll = &. Consider each T,, as acting
on a fixed Hilbert space with basis e, e,,... by setting it equal to zero
on the orthogonal complement of span{ey,..., enm}. The coefficients
M = (T,e;,e;) are bounded, so we can drop to a subsequence and assume
that limits

lim (P =1¢;
m-— o0
exist for all i,j = 1.

Let T be the operator with matrix entries ¢;;. Then T is self-adjoint with
norm at most one. Hence T is quasi-diagonal. So there is a finite rank
projection P with the range of P containing ey, ...,e, so that [[[T,P]l
< ¢/2. It can readily be arranged that the range of P is contained on span
{ey,..., ey} for some very large integer N.

Now, choose m, sufficiently large that N, = N and

tmo) —t.| < e/dk+2 for ij < N +k.
J )

Let Q be the projection with range span{e, ..., ey+;}. One obtains that
IQ(T - T,,)Q |l < ¢/2. So

I[ T, P1I = 1Q[ Ty, PIQ]
= [T, P] + [Q(T,,— T)Q,P]I
<egl2+¢2=¢.
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This is a contradiction, which establishes our claim.

THEOREM 5.2. Given ¢ > 0 and a positive integer k, there isa é = d(e,k) > 0

" wiith the following property: Fix an orthonormal basis e, ,e,, .... Let A and B

be Hermitian matrices of norm one sich that A is diagonal with monotone

increasing entries and B is of band width k and such that | [A,B]|l < 6. Then

there are comimuting self-adjoint matrices A, and B, with | A — A, || < e and
IB—B,ll <e.

ProoF. Follow the procedure in section 3 with s = N(¢/5,k) + k and
8 = £2/40s. The operators B; are block tridiagonal on
Jjs
A =R¥ = @Y A,

i=js—s+1

and are also band width k. If any 5 is zero space, the projection L,-
onto @)Y . # commutes exactly with Bj, and L;= Z Ri+L;
commutes w1th B'. Otherwise, all s have dlmensmn at least one, SO
Lemma 5.1 applies, and prov1des a projection L such that span {e1 yeees €}
is contained in the range of L,, and span {es,es 1s-++>€s+1—k) 18 in the

kernel, and II[B;,L;]l < &/5. Thus
Lj = .ZIR’ + I‘:‘;
i<

satisfies | [B’,L,]]l < ¢/5. The method of section 3 thus provides the desired
perturbation.

REeMARK 5.3. In view of the remarks in Section 3, it follows that (Q’)
has a positive solution if the dimension of 3, is bounded by k.
The whole problem is to find a bound independent of this (finite) dimen-
sion. However, if the dimension of J#, is infinite, it is not in general pos-
sible. Indeed, there is a norm one, self-adjoint, block tridiagonal operator
Aon# =@Y K, sothatif Pis any projection with

N
HoS PHC @) H, foranyN,
n=0

then [I[4,P]ll 2 102,
Such an operator can be constructed using the real and imaginary parts
of the unilateral shift. The details are omitted.
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6. Addendum
In this section, we obtain a quantitative version of the Brown-Douglas-
Fillmore Theorem [5] valid for nice simply connected regions.

THEOREM 6.1. Let T be un essentially normal operator with | Tl = 1 and
0.(T) equal to the unit disc. Then there is a compact operator K such that
T — K is normal, and | K|l < 75| TT* - T*T |12,

PrOOF. By [5], T is quasidiagonal, and thus there is a compact operator
Kosothat [Koll <e=ITT*= T*TI'2 and

T-Kox Y ®T,®D
n=1
where D is a diagonal normal with spectrum the unit disc, T, are finite rank,
Il <1,and

sup| T,T* — T*T,Il < &2
and

lim | ,T* — T*T,ll = 0.

By Corollary 4.5, there are normal operators N, of norm one and finite

rank operators K, with |K,l < 50,/2| T,T* — T*T,*? and (T,®N,)
— K, isnormal of norm one. There is a diagonal compact operator K , with
K, Il <eéso that

D—K,~ ) ®N,®D.
n=1
LetK'=Ky+ (0® K,), so that

T-K'=Y &T®N,)®D.
n=1

LetK=K’+( i @K,,@O).Then
n=1

IKI < (50,/2 +2)e < 75,

and

T-K=3 ®(T,®&N,~K,)®D=D.
n=1
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This result can be extended using the continuity of the functional
calculus to the following:

COROLLARY 6.2. Let f be univdlent in a neighbourhood of the closed disc D,
and let Q = f (D). There is a constant C depending on Q'so that: if T is an
essentially normal operator such that Q = ¢.(T) is a spectral set for T, then
there is a compact operator K so that T — K is normal and

IKI <clTT*—T*Tl2,

OPEN PROBLEM, Find a quantitative version of BDF valid for an annulus.

ADDED IN ProoF. 1. The author and I. D. Berg have now proven
Theorem 6.1 without using BDF [5].

2. Berg pointed out that Lemma 3.1 immediately yields the conclusion
IBIl < 46¢~1.

3. The remark after Lemma 4.1 is closely related to an example of
A. McIntosh, Proc. Amer. Math. Soc. 29 (1971), 337-340.
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