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RESIDUAL FIELDS IN VALUATION THEORY*

SETH WARNER

Our purpose here is to suggest that the residual fields of a valuation, which
are defined in section 1, may provide a suitable framework for the formulation
and solution of certain problems in valuation theory. In section 2 we shall
recast the Krull-Ribenboim theory of valuations complete by stages in the
language of residual fields and give short proofs of several of their theorems
concerning that concept. Also, by use of residual fields, we shall extend in
section 3 a classical theorem of Ostrowski asserting the finite dimensionality of
a complete, separable algebraic extension of a rank one henselian valuation.
For example, “complete” and “rank one” in Ostrowski’s theorem may be
replaced by “complete by stages.” In section 4 we investigate nonhenselian
valuations having a finite-dimensional henselian extension.

1. Residual fields.

Let v be a valuation of a field K with valuation ring A, maximal ideal M, and
value group G. Let P be a nonmaximal prime ideal of 4. Then P is the maximal
ideal of the valuation subring Ap of K. If Q is any prime ideal strictly
containing P, then Ay/P is a proper valuation subring of the field Ap/P. If R is
any other prime ideal strictly containing P, then Ay/P and Ag/P are
comparable since Q and R are, and therefore they define the same nondiscrete
topology on Ap/P. We therefore define the residual topology on Ap/P to be the
common topology defined by the valuation rings 4y/P where Q is any prime
ideal strictly containing P. Depending on the context, we shall the field A /P or
the topological field Ap/P, furnished with its residual topology, the residual
field of v determined by P. If B is any subring of K properly containing A, then
B= Ap for some nonmaximal prime ideal P of 4, and P is thus the maximal
ideal of B; we shall also say that B/P is the residual field of v determined by B.

The valuation subring of 4p/P determined by M is, of course, 4/P; wé shall
denote by iip the valuation on Ap/P determined by v; the valuation ring of 7p is
A/P, its maximal ideal is M/P, and its residue field is canonically isomorphic
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with the residue field A/M of v; finally, its value group is the image Hp under v
of the group of invertible elements of 4p, and

p(x+P) = v(x)

for all x € Ap\ P. In particular, 9p defines the residual topology of Ap/P. In the
sequel we shall also denote by vp the valuation of K determined by v and P; the
valuation ring of vp is Ap, its residue field is the residual field Ap/P of v, its
value group is G/Hp, and

vp(x) = v(x)+Hp

for all nonzero x € K.

Identifying K/(0) with K, we see that K itself is the residual field of v
determined by the zero ideal, and its residual topology is the given topology
defined by v.

Let K’ be an algebraic extension of K, A’ the valuation ring of an extension v’
of vto K’, G' its value group. Then P’ — P’ N A is a bijection from the set of all
prime ideals of A’ to the set of all prime ideals of A. Let P’ be a prime
nonmaximal ideal of 4’, P=P’' N A the corresponding prime nonmaximal ideal
of A. Under the standard identification of 4 p/P with the subfield (Ap+ P')/P’ of

'»/P’, the residual (topological) field determined by P is a subfield of the
residual (topological) field determined by P’. Moreover, if [K': K] < + 0o, then

[Ap/P': Ap/P] = f(vp/vp) < [K': K] < +00.

We shall adopt the convention that extensions of v to an algebraic extension
of K take their values in the divisible group generated by G. Under this
convention, distinct extensions of v to an algebraic extension are inequivalent.

THEOREM 1. Let v be a valuation of a field K, and let P be the intersection of a
family (P,);<L of prime ideals of the valuation ring A of v, each strictly containing
P. Then (P,/P),., is a fundamental system of neighborhoods of zero for the
residual topology of Ap/P.

Proor. P is, of course, a nonmaximal prime ideal of A. The residual
topology J p of Ap/P is defined by the valuation ring A/P. For each A€ L,
P,/P is a nonzero prime ideal of A/P and hence is a neighborhood of zero for
J p Since the ideals of A/P are totally ordered and the intersection of
(P,/P),.. is the zero ideal of A/P, every nonzero ideal of A/P contains some
P,/P. Therefore (P,/P),., is a fundamental system of neighborhoods of zero
for 7 p
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2. Valuations complete by stages.

In 1932, Krull [8, p. 177] introduced “perfekt” valuations, which were called
“complete” by Schilling [20, p. 45] and Ribenboim [15, p. 472; 16, p. 12; 17, p.
454], later “complet par etages” by Ribenboim [18, p. 72]. A valuation v of a
field K is complete by stages if the following two conditions hold:

1°. If P is a nonmaximal prime ideal of the valuation ring A of v and if there
is a smallest prime ideal Q strictly containing P, then A4 p/P is complete for the
topology defined by the valuation ring Ay/P.

2°. If (P;);<. is a decreasing, well-ordered family of prime ideals of 4 and
if (ay);c. is @ family of elements of A4 satisfying a;=a, (mod P,;) whenever
P,c P,, then there exists x € A such that x=qa; (mod P)) for all A€ L.

