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THE GALOIS GROUP OF THE TANGENCY
PROBLEM FOR PLANE CURVES

A. HEFEZ! and G. SACCHIERO?

1. Introduction.

Consider the following enumerative problem: given curves D,,...,Dy in a
projective plane over an algebraically closed field k, find all the reduced curves
of a given degree r simultaneously tangent to these curves.

Two natural and important problems arise when the number of solutions is
finite.

The first problem is to determine the number of solutions. This is completely
solved only when r<2. For r=3 the problem was treated by Maillard and
Zeuthen, and by Zeuthen for r=4, but this work has not yet been verified
rigorously. Considerable’ progress towards the solution of the problem, by
means of its reduction to the computation of the characteristic numbers of
families, has been made recently by W. Fulton, S. Kleiman and R. MacPherson
(cf. [1]).

The second problem is to determine the Galois group of the field extension
L/K, where K is the field obtained by adjoining to k the coefficients of the D,
i=1,..., N, taken as indeterminates over k, and L is obtained by adjoining to K
the coefficients of all the curves which are solutions of the problem. The
hypothesis on the coefficients of the D; means that D,,...,Dy are in general
position in the plane.

Our subject in this paper is the second problem. When k=C and all the
curves involved are conics (the Steiner 5 conic problem), the problem was
solved by J. Harris in [3], where he proves that the Galois group is the full
symmetric group on 3264 letters (3264 is the number of solutions, when the five
conics are in general position). Our main result is that, at least when k=C and
degD;=2,i=1,...,N, the Galois group is always the full symmetric group on
s letters where s is the number of solutions of the general conﬁguratjon. Our
method of proof consists in showing that the group is twice transitive and
contains a transposition (this is also the method used by Harris). The existence
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of a transposition is established using a multiplicity formula which generalizes
to curves of arbitrary degrees a formula obtained in the case of conics by
Fulton and MacPherson (cf. [2]).

The problem we solve here was recently presented in a more refined version
as an open problem in [1]

In the following we take k =C, because, on the one hand, it is convenient to
have chark k=0 when dealing with duality and, on the other, we will use a
lemma from [3] about the existence of a transposition, which is proved using
the topology of C.

ACKNOWLEDGEMENT. We warmly thank Steven Kleiman for having
introduced us to the problem, for the many useful and stimulating discussions
we had on this subject and for a careful reading of the manuscript.

The authors want to thank Dita Andersen for her typing work.

2. Preliminaries.

Let D<= P? be a curve of degree d without multiple components. Denote by
W, the complete linear system of curves of degree r in P2. Let H,< W, denote
the subset of the curves which are tangent to D; more precisely,

H, = {CeW,| 3P e CND such that mp(C.D)=2} .

Hp is a hypersurface unless D is a line and r=1. We will exclude this exception
from our considerations. Give H, a cycle structure as follows:
(1) D™+ Y epLp
PeD

where D~ denotes the dual variety of D, the r-fold Veronese embedding of D in
PN, N =r(r+3)/2 (more precisely, we take its associated cycle), Lp denotes the
hyperplane in W, (we are identifying W, with PV) parametrizing the curves of
degree r passing through P, and ep=ep(D) is the multiplicity of the jacobian
ideal of D at the point P. Note that ep+0 if and only if P is a singular point of
D, therefore the sum (1) is in fact over the singular points of D. With this
structures on H)p, it is easy to check, using formulas (IV, 49) and (IV, 76) in [5],
that the degree of H, is equal to d(d +2r—3).

In what follows the same symbol C will be used to indicate either a plane
curve of degree r or the corresponding point in W,.

The description of the local structure of H, at an arbitrary point will be a
consequence of Proposition 1. To prove this proposition we will need the
following lemma:
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LemMMA 1. Let X = P", with n=3, be an irreducible curve and let H be a
hyperplane not containing X. If the center of a projection is a general linear
subspace of H of dimension m, with 0S<m<=<n—3, then the projection gives a
birational isomorphism from X onto its image.

Proor. Since a linear projection with m-dimensional center can be obtained
composing m+ 1 linear projections with zero-dimensional centers, it is enough
to prove the lemma in the case m=0.

Let

S ={(P,Q;R;Ap)| R=AP+puQ} = (Xx X\ 4)xP"xP'.

S is the secant bundle of X. It is clear that dimS=3. Let pr: S — P" be the
projection on the factor P". Since X ¢ H it follows that pr(S)d-H. So the
points of H which are on infinitely many secant lines, are points over which the
fibers of the morphism

S\pr"!'(H)—» H
(P,Q;R; Ay PQ NH

(ﬁ denoting the line determined by P and Q) have dimension =2. It then
follows that the set of points of H which are on infinitely many secant lines has
dimension <1. Hence a central projection from a general point of H gives a
birational isomorphism from X onto its image.

