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HILBERT SCHEMES OF HYPERSURFACES
AND NUMERICAL CRITERIONS

BJORN ADLANDSVIK

Introduction.

By a n-hypersurface in P” we will mean a hypersurfacein a (n + 1)-plane
in P". Let P, ; denote the Hilbert polynomial of a n-hypersurface of degree
d. In this paper we prove that the Hilbert scheme Hlle ~ consists of
n-hypersurfaces only. This generalizes a result of P. Ionescu [9].

From this we prove that P,, is the minimal Hilbert polynomial of
subschemes in P" of dimension n and degree d. Furthermore write the
Hilbert polynomial of X

- t+n Cft+n-1

HPy(t) = ( " ) +a1( ne1 >+...+a,,.
Then we get a; = — (2) and if X is of pure dimension and no embedded
components, equality implies that X is an n-hypersurface.

Finally we relate this criterion to criterions given by I. Vamsencher [12]
and M. Dale [3].

1. Hilbert schemes of hypersurfaces.
Let S be a noetherian scheme, V a locally free Og-Module of rank N +1. |
By a n-hypersurface of degree d in P(V') we will mean a closed subscheme’
Z < P(V), flat over S, such that for each seS the fiber Z,= P(V(s)) is
a hypersurface of degree d in some (n+1)-plane in P(V(s)). f n=N —1
we will simply say that Z is a hypersurface.

LemMA 1.1. Let Z < P(V) be a n-hypersurface of degree d > 1 and suppose
n > 0. Then there is a locally free (n + 2)-quotient W of V, unique.up to
equivalence of quotients, sich that Z is a hypersurface in P(W).

PROOF. Since this proof is very similar to the proof of Proposition 3.2 in
[1] we skip some of the details.

Let W be the direct image of O4(1) on S. We have h'(Z,,04,(1)) = 0and
sincen > 0and d > 1, h%(Z,, 0z, (1)) = n + 2. Thus Wis locally free of rank
n + 2 and its formation commutes with base change.

Received November 9, 1983.



164 BJORN ADLANDSVIK

The adjoint of V; — 0z(1) gives a surjection V — W by Nakayama’s
‘lemma. Pulling this back to Z we see that V; — 0,4(1) factors through W,.
Thus the embedding of Z in P(V') factors through P(W).

The uniqueness is clear since P(W (s)) is the linear span of Z; for each
seSs.

LeEMMA 1.2. 'Let ¢:T— S be a base change. If Z < P(V) is a n-
hypersurface, then Z < P(Vy) is a n-hypersurface. The converse holds if
@ is surjective.

PRroOF. It is enough to show that for a field extensionk = K, Z < PYisa
n-hypersurface if and only if Zx = PY¥ is a n-hypersurface.
The only if part is trivial. For the converse notice that

dim, HO(PY , I7(1)) = dimgH (P, I,(1)),

where I, (respectively I,,) is the ideal of Z < Py (respectively Zx < P¥).
Therefore Zx = P*! < PY gives a P}*! < P} containing Z. Z is of pure
dimension n and without embedded components [6, IV. 4.2.7] and
therefore Z is a divisor in this Pj*! [6,IV. 21.7].

This lemma shows that there is a contravariant functor from noetherian
S-schemes to sets,

T — {n-hypersurfaces of degree d in P(Vy)}
Put G = Grass, ., (V) and let Q denote the universal (n + 2)-quotient.

LemMMA 1.3. For d>1 and n >0 the above mentioned functor is
represented by X = Pg(S°(Q)").

Proor. To give a.n-hypersurface in P(Vy) is equivalent to give a
hypersurface in P(W) for an (n + 2)-quotient W in V; by Lemma 1.1.

This quotient corresponds to a S-morphism T— G and the hypersurface
corresponds to a lifting of this morphism to P(S*(Q)") by [1, 3.1].

LetP. . =(tTn+1\_ t—d+n+1
"\ n+1 n+1

% fd+1\ (t+n—i

_i;o(—l)(l"f'l)( n—i )

denote the Hilbert polynomial of a n-hypersurface of degree d.

THEOREM 1.4. If d > 1 and n > 0 there is a canonical S-isomorphism
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Pn.d

Ps(SQ) = Hile(V)/S

Proor. Put X = P;(8%Q)") and H = Hilb;'(*;,)/s. The n-hypersurface
functor is a subfunctor at the Hilbert functor and we get a morphism
@:X — H.Let Y denote the schemetheoretic image of X. Since X is proper,
¢@:X — Y is surjective. By Lemma 1.2, Y consists of all points in H
corresponding to n-hypersurfaces. By the universal property of X we see
that ¢: X — Y is an isomorphism.