We may characterize valuations complete by stages as follows:

THEOREM 2. 4 valuation v of a field K is complete by stages if and only if all its
residual fields are complete.

Proor. Let P be a nonmaximal prime ideal of the valuation ring 4 of v. If
there is a smallest prime ideal strictly containing P, then 1° is the assertion that
the residual topology of Ap/P is complete.

In the contrary case, P is the intersection of the prime ideals strictly
containing it. Let (P,),., be a well-ordered, cofinal subset (for the inclusion
ordering) of those prime ideals Then (M, ., P,=P, so (P,/P),.. is a
fundamental system of neighborhoods of zero for the residual topology J p by
Theorem 1.

Assume 2°. To show that J p is complete, it suffices to show that the
neighborhood A/P of zero in Ap/P is complete for its induced topology. Let ¢
be the canonical epimorphism from A to 4/P. Let # be a Cauchy filter on 4/P,
and for each A e L let a; € A be such that ¢(a,) belongs to a (P,/P)-small
subset F, of #. Then F,<¢(a;)+ P,/P, and therefore ¢ ' (F))Sa;+P,. As
@ 1(#) is a filter base on A4,

(@a;+P)N(a,+P) + &

whenever P,c P,, and hence a;=a, (mod P,;). By 2° there exists x € A such
that x =a, (mod P,) for all A € L. Consequently (¢(a;)),, converges to ¢(x) in
A/P for J p, and therefore # does also.

Conversely, if p is complete and if (P,),c, and (ay,., satisfy the
hypotheses of 2°, then the family & of all the subsets (¢(a;)+ (P,/P));cL is a
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Cauchy filter base on A/P, as (P,/P),.; is a fundamental system of
neighborhoods of zero for 7 p. Consequently there exists x € Ap such that &
converges to ¢(x), so as each member of & is a coset of an open and hence
closed ideal,

o(x) € l@ (p(a)+ (P,/P)).

Therefore x € N,.; (a,+ P,), that is, x=a, (mod P,) for all A € L. Moreover,
x € A since a,+P,c A for all Ae L.

This characterization permits short proofs of theorems of Krull and
Ribenboim concerning valuations complete by stages:

THEOREM 3. Let v be a valuation of a field K, and let A be its valuation ring.

1° [15, Lemmas 11-13]. If Q is a nonmaximal prime ideal of A, then v is
complete by stages if and only if vy and by are complete by stages.

2° [8, Satz 27]. If v is a maximal valuation, then v is complete by stages.

3° [8, Satz 12]. If v is complete by stages, then v is henselian.

4° [17, Théoréme 1]. If L is a finite-dimensional extension of K and if v is
complete by stages, then the unique extension v of v to L is complete by stages.

Proor. 1°. The residual fields of v, are precisely the residual fields of v
determined by the prime ideals of A strictly contained in Q, for if P is such an
ideal, (4p)p=Ap, and Ay/P is a valuation subring of Ap/P determining the
residual topologies defined by both v and vy. The nonmaximal prime ideals of
the valuation ring A/Q of oy are precisely the ideals P/Q where P is a
nonmaximal prime ideal of A containing Q. For each such ideal P,

x+Q x
——+Q, xe€Ad, ye A\P
y+Q vy ¢ Y

is an isomorphism from (4/Q)p,q to 4p/Q and is the identity map on A/Q and
hence also on P/Q. Consequently, it induces an isomorphism ¢ from
(A/Q)p/o/(P/Q) to (Ap/Q)/(P/Q) that is the identity map on (4/Q)/(P/Q). The
canonical isomorphism ¥ from (4,/Q)/(P/Q) to Ap/P takes the valuation ring
(4/Q)/(P/Q) to the valuation ring A/P. Thus Y o¢ is a topological isomorphism
from the residual field (4/Q)p/o/(P/Q) of g to the residual field Ap/P of v. In
particular, the residual fields of v are complete if and only if the residual fields
of vy and 9, are complete.

2°. The valuation v is maximal if and only if its valuation ring A is linearly
compact, that is, every filter base on A4 consisting of cosets of ideals of A4 has a
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nonempty intersection [21, Theorem 4]. This is easily seen to be equivalent to
the assertion that every (not necessarily Hausdorff) topology on A for which
the open ideals form a fundamental system of neighborhoods of zero is
complete. In particular, for any nonmaximal prime ideal P of A, the topology
on A for which all ideals of 4 properly containing P form a fundamental
system of neighborhoods of zero is complete, or equivalently, the topology on
the subring A/P of Ap/P determined by the valuation 7p is complete. As 7p
defines the residual topology of 4 ,;/P and as A/P is a neighborhood of zero for
that topology, it also is complete.