ProrosITION 1. Let X < P" be an irreducible curve which is not a line, and let H
be a hyperplane in P" not containing X. The tangent cone to X at H is given as a
divisorial cycle by

TCyX) = Y 1P,

PeXNH

where rp=mp(X.. H —mp(X) and P is the hyperplane corresponding by duality
to the point P.

Proor. We first prove the case n=2 and then reduce the general case to this
particular one.

Case n=2. Each branch g of X centered at H comes by duality from a
branch « centered at some point P € XN H and with tangent H. Since in
char 0, the dual of B is again o, it follows that the tangent to B is the line P.
Hence the contribution of the point P € X N H to the tangent cone of X at H is
the line P counted with the multiplicity rp=3 ord , this sum is taken over all
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B which are images of branches « with center P and tangent to H. But since
ord f=ord, H—ord a (cf. [7], p. 153)), it follows that

rp= Y ordf = y [ord, H—ord a]
a with center P
and tangent to H

= Y [ord, H—ord o] = mp(X.H)—mp(X) .

o with center P

Case n=3. Let P be any point of X N H, and let n< P" be a general plane
through the point H. The dual of 7, # < P", is a linear space of dimension n—3
contained in the hyperplane H and not containing P.

Let f: P* — P? denote a linear projection with center #. By the principle of
section and projection we have in the duality of P? that

@ (FX) =XNa and (f(P) =PNx

(cf. [6, Theorem (5.1), (iii)], plus the fact, which is a consequence of Lemma
(5.2) there, that the dual hypersurface of a curve is the (n—2)th osculating
developable of the dual curve. These results as stated in the reference require
that X generate P", but we can easily reduce our statement to this case).

Now since X is not contained in H and % is general in H, it follows from
Lemma 1 that f gives a birational isomorphism from X onto f(X).

From the birationality of f and the fact that no tangent to X at P meets a
general #, it follows that, for any branch o of X centered at P, we have

3 ord f(a) = orda .
By a projection formula, which can be easily verified directly, we have
4 + ord,H = ord, f(H) .

From (2), the case n=2, and the fact that % do not meet any secant of X lying
on H, we have

) TCyXNm = Y rp(PNn) (:( Y er)ﬂn)
PeXNH PeXNH

where

rp = Y , [ord,, f(H)—ord f(®)] .

o with center

From (3) and (4) it follows that
(6) rp = Y [ord,H—orda] = mp(X.H)—mp(X) .

a with center P

Since = is general we also have as a cycle:
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(7 TCx(XNnm) = TCxX)N=n.
From (5) and (7) we get
TCiX) N7 = ( Y rPP)nn.

PeXNH
Now if one looks at the forms defining TCz(X) and 3 (7P, it follows
easily that -

TCz(X) = Y rpP.
PeXNH

This equation, together with (6), completes the proof.

PROPOSITION 2. Let D be a reduced plane curve. Suppose that r=2 or no
component of D is a line. If C is a curve of degree r such that C and D have no
common components, then the tangent cone of Hy at C is given, as a divisorial
cycle, by

TCC(HD) = z (rp+eP)LP s
PeCND
where rp=mp(D.C)—mp(D) and ep is the multiplicity of the jacobian ideal of D
at P. In particular we have
mc(Hp) = ) (rp+ep).
D

PeCn

Proor. If we denote by C the hyperplane in P¥ corresponding to the curve
C, and by P (respectively D) the image of P (respectively D) in PN under the
Vernose embedding, we have

mp(D.C) = mp(D.C).

Now our proposition is an immediate consequence of (1) and of Proposition 1.

CoroLLARY. If D and C are as in the proposition and in addition all the points
of CN D are simple points of D, then

TCc(Hp) = Z reLp
PeCND

where rp=mp(D.C)— 1. In particular,

me(Hp) = PE;HD [mp(D.C)—1] = dr—(# DNC).

ReMARk 1. The corollary above was given in the special case where C and D
are smooth conics, using an “ad hoc” argument, by Fulton and MacPherson in

[2].
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Denote by X, the locus of the curves of degree r which are bitangent to D,
and by Y, the locus of the curves of degree r which have a point of tangency of
higher order with D. More precisely,

Xp={CeHy| 3P,Qe CND, C.DZ2P+20Q},
Yp={CeHp| 3PeCND, C.D23P}.
If D is a smooth curve, it follows from the corollary above that

Slng(HD) = XDU YD-

3. Some properties of H, Y, and X,

In this section we will discuss the irreducibility of the sets Yp, H, N H ), and
YpN Hp. The main results here are Propositions 4 and S. Although the proofs
are elementary in spirit, they require an extensive analysis of the fibers of
certain morphisms. We will include only the main features of this analysis.

Let D and D' be two irredicible plane curves, P and P’ simple points
respectively of D and D'. For non negative integers i and j, consider the set

Y(,j; D,P; D',P) = {Ce W, | C.D2iP, C.D'2jP}.