Since a n-hypersurface is the same as an embedded flat family of
complete intersections of type (d,1,...,1) with N — n — 1 ones, we conclude
from [9, Proposition 1] that Y is open in H.

Since Y is flat over S the ideal of Y in H commutes with base change.
Thus to show that Y = H we may assume that S is connected and
V =~ OF**. In this case H is connected [7] and we are finished.

REMARKSs. (1) In [9, Proposition 3] Ionescu proves the casen = N — 1 of
this theorem. In an unpublished talk at the “Week of Algebraic
Geometry”. Bucharest 1980, Ionescu proved, by induction on the
codimension, that the Hilbert schemes Hilbﬁ',:;" consist of n-hypersurfaces
only.

(2) Whend =1,

Py
Hlle(V)/S = Grass, (V).

This is proved by Altman and Kleiman [1, Proposition 32], see also
Remark 3 in Ionescu’s article.

2. Numerical criterion. S
Let PY denote projective N-space over a field k. For the sake of simplicity
we suppose that k is algebraically closed. For a closed subscheme X < pX

we denote its Hilbert polynomial

t+n " ft+n-1
pr(t)‘—“d( n >+a1( n-—-l >+...+a,,.

‘The ring ‘Q[¢] of rational polynomials is ordered by putting f > g if
f(t) = g(t) for t > 0. This is equivalent to the lexicographic order in the
coefficients of both the expansion

() = pot"+pit" ...+ Pa

and the binomial expansion
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'f(t)=éo<t:")+éi(t+fz 1)+...+q,,.

n

THEOREM 2.1. If X < PV is a closed subscheme of dimension n and degree
d, then HPy = P, ;. If n > 0, equality implies that X is a n-hypersurface.

Proor. The last statement is a corollary of 1.4. We prove the first
statement by induction. For n =0, HPy =d = P 4.

If n> 0, let H< P" be a hyperplane with H N Ass X = & and put
X'=XNH. We have

HPy,(t) = HPx(t) — HPx(t — 1)
o ft+n—1\,  [t+n—2
—d( n—1 >+a1( n—2 )+...+a,,_1.

Suppose HPy < P, 4, this implies

o< (—1)"<,.f1), =1,

By induction HPy, = P,_, 4 and therefore

a; = (—1)"<if1> i=1,...,n—1.

Thus, HPyx = P, ; — m, where m is a non-negative integer.

Let Y be the disjoint union of X and m points. Then HPy = P, ;and Yisa
n-hypersurface. This is absurd if m is positive.

REMARK. For n = 1, the theorem simply says that

@-1)(d~2)
p.s T2

with equality if and only if X is a plane curve.
C. Peskine has shown me a direct proof of this result, based on a careful

study of the sum
glh‘(X,Ox(i —1)) — h'(X,0x( (i)

From the theorem we see that a; = — (4). We will prove that equality
implies that X is a n-hypersurface under mild conditions on X. For this we
need some lemmas.

LEMMA 2.2. Let X < PY be a closed subscheme with h°(X,0x) = 1 and let
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H < PN be a hyperplane such that HNAssX = &. Put X'= X NH.
Suppose that X' is contained in a m-plane in H, then X is contained in a
(m +1)-plane in PN.

Proor. Let I be the ideal of X in P¥, I’ the ideal of X' in H. From the

exact sequence
0—‘)1'—’0PN—‘)OX""0

and the assumption h°(X,0y4) =1, we get h!(P",I) = 0. From the exact
sequence

0-I1->I11)-1I'(1)-0,
we then get h°(P,1(1)) = h°(H,I'(1)) and the lemma follows.

LEMMA 2.3. Let X < P" be a closed subscheme. Assuime that there are no
closed points in Ass X, then H°(X,0x(—q)) = 0 for ¢ > 0.

Proor. If x is a closed point in X, then depth Oy , = 1 by assumption.
Then the lemma follows by the same method as the proof of (i) = (ii) in
[8, III. 7.66].

LEMMA 2.4. Let X < PN be a closed subscheme of dimension n>2.
Assume X' = X N H is a (n — 1)-hypersurface, where H is a hyperplane such
that HNAssX = &.

Then X is an-hypersurface ifand only if X is of pure dimension and without
embedded components.