3°. To show that v is henselian, it suffices to show that if L is a finite exten-
sion of K, then v has only one extension to L. Suppose that u and w are distinct
extensions of v to L. Let B’ be the subring of L generated by the union of their
valuation rings, let Q' be its maximal ideal, and let B=KNB, Q=K N Q' Then
iy and wgy are independent valuations of B'/Q’, as the union of their valuation
rings generates all of B'/Q’. Since B’ properly contains the valuation ring of u,
whose intersection with K is 4, and since L is an algebraic extension of K, B pro-
perly contains 4, so Q is a nonmaximal prime ideal of 4, and Q is the maximal
ideal of B. As B’ is the valuation ring of a valuation of L extending the valuation
vg of K, B'/Q' is a finite-dimensional extension of B/Q, as noted in section 1. By
hypothesis, B/Q is complete for its residual topology, which is defined by .
Therefore B'/Q’ has only one Hausdorff topology making it a topological
vector space over B/Q. That topology is defined by iy and Wy, as they are
extensions of #p; this contradicts the independence of @y and wg.

4°. Let Q' be a nonmaximal prime ideal of the valuation ring A’ of the unique
extension v’ of v to L, and let Q =Q' N A. As the topological residual field Ap/Q’
of v' is a finite-dimensional extension of the topological residual field 4,/Q of v,
which is complete by hypothesis, A4;/Q’ is also complete. Thus v’ is complete by
stages.

3. Extensions of a theorem of Ostrowski.

In 1913, Ostrowski [12, pp. 276-280] proved that if v is a rank one henselian
valuation of a field K and if L is a separable algebraic extension of K that is
complete for the topology defined by the unique extension of v to L, then
[L: K]< +o00.

THEOREM 4. Let v be a henselian valuation of a field K, and let v' be the unique
extension of v to a separable algebraic extension L of K. If L is a Baire space for
the topology defined by v', then [L: K] < +00 and K is closed in L.
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Proor. By Krasner’s Lemma [7] (which was originally discovered by
Ostrowski [13, Hilfssatz, p. 197]), for each x € L, the set V,, defined by

V., ={yeL: K[x]=K[yl},
is a neighborhood of x. For each integer n>1, let
P, = {yeL: [K[y): K]Sn}.

Then P, is closed, for if x € L\ P,, clearly ¥V, < L\ P,. In particular, K=P, is
closed. As U2, P, =L, there exists m>1 such that P,, has an interior point c.
Consequently, the value group G’ of v’ contains an element y such that x € P,
whenever v'(x—c)>y. Thus if v'(y)>7y, then y+ce P, so as K[y]lc
K[c][y+cl, [K[y]: K]<m? For each z € L there exists a nonzero t € K such
that v'(tz)>7y as the value group of v is cofinal in G’, and therefore

[K[z]: K] = [K[tz]: K] € m?.

Hence by the theorem of the primitive element, [L: K] <m?.

Since complete metrizable spaces are Baire spaces, we recover the following
generalization of Ostrowski’s theorem, due to Kaplansky [S, Theorem 9]:

THEOREM 5. Let v be a henselian valuation defining a metrizable topology on a
field K, and let L be a separable algebraic extension of K. Then L is complete for
the topology defined by the unique extension v' of v to L if and only if [L: K] <

+00 and K is complete.

Proor. The topology defined by ¢’ is also metrizable, as the value group of v
is cofinal in that of v’. The assertion therefore follows from Theorem 4.

The hypothesis concerning separability in Theorem 4 cannot be removed:
Nagata [10, p. 56] (see also [2, Exercise 14 c), p. 193]) has given an example of
a complete discrete valuation of a field L of prime characteristic p such that L
is a purely inseparable extension of degree p of a dense subfield E, and L is an
infinite-dimensional algebraic extension of its closed subfield L?.

An element x of a topological field is topologically nilpotent if

limx" = 0.
If the topology of a field K is defined by a valuation, then it is also defined by a
rank one valuation if and only if K possesses a nonzero topological nilpotent.

THEOREM 6. Let v be a proper valuation of a field K. If K possesses no nonzero
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topological nilpotent, and if those residual fields of v that are metrizable but
possess no nonzero topological nilpotent are complete, then K is a Baire space.

Proor. It suffices to prove that the valuation ring 4 of v is a Baire space. For
if so, then for each a € K, a+ A4 is an open neighborhood of a that is a Baire
space, so K is a Baire space. Let (G,),» be a sequence of open dense subsets of
A. By hypothesis and Theorem 1, the nonzero prime ideals of 4 form a
fundamental system of neighborhoods of zero, so it suffices to show that if Pis a
nonzero prime ideal and if a € A4, then a+ P intersects %, G,. For this, we
shall construct a strictly decreasing sequence (P,),>, of nonzero prime ideals
and a sequence (a,),»o of elements of 4 such that P,=P, a;=a, and

n—1

a,+P, kDO [(ax+PYNGy.y] .

Indeed, if a, and P, are defined, then as G,., is dense, there exists
. Ayy1 € (an+Pn) n Gn+l .

As (a,+P,) N G,,, is open, there exists a nonzero prime ideal P, properly
contained in P, such that

an+l+Pn+1 & (an+Pn) n Gn+1 = kOO [(ak+Pk) N Gk+l] .