We will denote this set by Y(i,j) if no confusion is possible.
We set as always N=r(r+3)/2. Let V be the (N +1)-dimensional vector
space of all homogeneous polynomials of degree r in three indeterminates.
Let G and G’ be polynomials in ¥ such that G(P)+0 and G'(P)#+0. If M
(respectively M) is the maximal ideal of @), p (respectively O p), then we have
k-linear homomorphisms

D50 V- (Op o/ M) x (Op,p/(MY),

F\ (F
S (O)
with the convention that if D=D’ and P= P, the set on the right has to be

replaced by Op p/M'*/. In this case we have &, ;=®,,; o=P ;.
If we denote by n the canonical map V\ {0} — PN =W, then

Y(,j) = n(Ker &, ,\ {0}).

Hence these sets are linear subspaces of W,. Since for i 2i and j'=j we have
inclusions Ker @, ; cKer @, ;, it follows that

Y(@,j) = Y(G,j) if #=iand j2j.

In this situation we also have
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1)) codim (Y(#,f), Y(i,f)) = codim (Ker &; ;,Kerd, ).
If one restricts the maps @, ;and &, ;,, to Ker &, , it is easy to verify that

(2) codim (Ker ®;,, ,Ker®; ) <1 and codim (Kerd, ;. ,Kerd; ) < 1.

We will denote by tp(D) the tangent line to D at P.
LeEMMA 2. If i<r+1, then codim (Y(0,i), Y(0,i—1))=1.

Proor. Let isr+1. Let C=1l,...1,_,I;...1, where l,...,Il;_, are lines
passing through P’ and transversal to D’ at P',and I,. . ., 1, are lines not passing
through P'. It is clear that C € Y(0,i—1)\ Y(0, i), hence by (1) and (2) we have
that codim (Y(0,i), Y(0,i—1))=1.

From now on in this section we will assume r>2. Consider the following
chain of inclusions

3) Y(3,2) Y(2,2) c Y(1,2) € Y(0,2) < Y(0,1) =« PN,
From the lemma above it follows that

6] codim (Y (0, 1), PY) = codim (Y(0,2), Y(0,1)) = 1.
Lemma 3. If codim (Y(1,2), Y(0,2))=0, then P=P and D+D'.

Proor. It is enough to show that if PP or D=D' and P=P', then
codim (Y(1,2), Y(0,2))=1.

Suppose that D=D’" and P=P’, then Y(1,2)=Y(0, 3), hence by Lemma 2 it
follows that codim (Y(1,2), Y(0,2))=codim (Y(0,3), Y(0,2))=1.

Suppose that P+ P'. Let C, be a conic tangent to the line tp(D’) at P’ and
not passing through P (C, trivially exists). Let l,. . ., 1, _, be lines which do not
pass through the point P. Define C=Cgl; ... 1l,_,, so Ce Y(0,2)\ Y(1,2),
hence codim (Y(1,2), Y(0,2))=1.

LemMma 4. If codim (Y (2,2), Y(1,2))=0, then either
(i) r=2, P+ P and tp(D)=tp(D’), or
(i) r=2, D=D" and P=P' is a hyperflex of D (i.e., mp(D.tp(D))>3), or
(iii) D+D', P=P and tp(D)=tp(D).
Proor. It is sufficient to prove that in the cases not listed above the

codimension is equal to 1. The way we do this is by making a systematic
analysis of the situations of Figure 1:
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tp(D) tp (D) tp(D) tp(D)

/

tp(D)

\ :p(g)‘__%_ o
/ T

(b)

tp(D)

. d - t D= DI —————— D= D’
P=P 3 I p(D)=tp (D) Pep tp(D)=tp(D’)

(d) © ®

Figure 1.

For example if we are in situation (c), take C=tp(D)l, ... l,_,, where
li,...,1,_, are lines not passing through P, then C € Y(1,2)\ Y(2,2), hence
codim (Y(2,2,Y(1,2)=1.

We do just another case to illustrate the kind of arguments involved.

Suppose that D=D’" and P=P (so tp(D)=tp(D"), then we have Y(1,2)
=Y(0,3) and Y(2,2)=Y(0,4). In order to exclude case (ii) we have to assume
either =3 or P is not a hyperflex of D. Suppose r=3, then by Lemma 2, it
follows that codim (Y(2,2), Y(1,2))=1. Suppose now that P is not a hyperflex
of D. Let C=tp(D)l, ... 1,_, where l,,...,l,_, are lines not passing through P
and /, is a line, not passing through P if P is a flex of D, or transversal to D at P
if P is not a flex of D. So

CeY(0,3)\Y(0,4) = Y(1,2)\ Y(2,2)
and therefore codim (Y (2,2), Y(1,2))=1.
LeMMA 5. Suppose D=+ D'. If codim (Y (3,2), Y(2,2))=0, then either

(i) r=2, P+P, Pis a flex of D and P’ € tp(D), or
(ii) tp(D)=tp(D’).