Proor. If X is a n-hypersurface, then X has pure dimension and no

embedded components.
Conversely, suppose that Yis of pure dimension and without embedded

components. From the exact sequence
00— 04(1)~0x(1)-0
we get an exact sequence
0— H°(X,0x(—q)) » H°(X,0x(1—q)) » H°(X",0x (1 - q)).
Since X' is a (n— 1)-hypersurface, H°(X',04,(1—q)) =0 for ¢>1 and
therefore

H°(X,04(—q)) = H’(X,0x(1—q)) for ¢>1.
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From this and Lemma 2.3 we see that H°(X,04(—q)) =0 for g=>1.
Putting g = 1 in the sequence above we get

0— HO(X,04)— H(X",05) = k

and therefore h°(X,0x) = 1. From Lemma 2.2 we conclude that X < P"*!
< P¥. Since X has pure dimension and no embedded components, X is a
hypersurface in P"** by [6, IV. 21.7].

THEOREM 2.5. Let X < P be a closed subscheme of pure dimensionn > 1,
degree d and no embedded components. Thena, = — ('; ) and equality holds if
and only if X is a n-hypersurface.

Proor. It only remains to prove that ¢; = — () implies that X is a n-
hypersurface.

If n =1 thisis 2.1. For n = 2, let H be a general hyperplane. Then X’
= X N H is of pure dimension n — 1 and without embedded components by
[6,1V.9.7.6]. By induction X' is a (n — 1)-hypersurface and we conclude
from Lemma 2.4 that X is a n-hypersurface.

We will now study the relation between this criterion and other criterions
by Vainsencher and Dale. From now on let X < PN be a projective variety
(i.e. areduced and irreducible closed subscheme) of dimension n and degree
d.

Let

N-—-n
Opr

be the dualizing sheaf and write its Hilbert polynomial
HP, (t) = )j b<‘+fi )

Then by = d and we define degywy = by — a, (see Vainsencher [12]).
The proof of Vainsencher’s criterion essentially proves the following
theorem.

COX = Ext (Ox, OPN( N 1))

THEOREM 2.6. Let X = P" be a projective variety of dimension n = 1 and
glegree‘ d, then

1) degywy £ ~2a;—(n+1)d
2) degy wyx = —2a; — (n+1)d if X is Cohen-Macaulay.

Proor. Suppose X is Cohen-Macaulay, then by Serre duality



HILBERT SCHEMES OF HYPERSURFACES AND NUMERICAL CRITERIONS 169

H'(X,wx(t)) = H"/(X,0x(—1))".

This implies that HP,, (t) = (—1)"HPx(—t) and a short calculation gives
b, =a; — (n+1)d and (2) follows.

For the proof of (1) we use induction after n. If n = 1, X is Cohen-
Macaulay and we have equality. If n> 2, let H < P¥ be a general
hyperplane. Then X' = XNH is a variety (see f.ex. Jouanolou [11,
Theorem 6.3]). The essence of Vainsencher’s proof is the inequality

degy wy = degy wyx +d.
By induction we have
degywy S degywy—d < (—2a,—nd)—d = —2a,— (n+1)d.
From this inequality and our criterion Vainsencher’s criterion follows.

COROLLARY 2.7. We have degy wy < d(d — n — 2) and equality holds if and
only if X is a n-hypersurface.

Proor. From 2.5 and 2.6 we have
degywy £ —2a;,—(n+1)d £d(d—n-2).

Equality implies that a, = —3d(d — 1) and X is a n-hypersurface by 2.5.

Now we will study the criterion of M. Dale [3]. Let X = P¥ be a
projective variety, dim X = n,deg X = d. Lets;(X)€e A4, X bepart of the
Segre class of X. See f.ex. Johnson [10] for the definition. By degs; we
mean degi,S,, where i: X — PV is the given embedding.

We are now able to formulate Dale’s criterion.

ProposiTioN 2.8. (Dale [3, 2.11]). We have degs, < d(d —n—2), and
equality implies that X is a n-hypersurface.

An easy application of the Baum-Fulton-MacPherson-Riemann-Roch
theorem [2] gives
n+1

2 bl
wheret, € A, ; X qis part of the Todd class introduced there and the degree
is taken by the given embedding of X in PN,

The next proposition gives a partial answer to the question of relations
between the numerical invariants degs; and a, .

degt, =a;, +d

ProrosITION 2.9. If X is regular in codimension one, then s; = —2t, in
A,_1Xq, in particular degs, = —2a; —d(n +1).

Math. Scand. 56 - 12



170 BJORN ADLANDSVIK

Proor. Suppose first that X is regular. Then
1y =Td;(X) N [X] =3¢, N[X] = — 35,

by part (2) of B. F. M. Riemann-Roch.
If X is regular in codimension one, put U = X, and let j: U—X
denote the embedding. By [4, 1.9] we have an isomorphism

Jj*: Ap-1Xox A, 1Uq.

We have j*t,(x) = 7,(U) by part (3) of B. F. M. Riemann-Roch, and
j*s1(X) = s5,(U) by [5, Proposition 3.2].
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