Let Q=M%, P,, and let ¢ be the canonical epimorphism from Ag to Ay/Q. By
Theorem 1, (P,/Q), o is a fundamental system of neighborhoods of zero for the
residual topology of 4,/Q. Consequently, (p(a)+ (P,/Q),20 is a decreasing
Cauchy filter base consisting of cosets of open (and hence closed) ideals. By
hypothesis, the residual field 4y/Q is complete, so there exists b € Ay such that

o0

o) € ) [e(a)+(P/A] .

n=0
Consequently,

be () @+P)s N G,
n=0 n=

and also b e ay+Py=a+Pc A
From Theorems 2 and 6 we obtain the following corollary:

COROLLARY. If v is a valuation of a field K that is complete by stages, then K is
a Baire space for the topology defined by v.

THEOREM 7. Let v be a proper henselian valuation of a field K, let L be a
separable algebraic extension of K, and let v' be the unique extension of v to L. If
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v’ is complete by stages, then [L: K]< + 00, and K is closed in L.

The assertion is a consequence of Theorem 4 and the Corollary of Theorem
6.

4. Nonhenselian valuation having finite-dimensional henselian extensions.

We shall call a total ordering of a field K compatible if it makes K into an
ordered field.
Let K be an ordered field. For each subfield L of K, let

V(L) = {x € K : there exists a € L such that —a<x<a}
and
Pg(L) = {x e K : for all strictly positive b € L, —b<x<b} .

Baer [1, p. 7] showed that V(L) is a valuation subring of K whose maximal
ideal is Pg(L). Clearly Vk(L) is a proper subring of K if and only if L is not a
cofinal subset of K. In particular, V(Q), where Q is the prime subfield of K, is a
proper subring if and only if the ordering of K is nonarchimedean.

Wright [6, p. 314] established the equivalence of the following assertions
concerning a valuation v of K with valuation ring ¥, maximal ideal M, residue
field k, and value group G:

1° V2 Vk(Q).

'2°. M contains no element ¢ satisfying ¢> 1.

3°. Vs an isolated subgroup of the additive group K.

4°. V= V(L) for some subfield L of K.

5°. The restriction of v to the multiplicative group K* of all strictly positive
elements of K is a decreasing epimorphism from K% to G.

6°. k admits a compatible total ordering such that the canonical
epimorphism from V to k is increasing.

Earlier, though not using the language of valuation theory, Baer [1, § 4] had
established the equivalence of 1°, 4°, and 6°. If these properties hold, we shall
say that v is compatible (with the ordering of K). Thus there exist proper
compatible valuations of K if and only if K is nonarchimedean. All proper
compatible valuations are dependent, since their valuation rings all contain the
valuation ring V(Q). Consequently, they all define the same topology, which is
the interval topology of K, generated by all the open intervals (a,b), where
a<b. Indeed, if V is the valuation ring of a proper compatible valuation, then
for any strictly positive a € V, (—a,a)< Va, and if b is a nonzero element of V

_such that a ¢ Vb, then Vbcs (—a,a).
Knebush and Wright established the following theorem [6, Satz 2.2]:
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THEOREM 8. If v is a valuation of a real-closed field K, then v is henselian if and
only if v is compatible with the (unique) ordering of K.

An elementary proof may be based on the following simple lemma:

LeMMA. If v is a valuation of a field K whose characteristic is not 2 and
if X2—c is an irreducible polynomial over K, then v has distinct extensions to
K (c?) if and only if there exists a € K such that v(a®—c)>v(4c).

ProoF. Let v’ be an extension of v to K (c?). As K(c?) is a normal extension of
degree 2 and as the only K-automorphism ¢ of K(c*) other than the identity
automorphism satisfies

o(x+yct) = x—yct for all x,y € K,
v’ is not the only extension of v if and only if there exists a € K such that
v(a—c?) < v(a+c?).
From this follows v'(2c*)=v'(a—c?), so
v(4c) = 2v'(a—c?) < v(a—cH)+v'(a+c?) = v(@®* o).

Conversely, if for every a € K, v'(a—c?)=v'(a+c?), then for every a € K,

v'(2c}) 2 va+ch) = via—ch,
sO

v(de) = v(a+cH)+v(a—c?) = v(@®*—o).

Proor orF THEOREM 8. We merely note that as K (i) is algebraically closed, v
is not henselian if and only if it has distinct extensions to K (i), or equivalently
by the Lemma, if and only if there exists a € K such that v(a®+ 1)>v(—4)=0.
As a®>+1>1, condition 2° above does not hold. Conversely, if v(c) >0 for some
¢>1, then as K is real-closed, c=a?+ 1 for some a € K, whence v(a*+1)>0
=v(—4), and therefore v has distinct extensions to K(i).

One consequence of Theorem 8 is that a proper valuation v of the field R of
real numbers is not henselian, and so has precisely two extensions to its
algebraic closure C, each of which is trivially henselian. This suggests the
problem of characterizing valuations v that are not henselian but have a
henselian finite-dimensional extension. The problem has been discussed by
Kaplansky and Schilling [4, Theorem 4], Bourbaki [2, Exercise 17, § 8, Ch. 6,
p. 194], Ribenboim [19, C], and Endler [3]. Endler’s theorem on nonhenselian
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valuations of rank one that have finite-dimensional henselian extensions has
generalized results proved earlier concerning this problem.