Proor. Similar to the proof of Lemma 4.

It follows from (3) and (4) that codim (Y (1, 2), PM>2, therefore
codim (Y(2,2),PM) > 2.
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By Lemma 2, codim (Y (3,0), PN)=3, and since Y(3,2)= Y (3,0), it follows that
codim (Y (3,2), P”)g 3. Putting together this and the lemmas above we get the
following more precise statements.

ProrosiTION 3. In parts (c) and (d) below we assume D3 D'.
(@) If codim (Y (2,2), PN)<3, then either
(i) P=P and DD’ or
(ii) r=2, P*P and tp(D)=tp(D’) or
(iii) r=2, D=D' and P=P’ is a hyperflex of D.

(b) If codim (Y(2,2), PN)=2, then D+D', P=P and tp(D)=tp(D').

(c) If codim (Y(3,2), P¥)< 4, then either
(i) P=P or
(i) tp(D)=tp(D) or
(iii) r=2, P%P, P is a flex of D and P’ € tp(D).

(d) If codim (Y (3,2), P3)=3, then either
(@) P=P and tp(D)=tp(D’) or
(i) r=2, P%P, tp(D')=tp(D) and P is a flex of D.

Proor. Combining Lemmas 2, 3, and 4 with (4) and using some formal logic
we get (a), (b) and (c). We now prove (d). Again Lemmas 2, 3, and 4 and (4)
give that if codim (Y (3,2), PY)=3, then either

(i) P=P and tp(D)=tp(D') or
(iiy r=2, P+P and tp(D)=tp(D).

Now we will show that codim (Y (3,2), P¥)=3 plus (ii) imply that P is a flex
of D. Indeed, in this case N =5, dim Y(3,0)=2, and if P is not a flex of D, the
reducible conics C’ such that mp(C’.D)=3 form a subspace of dimension one
of Y(3,0). Take an irreducible conic C such that mp(C.D)=3, then P’ ¢ C,
so Ce Y(3,00\Y(3,1) and therefore codim (Y(3,1),P%)=4. Since Y(3,2)
< Y(3,1), it follows that codim (Y (3,2), P%)2 4, contradiction.

COROLLARY. Let D and D' be smooth plane curves. In (c) and (d) below we
assume D#+D'.
(a) Excepting the case r=2, D=D' and deg D=1, we have
dim {(P,P) e Dx D' | codim (Y(2,2),PM)<3} < 1.

This dimension is zero if r=3 or if D, D’ is not a pair of tangent curves such that
one of them is a line.

(b) If D=D' or D is transversal to D', then
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{(P,P)e DxD'| codim(Y(2,2),PN)=2} = ¥ .
(¢) dim{(P,P)e DxD'| codim(Y(3,2),PV)<4} < 1.

This dimension is zero if D,D’ is not a pair of tangent curves such that one of
them is a line.

(d) If D is transversal to D’ and no inflectional tangent of D is tangent to D',
then

{(P,P)e DxD'| codim(Y(3,2),PV)=3} = ¥,

ProprosITION 4. Let D be a smooth plane curve. Then
(i) dimXp,SN-2.
(i) Yp isirreducible and if r=2 and deg D=1, dim Y,= N — 3, otherwise dim Y),
=N-2.

Proor. (i) Let
I(D) = {(C; P,Q) e W,xDxD| C.D22P+2Q} .

Let p,: I(D) » W, and p,: I(D) — D x D be the projections. It is clear that
p.(I(D))=Xp and p;*(P,Q)=Y(2,2; D,P; D,Q). If r23, or D+D’, or degD
>1, we have from the corollary above, part (a), that dim I(D)=N —2, hence
dimX,<N-2. If r=2, D=D', and degD=1, then X is the set of conics
having D as a component, this set has dimension 2(=N —3).

(ii) If r=2 and degD=1, then Y}, is the set of conics having D as a
component. In this case Y}, is irreducible and dim Yp=2= N —3. Suppose now
that r>2 or degD>1. Let

I'(D) = {(C; P)e W,xD | mp(C.D)23} = W,xD.

Let p,: I'(D) > W, and p,: I'(D) — D be the projections. We have that Y,
=p,(I'(D)) and p;'(P)=Y(0,3; D,P; D, P): From Lemma 2 it follows that
every fiber of p, is a PN =3, therefore I' (D) is irreducible of dimension N —2, so
Yp is irreducible. Since the fibers of p, are generally finite, it follows that Y}, has
dimension N —2.