THEOREM 9. Let v be a nonhenselian valuation of a field K, v' a henselian
valuation extending v to an algebraic extension K' of K such that [K': K],<
+ 00.

1°. K’ contains a root i of X>+1, i ¢ K, and the restriction of v' to K(i) is
henselian (and thus is a henselization of v).

2°. There exist a compatible total ordering of K and a (possibly improper)
henselian valuation u of K such that

(@) u<v,

(b) u is compatible with the ordering,

(c) the residue field of u is a real-closed field, and

(d) the residue field of the unique extension u' of u to K' is an algebraically
closed field of characteristic zero, and u' <v'.

Proor. Let K be the separable closure of K in K’, and let v, be the
restriction of v’ to K. By hypothesis,

[K,:K] = [K':K], < +00.

As K’ is a purely inseparable extension of K; and as v' is henselian, clearly v; is
henselian. Also K is a proper subfield of K since v} is henselian but v is not. If
the conclusions of the theorem hold when v is replaced by v, then K has
characteristic zero, so v,=v', and hence the conclusions hold also for v'.
Therefore we may assume, by replacing v’ with v} if necessary, that 1 <[K': K]
< +00.

By hypothesis, there is a finite-dimensional extension N, of K on which
there are two distinct valuations extending v. As [K'(N,): K] < + o0, there is a
finite-dimensional normal extension N of K that contains K'(N,). Let v’ be an
extension of v’ to N. Each of the two extensions of v to N, has an extension to
N, and therefore one of them, w”, is distinct from v”. As N is a normal
extension of K, w"=v"o0 for some K-automorphism ¢ of N. As v" is an
extension of v/, v"” is henselian, so w” is also henselian. Let V" and W" be
respectively the valuation rings of v’ and w”, let B” be the subring of N
generated by V”UW?”, and let P’ be its maximal ideal. Let B'=B"NK’,
B=B"NK, P=P'NB, P=P'NB. Then P’ is the maximal ideal of the
valuation ring B’ of K, and P is the maximal ideal of the valuation ring B of K.
As B"/P” and B/P are respectively the residue fields of v/ and vp,

[B"/P": B/P] = f(vp//vp) £ [N: K] < +00.
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Also, ¥p- and Wp- are independent, for the subring generated by the union,
(V"/P")U (W"/P"), of their valuation rings is all of B”/P". In addition, &p. and
Wi are henselian [10, Theorem 14; 18, Proposition 9, p. 210]. Consequently by
[2, Ch. 6, Exercise 15 c), p. 193] (see also [4]), B”/P” is separably algebraically
closed.

As 7'p- and Wp- are independent extensions of &p to B”/P”, #ip is not henselian.
Therefore as 7+ is henselian, B”/P” is not a purely inseparable extension of
B/P. Consequently,

1 < [B"/P": B/P], < + .

By Endler’s corollary of the Artin-Schreier theorem [3, Lemma, p. 187], B”/P”
is algebraically closed and has characteristic zero, B/P is real-closed, and B”/P"
= (B/P)(i) where i is a root of X?+1 in B”/P". In particular, [B"/P": B/P]=2.
If, under the canonical identification, B/P were all of B'/P’, then #p would be
identical with #p. But #p is henselian [10, Theorem 14; 18, Proposition 9, p.
210] whereas ¥p is not. Consequently, [B'/P': B/P]>1, so B'/P’ is identified
with all of B"/P".

Let u’ be the valuation v’ of K’, and let u=vp, the restriction of «’ to K. Since
v’ is henselian, u' is also [10, Theorem 10; 18, Proposition 9, p. 210], and
therefore as the residue field B'/P’ of u' is algebraically closed, the subring B’ of
K’ contains a root i of X? + 1. As the residue field B/P of u is real-closed, i ¢ K.
Consequently, we have established the first half of 1° and (d) of 2°.

The restriction v}, of v’ to K (i) has a finite-dimensional henselian extension,
namely, v'. Applying what we have just proved to v, we conclude that v}, is
henselian, since its domain contains i. Thus 1° is established.

Since the residue field of u is real-closed, K admits a compatible total
ordering with which u is compatible by a theorem of Baer [1, Satz 4], expressed
in the language of valuation theory by Krull [8, Satz 22], and later reproved by
Lang [9, Theorem 6] and Nagata [11, Theorem 2]. Let L be a subfield of K
such that the valuation ring V of u is Vg (L). The ordered field K admits a real-
closed algebraic extension R, and as Vg (L)=K N Vg(L), u is the restriction of a
valuation ug of R whose valuation ring is V(L). By Theorem 8, up is henselian,
so the restriction of ug to some subfield H of R that contains K is a
henselization of u. Now ' is a henselian, finite-dimensional extension of u.
Applying 1° to u, we conclude that u is henselian, since otherwise H would be
K-isomorphic to K(i), which is impossible as H is an ordered field. By
definition of u and «’, u<v and v’ <v'. However, u is henselian whereas v is not,
so u<u, therefore also v’ <v’, and the proof is complete.

Since «’ <v’, the residue field of «' is a residual field of v’. Consequently, we
conclude from Theorem 9:
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COROLLARY 1. Let v’ be a henselian valuation of a field K'. One of the following
two assertions holds:

1°. The restriction of v' to every subfield K of K' such that K’ is an algebraic
extension of K and [K': K],< + 00 is henselian.

2°. There is a residual field of v' that is an algebraically closed field of
characteristic zero.

In particular, 1° holds if K' has prime characteristic.

If, in Theorem 9, v has rank one, then as u <v, u is the improper valuation of
K, so the residue field of u is K itself. Consequently, we obtain:

CoROLLARY 2 (cf. [3, Theorem 2]). Let v’ be a rank one henselian valuation of
a field K', and let v be the restriction of v' to a proper subfield K of K' such that
K' is an algebraic extension of K and [K': K],< + 00. The following statements
are equivalent:

1°. v is not henselian.

2°. K' is an algebraically closed field of characteristic zero, K is a real-closed
field, K'=K (i), where i is a root of X*+1, and there exists a € K such that
v(a+i)*v'(a—i).

CoroLLARY 3 (cf. [2, Exercise 17, § 8, Ch. 6, p. 194]). If v’ is a rank one
henselian valuation of a field K', then either K' is an algebraically closed field of
characteristic zero, or the restriction of v' to every subfield K of K’ such that K' is
an algebraic extension of K and [K': K],< + 00 is henselian.

For complete rank one valuations of fields of characteristic zero, the two
possibilities envisioned in Corollary 3 are mutually exclusive:

THEOREM 10. Let v be a complete rank one valuation of a field L of
characteristic zero. The following assertions are equivalent:

1°. The restriction of v to every finite-codimensional subfield of L is henselian.

2°. Every finite-codimensional subfield of L is closed.

3°. Thexilosed subfields K of L such that L is an algebraic extension of K are
precisely the finite-codimensional subfields.

4°. L is not algebraically closed.

Proor. As v is a complete rank one valuation, v is henselian. Thus 1° implies
2° by Theorem 4. We shall denote by vy the restriction of v to a subfield K of L.
To show that 2° implies 3° and 1°, let K be a closed subfield of L such that L is
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algebraic over K. Then K is complete, so vy is henselian. By Theorem 4, K is
finite-codimensional. Thus 3° holds. Moreover, as K is finite-codimensional
and complete, L admits only one topology making it into a topological K-vector
space. Hence any two extensions to L of vg are dependent and thus identical,
as vk has rank one, so v is henselian as v is. Thus 1° holds. Clearly 3° implies
2°,

By Corollary 3 of Theorem 9, 4° implies 1°. To show that 1° implies 4°, we
shall assume that 1° holds and that L is algebraically closed. Then L contains a
real-closed field R such that L=R(i), where i is a root of X2+ 1. If ¢ is an
automorphism of L and oy its restriction to R, then vg and v, g, are henselian
valuations of R and ¢ (R) respectively by 1°, so vg and Us(R)°OR are henselian
valuations of R. If they were independent, then R would be algebraically closed
[2, Ch. 6, Exercise 15 c), p. 193], a contradiction. Consequently they are
dependent and thus identical, as both are rank one valuations. As 1° implies 2°,
R is a closed and hence complete, so L has only one topology making it into a
topological R-space. Thus as v and vos are both extensions of VR=VsR)°0Rs
they are dependent and hence identical.

Let K=0Q(B), where B is a transcendence base of L over the prime subfield
Q, and let w be the restriction of v to K. As L is a normal extension of K, every
extension of w to L is of the form voo for some K-automorphism ¢ of L, so as
vog =v by what we have just proved, w is henselian. By Theorem 4, K is a finite-
codimensional subfield of L, so by the Artin-Schreider theorem, K is real-
closed and L =K (i), a contradiction of the fact that K is a pure transcendental
extension of Q.

A Galois extension L of a field K may contain an infinite strictly decreasing
sequence of subfields of finite codimension between K and L. For example, if
(P:)iz, is the sequence of primes and if

Ay = {pt:izk},

then Q(4,) is a Galois extension of Q and (Q(Ay)», is a strictly decreasing
sequence of subfields of Q(A,) of finite codimension. This cannot happen,
however, if L is a Baire space for a henselian valuation:

THEOREM 11. If v' is a henselian valuation of L, if L is a Baire space for the
topology defined by v, and if L is a Galois extension of a subfield K, then the
codimensions of all finite-codimensional subfields of L that contain K are
bounded.

Proor. Let v be the restriction of v’ to K, and for any subfield F of L, let v
be the restriction of v’ to F. As ¢’ is henselian and as L is an algebraic extension
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of K, L contains a subfield H such that v, is a henselization of v. By Theorem
4, as L is a separable extension of H, [L: H]< +o00. Let r=[L: H]. If H' is
another subfield of L such that v} is a henselization of v, then there is a K-
isomorphism g from H to H'. Therefore as L is a normal extension of K, there
is a K-automorphism ¢’ of L whose restriction to H is g. Thus

[L:H] = [¢(L):¢'(H)] = [L:H] =r.