ProposITION 5. Let D,D’ be plane curves such that D is smooth and not a
component of D'. We have
(i) The set HpN H y is pure (N — 2)-dimensional. If D' is smooth and transversal
to D, then H,N H y is irreducible.
(i) If r>2 or degD>1, then YpN\ Hyy is pure (N — 3)-dimensional. If moreover
D' is smooth, transversal to D and no inflectional tangent of D is tangent to
D', then YpN Hp is irreducible.
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Proor. (i) Since D is not a component of D', Hp¢ D", and since H pisnot a
hyperplane, Hpd Lp for all P. It follows that H,4¢ Hy, and consequently
HpNHp is pure (N —2)-dimensional.

Assume now that D’ is smooth and transveral to D. Let

I(D,D) = {(C; P,P)| C.D22P,C.D'22P} = W,xDxD' .

Let p,: I(D,D') — W, and p,: I(D,D') —> D x D' be the projections. We have
that HpyNHy=p,(I(D,D)) and p;*(P,P)=Y(2,2; D,P; D',P). From the
corollary, parts (a) and (b), it follows that the fibers of p, are generally
isomorphic to P¥~* that they are not isomorphic to PV~ only for finitely
many pairs (P, P") € D x D', and that in this case they are isomorphic to PN 3,
Therefore I(D, D’) has dimension N —2 and a unique irreducible component of
that dimension. Since H;, N H, is pure (N — 2)-dimensional and it is the image
of I(D, D’), it follows that it is irreducible.

(ii) It is clear that Y, ¢-D’ and that Y, ¢ L, for all P, therefore Y, ¢ H),. It
follows that Y,N H is pure (N —3)-dimensional.

Suppose now that D’ is smooth, transversal to D, and no inflectional tangent
of D is tangent to D'. Let

I'(D,D') = {(C; P,P) | C.Dz3P,C.D'22P'} « W,xDxD'.
If p,: I'(D,D’) - W, and p,: I'(D,D’) — D x D' are the projections, then
Y, NHp = p(I'(D,D)) and p;'(P,P) = Y(3,2; D,P; D', P).

From the corollary, parts (c) and (d), it follows that, on the complement of a
finite set, the fibers of p, are PN =3 and, on this finite set, the fibers are PN % It
follows that I'(D,D’) has dimension N—3 and has a unique irreducible
component of that dimension. Since Y,N H ), is pure (N —3)-dimensional and
it is the image of I’(D, D’), it follows that it is irreducible.

4. The Galois group.

In this section we compute the Galois group of the tangency problem for
plane curves, in the case in which the degrees d, of the curves D, are all =2, and
either r=2 or for some i, d;>2. The case r=1 and d, =d, =2 will be treated in
the next section. To carry out the computation we first identify the Galois
group of the problem with a monodromy group associated to a map of finite
degree. Then we show that the action of that monodromy group on the general
fiber is twice transistive. Finally we establish the existence of a transposition.

Let W, be the open subset of W, consisting of points which represent reduced
curves. Let W’ be the closed subset of points of W, which represent the singular
curves.
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Let, as always, N=r(r +3)/2. We are assuming d;=2 for i=1,...,N. Let
X = Wdlx...doN.
Let

N
Y= {(Dl,...,DN;C)eXxW,l Ce N HD‘}.
i=1

Consider the projections

p YP
N
X W

p, is clearly proper since it is obtained by base extension of a projective
morphism.

LEMMA 6. Y has a unique component Y of maximal dimension (=dim X).
Moreover Y is the closure of p; *(W,\ W) in X x W.,.

Proor. Notice that for C € W, we have
p;'(C) = Hex ... xHe,

where each H . is sitting in the appropriate Wd‘, i=1,...,N. Since all the fibers
of p, have dimension dim X — N and W, has dimension N, it follows that dim Y
=dim X. On the other hand, p;!(C) is irreducible for C in the open set
W,\ W, and, since p, is proper, we have that p; 1 (W,\ W) is irreducible. It is
clear now that the closure of p; ! (W,\ W’)in X x W, is the unique component
of Y of maximal dimension.

REMARK 2. The proof above works also if r =2 and for some i, d;=1. So the
only case excluded is when r=1 and some d;=1, but in this case the
enumerative problem has no solution.

To give content to our results, we will assume that the restriction of p, to Yis
dominating. This fact is a corollary of the main result in [1].

Let G be the Galois group or the monodromy group of p, | ¥ (cf. [3]). This is
the Galois group we are interested in determining.

Since ¥ is irreducible, G acts transtively on the general fiber of p, | ¥. In fact
the transitivity of the group action is equivalent to the irreducibility of ¥.

LeMMA 7. The general fiber of p, consists of points which represent non
singular curves. In particular, the general fiber of p, is contained in Y.



THE GALOIS GROUP OF THE TANGENCY PROBLEM FOR PLANE CURVES 183

Proor. In fact, let
Y = {(Dy,...,Dy; C) e Y| Cis singular} = p; 1(W)).
By lemma 6 we have that ¥¢Y’, so dim Y’ <dim ¥ (=dim Y=dim X), hence
dimp, (Y')<dim X.
Let U=X\p,(Y’), where Y’'=p; }(W') as above.

LemMa 8. prt(U) xypr Y (U)\ 4, where A is the diagonal, has a unique
irreducible component of maximal dimension (=dim X).

Proor. The fiber of p,: p7 1(U) xy pf H(U)\ 4 — (W,\ W')? over the point
(C,C") with C#C' is isomorphic to
(HCanl)X e X (HCﬂHC') .
From Proposition 5 (note that here the d;’s play the role of r there) these fibers
are (dim X —2N)-dimensional and generally are irreducible. From this it

follows that p;*(U) x py }(U)\ 4 has the same dimension as X and it has a
unique component of that dimension.

PROPOSITION 6. G acts doubly transitively on the general fiber of p,| Y.
Proor. Consider the diagram

P (U) xypy {(UN 4 2 pri(U)
| N‘ »

pil(U) — 2 S Ucx.

From Lemma 8 it follows that the Galois group G’ associated to the map p acts
transitively on its general fiber. Let (y,, y;), (¥}, )2) be two points in a general
fiber of p (y,,y,, y1,)> are then points on a general fiber of p,). From the
transitivity of the action of G', there exists a path y in p;*(U) xyp; *(U)\ 4
such that

y©0) = (y,y2) and  y(1) = (1, )2) .

Let « be the path in U defined by a = poy. Then =, oy and =, 0y are the liftings of
@ in p;!(U) with initial points respectively y, and y,. Since

moy(l) = yy  and  myop(l) =y},
it follows that if g € G = Galois group associated to p,: p; ' (U) — U (= Galois
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group associated to p,: ¥ — X) is the element associated to the path o, then we
have

gy) =y, and g(,) =y;.

This proves the double transitivity of the action of G.

Let Dy,...,Dy be any curves and C € Hp N ... NH),,. We are interested in
computing the intersection multiplicity m-(H p, - - - Hp,) of the hypersurfaces
Hp,...,Hp, at the point C. This computation can be done very easily when
the tangent cones of Hp,...,Hp, at C intersect only in {C}. In fact, this
condition is equivalent to the equality

(1) mC(HD‘ e HDN) = mC(HDl) e mC(HDN) .

In the above situation we say that Hp,...,Hp, are transverse at C.

From the description of the tangent cones to the Hp, we gave in Proposition
2, it follows that Hp,...,Hp, are not transverse at C if and only if
(Dy,. . .,Dy; C) € I, where

N
r ={D,,....Dy;CO)eY| Ce N Hy and 3C €W, C * C such that
i=1
Vi=1,...,N, 3P,e D;,NC’" with mP‘(Di.C)—mP'(Di)+eP'(D,)>0} .
Note that the last inequality above is equivalent to mp (D;.C)=2.

ReMArRk 3. There exists an open set U in X such that, for every
(Dy,...,Dy) e U and every Ce Hp N...NHp N W,, the curves D,,...,Dy
and C are smooth and the H, are transverse at C. In particular for such D; and
C we have

N
mc(Hp, ... Hp) = [] ( Y [mP(Di~C)_1]>~

i=1 \PeCND,

Proor. The assertion about the smoothness of C follows from Lemma 7. The
existence of U on which the transversality assertion is valid is insured by the
fact that the closure of I" is a proper closed subset of Y not containing Y.
Indeed, the fiber over C € W,\ W, of p,: I' — W, is given by

p:'(C) = UHcp xHcp, %...xHcp,,
where the union is taken over all points P,,...,Py such that there exists

C' e W, C'#C, such that C".C2P,+...+Py, and where H¢ p is the set
parametrizing the curves of degree d; tangent to C at the point P,
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We have that
N
dimp;'(C) £ Y. (dim W, —2)+dim H°(C, 0.(r)) ,
i=1

and since dim H°(C, O.(r))=N —1, we have that
dimp;!(C) £ dimX-N-1,

therefore dim I' <dim X — 1 =dim Y— 1. The formula is now a consequence of
the corollary after Proposition 2.

Our task in the rest of the section is to show the existence of a fiber of p, | ¥
with a point of simple ramification, around which ¥\ ramification locus is
connected (in the C topology), and no other ramification occurs. From this
fact, it follows that G contains a simple transposition (cf. [3], Lemma on page
698]). The presence of the transposition and the double transitivity of G imply
that G is the whole symmetric group.

Let C be a fixed smooth curve of degree r. Set

Z=H¢x...xHexY.c X.

Since C is smooth we have that Z x {C}cp;!(C)c= Y.

We say that an N-tuple (P,,.. ., Py) is in general position on C if the P;s are
general points on C (i.e. points of C in the complement of some finite subset.
This finite subset will be made precise in the course of the proofs of Lemmas 9
and 11) and there is no curve of degree r other than C passing through these
points. It is clear from the definition of I' that if for each i, D, touches C in a
unique point P, and if (P,,...,Py) is in general position on C, then
(Dys...,Dn; C) & T.