Now let N be a finite-codimensional subfield of L that contains K. If v} is
henselian, then N contains a subfield H' such that v’y is a henselization of v,
whence

(L:N] =[L:H] =r.

If vy is not henselian, then by Theorem 9, L contains a root i of X +1 and vy,
is henselian. Thus

[L:N] = [L:NGIING):N] < 2r.

Therefore the codimension of a finite-codimensional subfield of L that contains
K does not exceed 2r.

We shall say that a valuation v of a field K is half henselian if v has precisely
two extensions to the algebraic closure of K.

THEOREM 12. Let v be a valuation of a field K, let Q be an algebraic closure of
K, and let vy be a henselization of v defined on a subfield H of Q. The following
statements are equivalent:

1°. v is half henselian.

2°. v is not henselian but has only finitely many extensions to Q.

3°. v is not henselian, but there is a henselian valuation extending v to a subfield
L of Q such that [L:K]< + oo.

4, 1<[H:K]< + o0.

5°. K does not contain a root i of X*+1, and H=K(i).

6°. There is a (possibly improper) henselian valuation u of K such that u<v,
the residue field k, of u is a real-closed field, and the valuation ¢ induced on k, by
v is not henselian.

7°. There is a real-closed subfield of Q that contains K ; if R is any such field, v
has a unique extension vy to R, and vy is not henselian.

Proor. Clearly 1° implies 2°. To show that 2° implies 3°, let v},. . ., v}, be all
the distinct extensions of v to Q. For each i € [2, n] there exists x; € Q such that
vy (x) #0i(x); let L=K(x,,...,x,). Then [L:K]< + 00. Let w be the restriction
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of v to L. None of v),...,v, is an extension of w. Therefore if w had another
extension v, to Q besides v}, v would have the n+1 distinct extensions
Vp, V4, . ., Uy, a contradiction. Consequently, w is henselian.

Clearly 3° and 4° are equivalent. By Theorem 9, 3° implies 5°. If 5° holds,
then v has precisely two extensions, v, and v}, to K(i), and one of them, say v/,
is henselian. But as K (i) is a normal extension of K, v, =100, where o is the
conjugation K-automorphism of K(i), so v, is also henselian. As every
extension of v to Q is also an extension of either v} or v}, 1° holds.

By Theorem 9, 3° implies 6°, for if & were henselian, then v would be also by
[10, Lemma 5; 18, Proposition 10, p. 211]. Also, 6° implies 5°: As k, is real-
closed, K does not contain a root i of X2+ 1. Let ' be the unique extension of
u to K(i), and let v’ be an extension of v to K (i). The valuation ¢ induced by v/
on the residue field k,(i) of ' is trivially henselian, as k,(i) is algebraically
closed. Therefore as u' is also henselian, v’ is henselian by [10, Lemma 5; 18,
Proposition 10, p. 211]. Moreover, v is not henselian as ¢ is not [10, Theorem
14; 18, Proposition 9, p. 210]. Therefore H=K (i), and 5° holds.

Thus 1°-6° are all equivalent. To show that they imply 7°, we first note that
by 3° and Theorem 9, there is a compatible total ordering on K, so there is a
real-closed extension R of K contained in Q. Assume that v has distinct
extensions, ¥; and u), to R. Then each of them can have only one extension to
R({)=Q by 1°, so each of them is henselian. Consequently, R contains a
subfield H’ such that the restriction of «; to H' is a henselization of v; therefore
by 5°, H' is K-isomorphic to K (i), a contradiction. Thus » has a unique
extension vg to R. If vg had only one extension to 2, then » would have only one
extension to €, a contradiction; hence v is not henselian. Clearly 7° implies 1°,
and the proof is complete.

Condition 6° of Theorem 12 suggests how to establish the existence of half
henselian valuations.

THEOREM 13. If u is a henselian valuation of a field K whose residue field k is
real-closed, there is a half henselian valuation v of K such that u<v.

Proor. Let A and P be respectively the valuation ring and maximal ideal of
u, and let @ be the canonical epimorphism from 4 to k. Let W be the valuation
ring of an extension w to k of the 7-adic valuation of the prime subfield Q of k.
As the residue field of w has characteristic 7, w is not henselian by Theorem 8.
Let V=¢ }(W). Clearly V is a valuation subring of K. (for if x € K\ 4,
x~1 e P V). Let v be a valuation of K whose valuation ring is V. Then the
valuation ring of p is W, so 7p is not henselian. As Ve A, u<v. Thus by 6° of

Theorem 12, v is half henselian.

Math. Scand. 56 - 15
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THEOREM 14. A field K admits a half henselian valuation if and only if it admits
a henselian valuation whose residue field is real-closed.

The assertion results from Theorems 12 and 13.