LemMA 9. If either r=2 or for some i, d;>2, then the set

Z' = {(Dy,....,Dy)e Z| mc(Hp, ... Hp)=2}

is dense in Z.

Proor. Consider the set
Z" = U H’C,Pl X ... XH’C,PN_IX Y’C,PN N

where the union is taken over all N-tuples (P;,. .., Py) in general position on
C, and where H, p, is the open subset of

Hep ={De H¢| mp(C.D)22},
defined by {D € H p |mc(Hp)=1} and Y p, is the open subset of

Math. Scand. 56 - 13
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Yepy = {D€Yc| mp,(C.D)23}

defined by {D € Y¢ p,|mc(Hp)=2}. Note that if r=1 and d, =d,=2, then
Ye p =4 for i=1,2.
Each

’ ’
cp X XHepy XY pys
if not empty, is open and dense in

Hep, % ... xHepy X Yepy -

Z" <2’ because if (D,,...,Dy) € Z", D; determines a unique point P; in
which D; touches C, so by the note just before the lemma and formuls (1), it
follows that (D,,...,Dy) € Z'. To complete the proof of the lemma it is enough
to show that for general points P,.., Py on C one has

!
c,p X - xHepy_ XYepy * [

Indeed, let P,, for some i=1,...,N—1 be a general point of C. If r>1, P, is
neither a flex of C nor a point on a bitangent of C. Form the curve D; with the
tangent line to C at P; as a component and d;— 1 other lines transversal to C
and such that no two of these d; lines intersect on C. From Proposition 2 it
follows that D; € Hc,p, so Hc,p+ . If r=1, then N=2, and it is enough to
take a curve D, of degree d, such that C is neither an inflectional tangent of D,
at P, nor C is a bitangent of D, (This is always possible because d, =2).
D, € H,p, hence H¢ p + .

Now let Py, be a general point of C. If r> 1, take an irreducible conic D, such
that mp (C,Dy)=3 and D, is not bitangent to C. This is possible. For suppose
r=2 for a moment (not the same r as above), the subset Y¢ p,\ X p, of P* is
non empty because the curve tp,(C).l, where | is a line transversal to C and
passing through Py, belongs to it (Xcp, stands for X-NHcp,). So
Yc py\ X, p, has dimension 2 (recall that Y. p =Y(0,3; C,Py; C, Py)), but
the set of reducible conics D such that mp (C.D)=3 is one dimensional (this
because Py is not a flex of C), hence D, exists. Now let Dy be the curve with
components D, and dy — 2 lines transversal to C and such that no two of these
dy—1 curves meet on C. It is clear that Dy € Y p,, 80 Y p,+ . If r=1and
d,>2 (we are assuming without loss of generality that d, <d,), then take a
smooth curve D, of degree d, such that mp (C.D,)=3 but C is not a bitangent
of D, (D, obviously exists), clearly D, € Y¢,p,, s0 Y¢,p,+ .

Notice that if (D,,...,Dy) € Z', then C is not bitangent to any of the D;’s,
because otherwise

mc(Hp, ... Hp) = me(Hp) ... me(Hp,) > 2;
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and the points P,,. .., Py such that mp(C.D;)22 uniquely determine a curve
of degree r which is C, because otherwise (D,,...,Dy; C) e T, so

me(Hp, ... Hp) > mc(Hp) ... me(Hp) 2 2.

Define

N
K = pi'(2)\p;'(C) = {(Dl,...,DN; C’)l C'e N Hp,,
i=1
CeHDlﬂ...ﬂHDN_lﬂYDN,C#:C’}.

LemMma 10. K has a unique irreducible component K which dominates Z.
Moreover for every C' € W\ W., p; {(C)NK=p;(C)NK and K<Y.

ProoF. Let C' € W,\ {C}. We have
piNCYNK = (HeNHE)x ... x (HeNHe)x (YeNHe) .

Recall that for C' non singular we have p; ! (C')c Y, so generally p; }(C)NK
< Y. From Proposition 5 we have that p; !(C') N K generally is irreducible and
always of dimension dim Z — N. It follows that dim K=dim Z and K has a
unique irreducible component K of that dimension. Moreover K has the
specified property.

Let K’ be the closed subset of K defined by
K = {(Dy,....Dy; C)e K| mc(Hp, ... Hp )22} .

LEMMA 11. If r=2 or for some i, d;>2, then dim K’ <dim K.

Proor. We have only to exhibit a point in K which is not in K.

If r=2, choose a smooth curve C' transversal to C and let P,,...,Py be
points on C’ in general position. For each i=1,...,N —1 construct a curve D,
in the following way: D, has tp (C') as a component and as other components d;
—1 lines transversal to C’, one of them tangent to C and such that no two of
the D, lines meet on C'. Now since Py is in general position on C’, the tangent
line to C' at Py, meets C at a point P such that P ¢ C' and the tangent line to C
at P is transversal to C'. Let Dy be a curve having tp (C') and tp(C) as
components and as other components dy—2 lines transversal to C' and such
that no two of these dy lines meet on C'. From this construction of
C,D,,...,Dy, and by Lemma 10 it is clear that (D,,...,Dy; C) € K\K'.

If r=1 and d, > 2, take a smooth cubic D, with C as an inflectional tangent,
take for C’ a tangent line to D, at a point P, which is not a flex of D, take a
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conic C, tangent to C and tangent to C’ at a point P, + P,. It is clear how to
complete C, and D, with lines in order to get curves D, and D, with the
desired degrees and such that (D,,D,; C') e K\ K'.

ProrosiTioN 7. If r=2 or if for some i, d;>2, then G contains a simple
transposition.

Proor. Take a point (Dy,...,Dy) € Z'\ p,(K’). Such a point exists by
Lemmas 9, 10, and 11. Then we have mc(H), ... Hp,)=2, and for every C'+C
such that

(D1,~ --,DN; C’) € pi—l(Dl,' . ~’DN) n Y;

we have mc(Hp, ... Hp,)=1. It follows that the fiber of p,| Y over the point
(Dy,...,Dy) has a point of simple ramification and no other ramification
occurs. To complete the proof we have only to show that there exists an
arbitrary small neighborhood (in the C topology) of (Dy,...,Dy; C) in ¥ such
that the complement of the ramification locus in it is connected.

From the note just after Lemma 9 we have that C is not bitangent to any D,
and the points P, i=1,...,N, with mp(C.D;)22 determine a unique curve of
degree r which is C. Consider now the set

I ={(Dy...,Dy; C; Phyo. ., Py) € X x W, x (PYN | mp(C'.D)22} .

It is clear that =, (I)= Y, where 7, is the projection I — X x W,. By considering
the projection 7,: I — (P*)", we see that

;W (U) = PNi=2x ... xPNv-2x U,

where U is some open neighborhood of (Py,...,Py) in (PN, so n;1(U) is
smooth and contains (D,,...,Dy; C; Py,. .., Py). On the other hand, since no
C’ close to C is bitangent to any Dj close to D,, it is possible to find arbitrary
small neighborhoods V' and V respectively of (D,,...,Dy; C; Py,...,Py)in I
and of (D,,...,Dy; C)in Ysuch that =, | V': V' — Vs bijective. By taking V"
compact, it follows that ¥’ and ¥ are homeomorphic. Since the complement of
a codimension one subset of a smooth variety over C is connected and since V'
is smooth and homeomorphic to V, it is clear that V has the desired property.

5. The case r=1, d, =d,=2.

The problem we have to solve now is the determination of the Galois group
of the four tangents to two smooth conics in general position. This is
equivalent, by duality, to find the Galois group of the four intersections of two
smooth conics in general position. We will show that the Galois group of the
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problem is the symmetric group on four elements, by solving a more general
problem.
Let C<P" be an irreducible curve of degree n>1. Let B be defined by

B ={(HP)| PeHNC} c PVxC.

Consider the projections

B
S

BooC

It is clear that B is an irreducible N-dimensional variety and p, is a map of
degree n. If we denote by G the Galois group associated to the map p,, it
follows that the action of G is transitive on the general fiber of p,.

The following proposition was proved by J. Harris in [4, (Lemma on page
38)]. We will give a different proof of it.

ProrosiTioN 8. G is the symmetric group on n letters.

Proor. Consider the morphism induced by p,:

BxpyB\N4— CxC.

Over a point (P,Q) e Cx C with P=%Q, the fiber is the set of hyperplanes
containing P and Q, so it is a PN~ therefore B x py B\ 4 is irreducible, hence
the same argument we used in the proof of Proposition 6, shows that G acts
doubly transitively on the general fiber of p,.

To produce the special fiber, and hence the transposition, take a general
point H in C. From Proposition 1, it follows that for some smooth point P, of
C we have that mp (C.H)=2 and mp(C.H)=1 for all the other points
P e CNH. So the fiber of p, over H has a unique ramification point (H, P,)
which is a simple ramification. Since B is smooth at (H, P,), it follows that
there are arbitrary small neighborhoods of (H,P,) in B such that the
complement of the ramification locus in each of these neighborhoods is
connected. From this it follows that G contains a transposition and hence it is
equal to §,.

This proposition gives us the Galois group of the Bézout problem:

COROLLARY 1. The Galois group of the m.n intersection points of a fixed curve
of degree m with a general curve of degree n is the symmetric group S,,.
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Proor. Apply the proposition to the n-fold Veronese embedding of the curve
of degree m.

CoOROLLARY 2. The Galois group of the tangency problem for plane curves in
the case r=1,d,=d,=2is S,.
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