For example, let k be a real-closed field, G a totally ordered abelian group,
and let K=S(k, G), the field of all functions from G to k whose support is a
well-ordered subset of G, with convolution as multiplication. The order
valuation u of K (if f+0, u(f) is the smallest & € G such that f(«)+0) is a
maximal and hence henselian valuation of K whose value group is G and
whose residue field is canonically isomorphic to k. Thus by Theorem 14, K
admits a half henselian valuation v, and by Theorem 9, v has a henselian
extension v’ to K(i). But if G is not divisible, K cannot be real-closed nor can
K (i) be algebraically closed. In particular, there exist fields admitting half
henselian valuations that are not real-closed ; moreover, the incorrectness of [2,
Exercise 17, § 8, Ch. 6, p. 194] is established.

THEOREM 15. If R is a real-closed field, every topology on R determined by a
proper valuation is also determined by a half henselian valuation. If K is a field
that is not real-closed, the topology determined by a half henselian valuation of K
is the interval topology determined by a compatible total ordering.

Proor. Every nonhenselian valuation of R is half henselian, as R(i) is
algebraically closed. Let u be a proper henselian valuation of R, with valuation
ring A and residue field k. By Theorem 8, k admits a compatible total ordering
for which the canonical epimorphism from A to k is increasing. Therefore k is
real-closed since R is. By Theorem 13, R admits a half henselian valuation v
such that u<uv, so as u is proper, u and v determine the same topology.

Let v be a half henselian valuation of a field K that is not real-closed. By
Theorem 9, there exist a compatible total ordering of K and a henselian
valuation u of K that is compatible with the ordering, has a real-closed residue
field k, and satisfies u<v. Since k is real-closed but K is not, u is a proper
valuation, and therefore u and v determine the same topology.

" THEOREM 16. If v is a half henselian valuation of a field K, then K is real-
closed under any of the following conditions:

1°. v has rank one.

2°. The topaology determined by v is not the interval topology given by a
compatible total ordering on K.

3°. The value group of v is divisible.
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Proor. By Corollary 2 of Theorem 9 and Theorem 15, we need only consider
3°. By Theorem 9, there is a henselian valuation u of K whose residue field is
real-closed and whose value group is divisible, since it is a quotient group of
the divisible value group of v. By a theorem of Krull [8, Satz 23], rediscovered
by Nagata.[11, Corollary 4], K is real closed. (By adjoining i to K, the
conclusion of that theorem follows from another theorem of Krull [8, p. 190]:
If v is a henselian valuatiom of a field K whose residue field is an algebraically
closed field of characteristic zero and whose value group is divisible, then K is
algebraically closed. This, in turn, is an immediate consequence of Ostrowski’s
“defekt” theorem [ 14, § 9, €55] in the characteristic zero case: If v is a henselian
valuation of a field K whose residue field has characteristic zero, and if v’ is the
extension of v to a finite-dimensional extension K’ of K, then e(v'/v)f(v'/v)
=[K":K])

We conclude with a supplement to our earlier discussion of valuations
complete by stages:

THEOREM 17. Let v’ be a valuation of a field K', and let v be the restriction of v’
to a proper subfield K of K' such that K' is an algebraic extension of K. Of the
following assertions, 1° implies 2°, 2° implies 3°, and all three are equivalent if
each residual field of v' is separable over the corresponding residual field of v (a
condition holding, for example, if the residue field of v has characteristic zero or if
K is a perfect field of prime characteristic):

1°. v is complete by stages and [K': K] < + 00.

2°. v’ is complete by stages, [K': K] < + 00, and there do not exist a € K and a
root i of X2+1 in K'\ K such that v'(a+i)+v' (a—i).

3°. V' is complete by stages and v is henselian.

Proor. 1° implies 2° and 2° implies 3° by 3° and 4° of Theorem 3 and
Theorem 9. The supplementary condition holds if the residue field of v has
characteristic zero, for then every residual field of v has characteristic zero. It
holds also if K is a perfect field of prime characteristic, for if B is any valuation
subring of K strictly containing the valuation ring A of v, then a pth root in K
of any element of B clearly belongs to B; the residual field determined by B is
therefore perfect, so the corresponding residual field of v’ is a separable
extension of it.

We assume, finally, that 3° and the supplementary condition hold. Let A’ be
the valuation ring of v’. Let P be a nonmaximal prime ideal of 4, P’ the
nonmaximal prime ideal of A’ such that P=P'N A. The topology of the
residual field Aj/P is given by ), which is complete by stages by 1° of
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Theorem 3. Consequently, Ap/P’ is a Baire space by the Corollary of Theorem
6. By [10, Theorem 14; 18, Proposition 9, p. 210], §p is henselian as v is.
Moreover, Ap/P' is a separable extension of 4p/P by hypothesis. Therefore by
Theorem 4,

[Ap/P': Ap/P] < +00,

and Ap/P is closed in Ap/P'. As Ap/P' is complete, so is Ap/P. Thus v is
complete by stages. Also [K': K] < + 00 as K’ and K are the residual fields of v/
and v determined by the zero ideal.
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